EE 4TM4. Digital Communications |l
Channel Capacity

I. CHANNEL CODING THEOREM

Definition 1: A rate R is said to be achievable if there exists a sequen¢e'dt, n) codes such thaim,, , ., p €)=
0. The capacityC' of a DMC is the supremum over all achievable rates.

Theorem 1:The capacity of the discrete memoryless champiig|z) is given by the information capacity formula

C=maxI(X;Y).
p(x)
Lemma 1:Let (X,Y) ~ px y(z,y) andp(z",y") = [I;—, px (z:)py (:). Then
P{(X",Y") € T"(X,Y)} <27 nlmal(Xy),
moreover,

P{(Xn7yn) e z(n)(X’ Y)} > (1 _ 6)2771(1+5)I(X;Y)

for n sufficiently large.
Proof: Note that
P{X™ Y™ € TI(X,Y)} = > p(@™)p(y™). 1)
(zn,7y7l)€7’e(")(xyy)

For 2" € T\ (X) andy™ € 72" (Y),

9= (IHIH(X) < p(pn) < 9=n(1=H(X), @)
9= (IHOHY) < ) < 9=n(1=OHY) 3)
Recall that
T (X, )| < 2R (4)
moreover, we have
[T (X, V)] > (1= e)2rtm o) ®)
for n sufficiently large. Substituting (2)—(5) into (1) completide proof. [ ]

Achievability. For every ratelR < C' = max,,) I(X;Y), there exists a sequence @', n) codes with average
probability of error P\ that tends to zero as — cc. The proof of achievability uses random coding and joint

typicality decoding.
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Random codebook generation. We use random coding. Fix thieofrn that attains the information capaciy.
Randomly and independently gener2ité’ sequences™ (m), m € [1 : 2"%], each according tp(z™) = [} px ().
The generated sequences constitute the codeBook

Encoding. To send a messagec [1 : 2"%], transmitz™ (m).

Decoding. We use joint typicality decoding. Lgt be the received sequence. The receiver declaresithat
[1:27f] is sent if it is the unique message such thet(1n), y") € 7{™); otherwise-if there is none or more than
one such message-it declares an eeror

Analysis of the probability of error. Assuming that messagis sent, the decoder makes an errdrif (m), y™) ¢
7" or if there is another message’ # m such that(z" (m/), y") € 7",

Consider the probability of error averaged ovérand over all codebooks

P(€) = Ec(P™)
gnR
= Ec(27" ) An(C))
m=1

2nR

=27 Y Ee(An(0))
m=1
= Ec(M(C) = P(E|M =1).

Thus we assume without loss of generality thd@t= 1 is sent. For brevity, we do not explicitly condition on the
event{M = 1} in probability expressions whenever it is clear from theteah

The decoder makes an error iff one or both of the followingnéseccur:
& = {(X"(1),Y") e T},
& = {(X"(m),Y™) € T™ for somem # 1}.
Thus, by the union of events bound,
P(E) =P(E1U&) < P(&1) + P(&).

We now bound each term. By the weak law of large numbers, thetéirm P(&;) tends to zero as — oo. For

the second term, since fon # 1,
(0 (m), X7(1), ™) ~ T oo lmhpss 2:(1). ),
i=1
we have(X™(m),Y") ~ [T, px(z;(m))py (y;). Thus, by Lemma 1,
P{(X"™(m),Y") € 7;(71)} < 27 nI(X5Y)=6(e)) — 9—n(C—d(e))

Again by the union of events bound,

onR onR
P(EQ) < Z P{(Xn(m)7yn) c 7;(71)} < Z 2771(076(5)) < 27n(CfR76(e))’
m=2 m=2
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which tends to zero ag — oo if R < C — §(e).

To complete the proof, note that since the probability obeaveraged over the codebook¥¢), tends to zero as
n — oo, there exists a sequence(@#,n) codes such thdtm,, E(") = 0. This provesthaRk < I(X;Y) =C
is achievable.

Remark: By the Markov inequality, the probability of errorfa random codebook, that is, a codebook consisting
of random sequenceX™(m), m € [1 : 2"%], tends to zero as — oo in probability. Hence, most codebooks are
good in terms of the error probability.

Remark: The capacity with the maximal probability of erpdr = max,, A, iS equal to that with the average
probability of errorPe("). This can be shown by throwing away the worst half of the cad® (in terms of error
probability) from each of the sequence @*#,n) codes that achiev&®. The maximal probability of error for the
codes with the remaining codewords is at moBE™ , which again tends to zero as— oco. As we shall see, the
capacity with maximal probability is not always the samets tvith the average probability of error for multiuser
channels.

Remark: The capacity for constant composition codes is dhgesdue to the fact that there are only polynomial
number of types. First make sure that the maximal error islisiieen reduce to a constant composition code
(otherwise the resulting constant composition code miglvetpoor error probability).

Converse. For every sequence ¢2"? n) codes withP{™ that tends to zero as — 0o, the rateR < C =
max,, [(X;Y). The proof of the converse uses Fano's inequality and basipepties of entropy and mutual
information.

Every (2" n) code induces a joint pmf oW/, X", Y") of the form

p(m, 2", y") = 27" p(a"m) [ [ pyix (vilz:).
i=1
By Fano’s inequality,

H(M|Y"™) <1+ P"™nR = ne,,
wheree,, tends to zero as — oo by the assumption thaim,, .. Pe") = 0. Now consider
nR = H(M)

= I(M;Y™) + H(M[Y™)

IN

—~

I(M;Y"™) + nep,

I(M;Y;| YY) + ey,

[
M=

1

.
I

I(M, YN Y;) + ne,

NIE

1

.
Il

I(X;, M, Y"1 ;) + ne,

I
M=

1

.
Il
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Remark: Discuss the condition under which the inequalitiethe converse become equalities, which imposes
constraints on the optimal codebook.

Channel coding with input cost

Consider a DMGp(y|z). Suppose that there is a nonnegative &8} associated with each input symhok X'
Without loss of generality, we assume that there exists a zest symboly € X, i.e., b(zo) = 0. We further

assume that an average cost constraint is imposed on eaetvaal i.e.,
n
Zb(xi(m)) <nB, mell:2""].
i=1

Now, defining the channel capacity of the DMC with cost caaistrB, or the capacity-cost functiorf;(B) in a
similar manner to capacity without cost constraint, we cstaldish the following extension of the channel coding
theorem.

Theorem 2:The capacity of the DMGQ(y|x) with cost constrainf3 is

C(B) = max I(X;Y).
p(z):E[b(X)]<B

Note thatC(B) is nondecreasing, concave, and continuougin

Proof of achievability. Fix the pmp(z) that attainsC(B/(1 + €)). Randomly and independently generate®
sequences”(m), m € [1 : 2"f], each according tq];_, px(z;). To send message, the encoder transmits
2™ (m) if z"(m) € 7;("), and consequently, by the typicality average lemma, theiesezp satisfies the cost
constrainty ;" b(z;(m)) < nB. Otherwise, it transmit$zo, - - - ,x¢). The analysis of the average probability of
error for joint typicality decoding follows similar line® tthe case without cost constraint. Assuivie= 1. For the

first probability of error event,
P(&) = P{(X"(1),Y") € T}
= P{X"(1) € T, (X"(1),Y") ¢ TV} + PUX"(1) ¢ T, (X" (1), Y") ¢ TV}

< > TIpx@) > [ pvix(yilz:) + P{X"(1) ¢ TV}

gneT (™ i=1 Y g T (v |zm) =1
< Z HPX(%)PHX(?M%) +P{X"(1) ¢ TV}
(znym)g 7™ =1
By the LLN for each term, this tends to zero as— oo. The probability of error for the second evefit(&,), is
upper bounded in exactly the same manner as when there issh@austraint. Hence, every rate< I(X;Y) =
C(B/(1+¢)) is achievable. Finally, by the continuity ¢f(B) in B, C(B/(1+ ¢€)) converges ta”(B) ase — 0,

which implies the achievability of every rate < C(B).
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Proof of the converse. Consider a sequenc&bft, n) codes withlim,, Pe(") = 0 such that for every:, the
cost constramtz b(xzi(m)) < nB is satisfied for everyn € [1 : 2"%] and thus}_}"_, Ea[b(X;(M))] < nB. As

before, by Fanos inequality and the data processing irlégua

nR<ZI Xi;Y:) + ne,

=1
n

—|— NeEn

C

IN

I /\

Remark: The converse proof shows that the capacity is the $awe impose a weaker average cost constraint

2 iy S b(wi(m)) < nB.

Il. CHANNEL WITH STATE
Channel modelp(Y ()| X%, S*) = p(Y (t)| X (t), S(t)). The state procesgS(t)}s° . is stationary and memo-
ryless$ with marginal distributionr(s) over state spac§, and is unaffected by the input and output processes.

1) No Knowledge of Channel State Information:

The channel capacity is given by

C=maxI(X;Y).

p(x)

Here the channel transition probability is given by

plylz) =Y w(s)p(ylz, 5).

seS
2) Perfect Channel State Information at Receiver:

In this case, we can vieWY (¢), S(t)} as the channel output, and thus the capacity formula is diyen
C =maxI(X;Y,5).
p(w)
Since the transmitter does not have the channel state iafaym it follows that/(X;.S) = 0, which yields
I(X;Y,8)=I(X;Y|S)+ I(X;S) =1(X,;Y]S).
Thus the capacity formula can be simplified to
C =maxI(X;Y]S).
p(w)

3) Perfect Channel State Information at both Transmittel Raceiver:

1This condition can be relaxed.
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The channel capacity is given by
C= Z maxIXY|S—s)

This capacity has an intuitive interpretation. Since bdibh transmitter and the receiver know the state
realization, they can use the multiplexing technique toodgmose the channel &| memoryless channels,
each corresponding to a statec S. For each state, the optimal coding scheme is used to achieve the

memoryless channel capacity with respect to statee.,

Cs = max I[(X;Y]S = s).

p(|s)
Since the state process is stationary and ergodic, givéme slots, the number of times that the state has

realizations is approximatelynm(s) asn is large enough. Therefore, the average rate is

Z s)Cs = Z )max I[(X;Y]S = s).

ses p (als)
Note: Although the multiplexing method gives us a simple vi@yachieve that channel capacity, it is not
optimal in the sense of error exponent since the dependendhie state process is not fully exploited.
Furthermore, this multiplexing method requires extremelyg block coding when the state space is large,

so it may cause long delay in decoding.
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