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EE 4TM4: Digital Communications II

Channel Capacity

I. CHANNEL CODING THEOREM

Definition 1: A rateR is said to be achievable if there exists a sequence of(2nR, n) codes such thatlimn→∞ P
(n)
e (C) =

0. The capacityC of a DMC is the supremum over all achievable rates.

Theorem 1:The capacity of the discrete memoryless channelp(y|x) is given by the information capacity formula

C = max
p(x)

I(X ;Y ).

Lemma 1:Let (X,Y ) ∼ pX,Y (x, y) andp(xn, yn) =
∏n

i=1 pX(xi)pY (yi). Then

P{(Xn, Y n) ∈ T (n)
ǫ (X,Y )} ≤ 2−n(1−ǫ)I(X;Y );

moreover,

P{(Xn, Y n) ∈ T (n)
ǫ (X,Y )} ≥ (1− ǫ)2−n(1+ǫ)I(X;Y )

for n sufficiently large.

Proof: Note that

P{(Xn, Y n) ∈ T (n)
ǫ (X,Y )} =

∑

(xn,yn)∈T
(n)
ǫ (X,Y )

p(xn)p(yn). (1)

For xn ∈ T
(n)
ǫ (X) andyn ∈ T

(n)
ǫ (Y ),

2−(1+ǫ)H(X) ≤ p(xn) ≤ 2−n(1−ǫ)H(X), (2)

2−(1+ǫ)H(Y ) ≤ p(yn) ≤ 2−n(1−ǫ)H(Y ). (3)

Recall that

|T (n)
ǫ (X,Y )| ≤ 2n(1+ǫ)H(X,Y ); (4)

moreover, we have

|T (n)
ǫ (X,Y )| ≥ (1− ǫ)2n(1−ǫ)H(X,Y ) (5)

for n sufficiently large. Substituting (2)–(5) into (1) completes the proof.

Achievability. For every rateR < C = maxp(x) I(X ;Y ), there exists a sequence of(2nR, n) codes with average

probability of errorP (n)
e that tends to zero asn → ∞. The proof of achievability uses random coding and joint

typicality decoding.

February 22, 2016 DRAFT



2

Random codebook generation. We use random coding. Fix the pmf p(x) that attains the information capacityC.

Randomly and independently generate2nR sequencesxn(m), m ∈ [1 : 2nR], each according top(xn) =
∏n

1 pX(xi).

The generated sequences constitute the codebookC.

Encoding. To send a messagem ∈ [1 : 2nR], transmitxn(m).

Decoding. We use joint typicality decoding. Letyn be the received sequence. The receiver declares thatm̂ ∈

[1 : 2nR] is sent if it is the unique message such that(xn(m̂), yn) ∈ T
(n)
ǫ ; otherwise-if there is none or more than

one such message-it declares an errore.

Analysis of the probability of error. Assuming that messagem is sent, the decoder makes an error if(xn(m), yn) /∈

T
(n)
ǫ or if there is another messagem′ 6= m such that(xn(m′), yn) ∈ T

(n)
ǫ .

Consider the probability of error averaged overM and over all codebooks

P (E) = EC(P
(n)
e )

= EC(2
−nR

2nR

∑

m=1

λm(C))

= 2−nR
2nR

∑

m=1

EC(λm(C))

= EC(λ1(C)) = P (E|M = 1).

Thus we assume without loss of generality thatM = 1 is sent. For brevity, we do not explicitly condition on the

event{M = 1} in probability expressions whenever it is clear from the context.

The decoder makes an error iff one or both of the following events occur:

E1 = {(Xn(1), Y n) ∈ T (n)
ǫ },

E2 = {(Xn(m), Y n) ∈ T (n)
ǫ for somem 6= 1}.

Thus, by the union of events bound,

P (E) = P (E1 ∪ E2) ≤ P (E1) + P (E2).

We now bound each term. By the weak law of large numbers, the first termP (E1) tends to zero asn → ∞. For

the second term, since form 6= 1,

(Xn(m), Xn(1), Y n) ∼

n
∏

i=1

pX(xi(m))pX,Y (xi(1), yi),

we have(Xn(m), Y n) ∼
∏n

i=1 pX(xi(m))pY (yi). Thus, by Lemma 1,

P{(Xn(m), Y n) ∈ T (n)
ǫ } ≤ 2−n(I(X;Y )−δ(ǫ)) = 2−n(C−δ(ǫ)).

Again by the union of events bound,

P (E2) ≤
2nR

∑

m=2

P{(Xn(m), Y n) ∈ T (n)
ǫ } ≤

2nR

∑

m=2

2−n(C−δ(ǫ)) ≤ 2−n(C−R−δ(ǫ)),
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which tends to zero asn → ∞ if R < C − δ(ǫ).

To complete the proof, note that since the probability of error averaged over the codebooks,P (E), tends to zero as

n → ∞, there exists a sequence of(2nR, n) codes such thatlimn→∞ P
(n)
ǫ = 0. This proves thatR < I(X ;Y ) = C

is achievable.

Remark: By the Markov inequality, the probability of error for a random codebook, that is, a codebook consisting

of random sequencesXn(m), m ∈ [1 : 2nR], tends to zero asn → ∞ in probability. Hence, most codebooks are

good in terms of the error probability.

Remark: The capacity with the maximal probability of errorλ∗ = maxm λm is equal to that with the average

probability of errorP (n)
e . This can be shown by throwing away the worst half of the codewords (in terms of error

probability) from each of the sequence of(2nR, n) codes that achieveR. The maximal probability of error for the

codes with the remaining codewords is at most2P
(n)
e , which again tends to zero asn → ∞. As we shall see, the

capacity with maximal probability is not always the same as that with the average probability of error for multiuser

channels.

Remark: The capacity for constant composition codes is the same due to the fact that there are only polynomial

number of types. First make sure that the maximal error is small, then reduce to a constant composition code

(otherwise the resulting constant composition code might have poor error probability).

Converse. For every sequence of(2nR, n) codes withP (n)
e that tends to zero asn → ∞, the rateR ≤ C =

maxp(x) I(X ;Y ). The proof of the converse uses Fano’s inequality and basic properties of entropy and mutual

information.

Every (2nR, n) code induces a joint pmf on(M,Xn, Y n) of the form

p(m,xn, yn) = 2−nRp(xn|m)

n
∏

i=1

pY |X(yi|xi).

By Fano’s inequality,

H(M |Y n) ≤ 1 + P (n)
e nR = nǫn,

whereǫn tends to zero asn → ∞ by the assumption thatlimn→∞ P
(n)
e = 0. Now consider

nR = H(M)

= I(M ;Y n) +H(M |Y n)

≤ I(M ;Y n) + nǫn

=

n
∑

i=1

I(M ;Yi|Y
i−1) + nǫn

≤

n
∑

i=1

I(M,Y i−1;Yi) + nǫn

=

n
∑

i=1

I(Xi,M, Y i−1;Yi) + nǫn
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=

n
∑

i=1

I(Xi;Yi) + nǫn

≤ nC + nǫ.

Remark: Discuss the condition under which the inequalitiesin the converse become equalities, which imposes

constraints on the optimal codebook.

Channel coding with input cost

Consider a DMCp(y|x). Suppose that there is a nonnegative costb(x) associated with each input symbolx ∈ X .

Without loss of generality, we assume that there exists a zero cost symbolx0 ∈ X , i.e., b(x0) = 0. We further

assume that an average cost constraint is imposed on each codeword, i.e.,
n
∑

i=1

b(xi(m)) ≤ nB, m ∈ [1 : 2nR].

Now, defining the channel capacity of the DMC with cost constraint B, or the capacity-cost function,C(B) in a

similar manner to capacity without cost constraint, we can establish the following extension of the channel coding

theorem.

Theorem 2:The capacity of the DMCp(y|x) with cost constraintB is

C(B) = max
p(x):E[b(X)]≤B

I(X ;Y ).

Note thatC(B) is nondecreasing, concave, and continuous inB.

Proof of achievability. Fix the pmfp(x) that attainsC(B/(1 + ǫ)). Randomly and independently generate2nR

sequencesxn(m), m ∈ [1 : 2nR], each according to
∏n

i=1 pX(xi). To send messagem, the encoder transmits

xn(m) if xn(m) ∈ T
(n)
ǫ , and consequently, by the typicality average lemma, the sequence satisfies the cost

constraint
∑n

i=1 b(xi(m)) ≤ nB. Otherwise, it transmits(x0, · · · , x0). The analysis of the average probability of

error for joint typicality decoding follows similar lines to the case without cost constraint. AssumeM = 1. For the

first probability of error event,

P (E1) = P{(Xn(1), Y n) ∈ T (n)
ǫ }

= P{Xn(1) ∈ T (n)
ǫ , (Xn(1), Y n) /∈ T (n)

ǫ }+ P{Xn(1) /∈ T (n)
ǫ , (Xn(1), Y n) /∈ T (n)

ǫ }

≤
∑

xn∈T
(n)
ǫ

n
∏

i=1

pX(xi)
∑

yn /∈T
(n)
ǫ (Y |xn)

n
∏

i=1

pY |X(yi|xi) + P{Xn(1) /∈ T (n)
ǫ }

≤
∑

(xn,yn)/∈T
(n)
ǫ

n
∏

i=1

pX(xi)pY |X(yi|xi) + P{Xn(1) /∈ T (n)
ǫ }.

By the LLN for each term, this tends to zero asn → ∞. The probability of error for the second event,P (E2), is

upper bounded in exactly the same manner as when there is no cost constraint. Hence, every rateR < I(X ;Y ) =

C(B/(1 + ǫ)) is achievable. Finally, by the continuity ofC(B) in B, C(B/(1 + ǫ)) converges toC(B) asǫ → 0,

which implies the achievability of every rateR < C(B).
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Proof of the converse. Consider a sequence of(2nR, n) codes withlimn→∞ P
(n)
e = 0 such that for everyn, the

cost constraint
∑

i=1

b(xi(m)) ≤ nB is satisfied for everym ∈ [1 : 2nR] and thus
∑n

i=1 EM [b(Xi(M))] ≤ nB. As

before, by Fano’s inequality and the data processing inequality,

nR ≤

n
∑

i=1

I(Xi;Yi) + nǫn

≤
n
∑

i=1

C(E[b(Xi)]) + nǫn

≤ nC

(

1

n

n
∑

i=1

E[b(Xi)]

)

+ nǫn

≤ nC(B) + nǫ.

Remark: The converse proof shows that the capacity is the same if we impose a weaker average cost constraint

2−nR
∑

m

∑n
i=1 b(xi(m)) ≤ nB.

II. CHANNEL WITH STATE

Channel model:p(Y (t)|Xt, St) = p(Y (t)|X(t), S(t)). The state process{S(t)}∞t=−∞ is stationary and memo-

ryless1 with marginal distributionπ(s) over state spaceS, and is unaffected by the input and output processes.

1) No Knowledge of Channel State Information:

The channel capacity is given by

C = max
p(x)

I(X ;Y ).

Here the channel transition probability is given by

p(y|x) =
∑

s∈S

π(s)p(y|x, s).

2) Perfect Channel State Information at Receiver:

In this case, we can view{Y (t), S(t)} as the channel output, and thus the capacity formula is givenby

C = max
p(x)

I(X ;Y, S).

Since the transmitter does not have the channel state information, it follows thatI(X ;S) = 0, which yields

I(X ;Y, S) = I(X ;Y |S) + I(X ;S) = I(X ;Y |S).

Thus the capacity formula can be simplified to

C = max
p(x)

I(X ;Y |S).

3) Perfect Channel State Information at both Transmitter and Receiver:

1This condition can be relaxed.
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The channel capacity is given by

C =
∑

s∈S

π(s) max
p(x|s)

I(X ;Y |S = s).

This capacity has an intuitive interpretation. Since both the transmitter and the receiver know the state

realization, they can use the multiplexing technique to decompose the channel to|S| memoryless channels,

each corresponding to a states ∈ S. For each states, the optimal coding scheme is used to achieve the

memoryless channel capacity with respect to states, i.e.,

Cs = max
p(x|s)

I(X ;Y |S = s).

Since the state process is stationary and ergodic, givenn time slots, the number of times that the state has

realizations is approximatelynπ(s) asn is large enough. Therefore, the average rate is

∑

s∈S

π(s)Cs =
∑

s∈S

π(s) max
p(x|s)

I(X ;Y |S = s).

Note: Although the multiplexing method gives us a simple wayto achieve that channel capacity, it is not

optimal in the sense of error exponent since the dependency in the state process is not fully exploited.

Furthermore, this multiplexing method requires extremelylong block coding when the state space is large,

so it may cause long delay in decoding.
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