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EE 4TM4: Digital Communications II

Information Measures

Definition 1: The entropyH(X) of a discrete random variableX is defined by

H(X) = −
∑

x∈X

p(x) log p(x).

We also writeH(p) for the above quantity.

Lemma 1:H(X) ≥ 0.

Proof: 0 ≤ p(x) ≤ 1 implies log(1/p(x)) ≥ 0.

Definition 2: The relative entropy or Kullback Leibler distance between two probability mass functionsp(x) and

q(x) is defined as

D(p‖q) =
∑

x∈X

p(x) log
p(x)

q(x)
.

Theorem 1:Jensen’s inequality: Iff is a convex function andX is a random variable, then

Ef(X) ≥ f(EX). (1)

Moreover, iff is strictly convex, then equality in (1) implies thatX = EX with probability 1, i.e.,X is a constant.

Theorem 2:Let p(x), q(x), x ∈ X , be two probability mass functions. Then

D(p‖q) ≥ 0

with equality if and only ifp(x) = q(x) for all x.

Proof: Let A = {x : p(x) > 0} be the support set ofp(x). Then

−D(p‖q) = −
∑

x∈A

p(x) log
p(x)

q(x)

∑

x∈A

p(x) log
q(x)

p(x)

≤ log
∑

x∈A

p(x)
q(x)

p(x)

= log
∑

x∈A

q(x)

≤ log
∑

x∈X

q(x)

= log 1

= 0,
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where the first inequality follows from Jensens’ inequality. Sincelog t is a strictly concave function oft, we have

the first inequality becomes equality if and only ifq(x)/p(x) = 1 everywhere, i.e.,p(x) = q(x). Hence we have

D(p‖q) = 0 if and only if p(x) = q(x) for all x.

Definition 3: The typePxn (or empirical probability distribution) of a sequencex1, x2, · · · , xn is the relative

proportion of occurrences of each symbol ofX , i.e., Pxn(a) = N(a|xn)/n for all a ∈ X , whereN(a|xn) is the

number of times the symbola occurs in the sequencexn ∈ Xn.

Definition 4: Let Pn denote the set of types with denominatorn.

Definition 5: If P ∈ Pn, then the set of sequences of lengthn and typeP is called the type class ofP , denoted

T (P ), i.e., T (P ) = {xn ∈ Xn : Pxn = P}.

Theorem 3:|Pn| =
(n+|X |−1

|X |−1

)

≤ (n+ 1)|X |.

Theorem 4:If X1, X2, · · · , Xn are drawn i.i.d. according toQ(x), then the probability ofxn depends only on

its type and is given by

Qn(xn) = 2−n(H(Pxn )+D(Pxn‖Q)).

Proof:

Qn(xn) =

n
∏

i=1

Q(xi)

=
∏

a∈X

Q(a)N(a|xn)

=
∏

a∈X

Q(a)nPxn (a)

=
∏

a∈X

2nPxn (a) logQ(a)

=
∏

a∈X

2n(Pxn (a) logQ(a)−Pxn (a) logPxn (a)+Pxn (a) logPxn (a))

= 2
n

∑

a∈X

(−Pxn (a) log
Pxn (a)

Q(a) +Pxn (a) logPxn (a))

= 2n(−D(Pxn‖Q)−H(Pxn )).

Corollary 1: If xn is in the type class ofQ, then

Qn(xn) = 2−nH(Q).

Theorem 5:For any typeP ∈ Pn,

1

(n+ 1)|X |
2nH(P ) ≤ |T (P )| ≤ 2nH(P ).

Proof: Note that the exact size ofT (P ) is given by

|T (P )| =
(

n

nP (a1), nP (a2), · · · , nP (a|X |)

)

=
n!

(nP (a1))!(nP (a2))! · · · (nP (a|X |))!
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We first prove the upper bound. Since a type class must have probability ≤ 1, we have

1 ≥ Pn(T (P )) =
∑

xn∈T (P )

Pn(xn) =
∑

xn∈T (P )

2−nH(P ) = |T (P )|2−nH(P ).

Thus|T (P )| ≤ 2nH(P ). Now for the lower bound. We first prove that the type classT (P ) has the highest probability

among all type classes under the probability distributionP , i.e., Pn(T (P )) ≥ Pn(T (P̂ )), for all P̂ ∈ Pn. We

lower bound the ratio of probabilities,

Pn(T (P ))

Pn(T (P̂ ))
=

|T (P )|∏a∈X P (a)nP (a)

|T (P̂ )|∏a∈X P (a)nP̂ (a)

=

(

n
nP (a1),nP (a2),··· ,nP (a|X|)

)
∏

a∈X P (a)nP (a)

(

n
nP̂ (a1),nP̂ (a2),··· ,nP̂ (a|X|)

)
∏

a∈X P (a)nP̂ (a)

=
∏

a∈X

(nP̂ (a))!

(nP (a))!
P (a)n(P (a)−P̂ (a)).

Now using the simple bound (easy to prove by separately considering the casesm ≥ n andm < n) m!
n! ≥ nm−n,

we obtain

Pn(T (P ))

Pn(T (P̂ ))
≥

∏

a∈X

(nP (a))nP̂ (a)−nP (a)P (a)n(P (a)−P̂ (a))

=
∏

a∈X

nn(P̂ (a)−P (a))

= nn(
∑

a∈X P̂ (a)−
∑

a∈X P (a))

= nn(1−1)

= 1.

HencePn(T (P )) ≥ Pn(T (P̂ )). The lower bound now follows easily from this result, since

1 =
∑

Q∈Pn

Pn(T (Q))

≤
∑

Q∈Pn

max
Q

Pn(T (Q))

=
∑

Q∈Pn

Pn(T (P ))

≤ (n+ 1)|X |Pn(T (P ))

= (n+ 1)|X |
∑

xn∈T (P )

Pn(xn)

= (n+ 1)|X |
∑

xn∈T (P )

2−nH(P )

= (n+ 1)|X ||T (P )|2−nH(P ).
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Theorem 6:For any P ∈ Pn and any distributionQ, the probability of the type classT (P ) underQn is

2−nD(P‖Q) to first order in the exponent. More precisely,

1

|n+ 1||X |
2−nD(P‖Q) ≤ Qn(T (P )) ≤ 2−nD(P‖Q).

Proof: We have

Qn(T (P )) =
∑

xn∈T (P )

Qn(xn)

=
∑

xn∈T (P )

2−n(D(P‖Q)+H(P ))

= |T (P )|2−n(D(P‖Q)+H(P )).

Using the bounds on|T (P )|, we have

1

(n+ 1)|X |
2−nD(P‖Q) ≤ Qn(T (P )) ≤ 2−nD(P‖Q).

Theorem 7:Let X1, X2, · · · , Xn be i.id.∼ Q(x). Then

Pr{D(Pxn‖Q) > ǫ} ≤ 2−n(ǫ−|X | log(n+1)
n

).

Proof:

Pr{D(Pxn‖Q) > ǫ} =
∑

P :D(P‖Q)>ǫ

Qn(T (P ))

≤
∑

P :D(P‖Q)>ǫ

2−nD(P‖Q)

≤
∑

P :D(P‖Q)>ǫ

2−nǫ

≤ (n+ 1)|X |2−nǫ

= 2−n(ǫ−|X | log(n+1)
n

).

Theorem 8:Sanov’s theorem: LetX1, X2, · · · , Xn be i.i.d. ∼ Q(x). Let E ⊆ P be a set of probability

distributions. Then

Qn(E) = Qn(E ∩ Pn) ≤ (n+ 1)|X |2−nD(P∗‖Q),

whereP ∗ = arg min
P∈E

D(P‖Q) is the distribution inE that is closest toQ in relative entropy. If, in addition, the

setE is the closure of its interior, then

1

n
logQn(E) → −D(P ∗‖Q).
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Proof: We first prove the upper bound:

Qn(E) =
∑

P∈E∩Pn

Qn(T (P ))

≤
∑

P∈E∩Pn

2−nD(P‖Q)

≤
∑

P∈E∩Pn

max
P∈E∩Pn

2−nD(P‖Q)

=
∑

P∈E∩Pn

2−nminP∈E∩Pn D(P‖Q)

≤
∑

P∈E∩Pn

2−nminP∈E D(P‖Q)

=
∑

P∈E∩Pn

2−nD(P∗‖Q)

≤ (n+ 1)|X |2−nD(P∗‖Q).

Note thatP ∗ need not be a member ofPn. We now come to the lower bound, for which we need a “nice”

setE, so that for all largen, we can find a distribution inE ∩ Pn which is close toP ∗. If we now assume that

E is the closure of its interior (thus the interior must be non-empty), then since
⋃

n Pn is dense in the set of all

distributions, it follows thatE ∩ Pn is non-empty for alln ≥ n0 for somen ≥ n0. We can then find a sequence

of distributionsPn such thatPn ∈ E ∩ Pn andD(Pn‖Q) → D(P ∗‖Q). For eachn ≥ n0,

Qn(E) =
∑

P∈E∩Pn

Qn(T (P ))

≥ Qn(T (Pn))

≥ 1

(n+ 1)|X |
2−nD(Pn‖Q).

Consequently,

lim inf
1

n
logQn(E) ≥ lim inf(−|X | log(n+ 1)

n
−D(Pn‖Q)) = −D(P ∗‖Q).

Combining this with the upper bound establishes the theorem.

We can summarize the basic theorems concerning types in fourequations:

|Pn| ≤ (n+ 1)|X |,

Qn(xn) = 2−n(D(Pxn‖Q)+H(Pxn )),

|T (P )| ≈ 2nH(P ),

Qn(T (P )) ≈ 2−nD(P‖Q).

Theorem 9:Weak Law of Large Numbers: LetX1, X2, · · · be a sequence of independent random variables

having a common distributionQ, and letE[Xi] = µ. Then for anyǫ > 0

P
{

∣

∣

∣

∣

X1 +X2 + · · ·+Xn

n
− µ

∣

∣

∣

∣

≥ ǫ
}

→ 0 asn → ∞
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Proof: Let Yn = X1+X2+···+Xn

n −µ. Note thatE[Yn] = 0 and Var(Yn) =
σ2

n , whereσ2 = Var(Xi). Therefore,

by Chebyshev’s inequality

P{|Yn| ≥ ǫ} ≤ σ2

nǫ2
→ 0 asn → ∞

Remark: This proof shows that the probability goes to zero atleast as fast as1n . In fact, it is possible to derive

a tighter bound. Without loss of generality, we assumeE[Xi] = 0. Note that

P{|Yn| ≥ ǫ} = P{|Yn|4 ≥ ǫ4} ≤ E[Y 4
n ]

ǫ4
.

SinceE(X1 +X2 + · · ·+Xn)
4 = nE(X4) + 3n(n− 1)(E(X2))2, it follows that the probability goes to zero at

least as fast as1n2 .

Remark: According to Sanov’s theorem, the probability goesto zero exponentially fast with the exponent given

by

min
P :|

∑
x xP (x)−µ|≥ǫ

D(P‖Q).

Theorem 10:Central Limit Theorem: LetX1, X2, · · · be a sequence of independent, identically distributed

random variables, each with meanµ and varianceσ2. Then the distribution of

X1 +X2 + · · ·+Xn − nµ

σ
√
n

tends to the standard normal asn → ∞. That is,

P
{X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ a
}

→ 1√
2π

∫ a

−∞

e−x2/2dx

asn → ∞.

Connection between the central limit theorem and the divergence: LetX1, X2, · · · be a sequence of i.i.d. Bernoulli

random variables with parameterp, i.e., P (Xi = 1) = p and P (Xi = 0) = 1 − p. Note thatE[Xi] = p and

Var(Xi) = E[X2
i ]− E[Xi]

2 = p− p2 = p(1− p). According to the central limit theorem,

P
{X1 +X2 + · · ·+Xn − np

√

p(1− p)
√
n

∈ [a, b]
}

→ 1√
2π

∫ b

a

e−x2/2dx.

Note that here we are essentially counting the total probability of type classes such thatX1 +X2 + · · · +Xn ∈
[np+a

√

p(1− p)
√
n, np+ b

√

p(1− p)
√
n], i.e., the empiricalpxn ∈ [p+a

√

p(1− p)/
√
n, p+ b

√

p(1− p)/
√
n].

Now consider the Taylor expansion ofD(q‖p) at the neighborhood ofp. Note that

D(q‖p) = q log
q

p
+ (1− q) log

1− q

1− p
.

So

d

dq
D(q‖p) = log

q

p
− log

1− q

1− p
,

which equals 0 whenq = p, and

d2

dq2
D(q‖p) = 1

q(1− q)
,
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which equals 1
p(1−p) whenq = p. Therefore, forq = p+ x

√

p(1− p)/
√
n, we have

D(q‖p) ≈ 1

2p(1− p)
(x
√

p(1− p)/
√
n)2 =

x2

2n
.

Consequently, the probability of the type class with empirical pxn ≈ p+ x
√

p(1− p)/
√
n is approximately

e−nx2

2n = e−x2/2,

which gives the right exponent in the central limit theorem.Note that in the limit, one can replace the sum of the

probabilities of type classes by integral to recover the central limit theorem (the constant factor1/
√
2π requires a

more accurate approximation using Stirling’s formula). For the non-binary case, one can also establish a connection

between divergence and the multi-dimensional central limit theorem.

Theorem 11:H(X) ≤ log |X |, where|X | denotes the number of elements in the range ofX , with equality if

and only ifX has a uniform distribution overX .

Proof: Let u(x) = 1
|X | be the uniform probability mass function overX , and letp(x) be the probability mass

function forX . Then

D(p‖u) =
∑

p(x) log
p(x)

u(x)
= log |X | −H(X).

Hence by the non-negativity of relative entropy,

0 ≤ D(p‖u) = log |X | −H(X).

This result can also be proved using Lagrangian multiplier.

Conditional entropy:

H(Y |X) = −
∑

x∈X ,y∈Y

p(x, y) log p(y|x) = −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x) =
∑

x∈X

p(x)H(Y |X = x).

Conditional entropy: residual uncertainty

Joint entropy:

H(X,Y ) = −
∑

x∈X ,y∈Y

p(x, y) log p(x, y).

We haveH(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X |Y ). More generally,

H(Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|X1, · · · , Xn−1).

Mutual information:

I(X ;Y ) =
∑

(x,y)∈X×Y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X)−H(X |Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y ).
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Note that

I(X ;Y ) = D(p(x, y)‖p(x)p(y)).

Therefore,I(X ;Y ) ≥ 0 with equality if and only ifX andY are independent.

SinceI(X ;Y ) ≥ 0, it follows that

H(Y |X) ≤ H(Y )

H(X,Y ) ≤ H(X) +H(Y ).

Moreover,H(g(X)) ≤ H(X) with equality ifg is one-to-one over the support ofX , i.e., the set{x ∈ X : p(x) > 0}.

This is becauseH(X, g(X)) = H(g(X)|X) + H(X) = H(X) andH(X, g(X)) = H(g(X)) + H(X |g(X)) ≥
H(g(X)).

Theorem 12:Fano’s inequality: Suppose we wish to estimate a random variableX with a distributionp(x). We

observe a random variableY which is related toX by the conditional distributionp(x|y). FromY , we calculate a

function g(Y ) = X̂, which is an estimate ofX . We wish to bound the probability that̂X 6= X . We observe that

X − Y − X̂ forms a Markov chain. Define the probability of error

Pe = P{X̂ 6= X}.

Then

H(Pe) + Pe log(|X | − 1) ≥ H(X |Y ),

whereH(Pe) = −Pe logPe− (1−Pe) log(1−Pe). This inequality can be weakened to1+Pe log |X | ≥ H(X |Y ).

Proof: Let E = 1 if X̂ 6= X andE = 0 if X̂ = X . Note that

H(E,X |Y ) = H(X |Y ) +H(E|X,Y ) = H(X |Y ).

On the other hand,

H(E,X |Y ) = H(E|Y ) +H(X |E, Y )

≤ H(E) +H(X |E, Y )

= H(Pe) +H(X |E, Y )

= H(Pe) + P (E = 0)H(X |Y,E = 0) + P (E = 1)H(X |Y,E = 1)

≤ H(Pe) + (1− Pe)0 + Pe log(|X | − 1).

Conditional mutual information:

I(X ;Y |Z) =
∑

z∈Z

p(z)I(X ;Y |Z = z) =
∑

z∈Z

p(z)
∑

x∈X ,y∈Y

p(x, y|z) log p(x, y|z)
p(x|z)p(y|z) .
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Note that

I(X ;Y |Z) =
∑

z∈Z

p(z)D(p(x, y|z)‖p(x|z)p(y|z)) = D(p(x, y|z)‖p(x|z)p(y|z)|p(z)).

Also note that

I(X ;Y |Z) = H(X |Z)−H(X |Y, Z)

= H(Y |Z)−H(Y |X,Z)

= H(X |Z) +H(Y |Z)−H(X,Y |Z).

The conditional mutual informationI(X ;Y |Z) is nonnegative and is equal to zero if and only ifX and Y are

conditionally independent givenZ, i.e.,X − Z − Y form a Markov chain.

Theorem 13:Data processing inequality: IfX − Y − Z form a Markov chain, then

I(X ;Z) ≤ I(X ;Y ).

Consequently, for any functiong, I(X ; g(Y )) ≤ I(X ;Y ).

Proof: To prove the data processing inequality, we use the chain rule to expandI(X ;Y, Z) in two ways as

I(X ;Y, Z) = I(X ;Y ) + I(X ;Z|Y ) = I(X ;Y )

= I(X ;Z) + I(X ;Y |Z) ≥ I(X ;Z).

Note that unlike entropy, no general inequality relationship exists between the conditional mutual information

I(X ;Y |Z) and the mutual informationI(X ;Y ). There are, however two important special cases.

• If X andZ are independent, then

I(X ;Y |Z) ≥ I(X ;Y ).

This is becauseI(X ;Y |Z) = I(X ;Y, Z) ≥ I(X ;Y ).

• If Z −X − Y form a Markov chain, then

I(X ;Y |Z) ≤ I(X ;Y ).

This is becauseI(X ;Y |Z) ≤ I(Z,X ;Y ) = I(X ;Y ).

Typical Sequences

Let X1, X2, · · · be a sequence of independent and identically distributed random variables. Then by the (weak)

law of large numbers, for eachx ∈ X ,

N(x|xn) → p(x) in probability.

Thus, with high probability, the random empirical pmfN(x|Xn) does not deviate much from the true pmfp(x).

For X ∼ p(x) andǫ ∈ (0, 1), define the set ofǫ-typical n-sequencesxn (or the typical set in short) as

T (n)
ǫ (X) = {xn : |N(x|xn)− p(x)| ≤ ǫp(x) for all x ∈ X}.
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Note that the typical set can be viewed as the union of type classes whose type is close top(x). Also note that

p(x) = 0 impliesN(x|xn) = 0 because otherwiseD(pxn‖p) = ∞.

Lemma 2:Typical Average Lemma: Letxn ∈ T (n)
ǫ (X). Then for any nonnegative functiong(x) on X ,

(1− ǫ)E(g(X)) ≤ 1

n

n
∑

i=1

g(xi) ≤ (1 + ǫ)E(g(X)).

Typical sequences satisfy the following properties:

1) Let p(xn) =
∏n

i=1 pX(xi). Then for eachxn ∈ Tǫ(X),

2−n(H(X)+δ(ǫ)) ≤ p(xn) ≤ 2−n(H(X)−δ(ǫ)),

whereδ(ǫ) = ǫH(X). This follows by the typical average lemma withg(x) = − log p(x).

2) The cardinality of the typical set is upper bounded as

|T (n)
ǫ | ≤ 2n(H(X)+δ(ǫ)).

This can be shown by summing the lower bound in property 1 overthe typical set.

3) If X1, X2, · · · are i.i.d. withXi ∼ pX(xi), then by the LLN,

lim
n→∞

P{Xn ∈ T (n)
ǫ } = 1.

This result can also be proved using Theorem 7 in Lecture 1. Note that the size of the typical set is in general

negligible compared with|X |n. However, it captures almost all probability.

4) The cardinality of the typical set is lower bounded as

|T (n)
ǫ | ≥ (1 − ǫ)2n(H(X)−δ(ǫ))

for n sufficiently large. This follows by property 3 and the upper bound in property 1.

Explain these properties from the perspective of method of types.

Jointly Typical Sequences

Let (X,Y ) ∼ pX,Y (x, y). The set of jointlyǫ-typical n-sequences is defined as

T (n)
ǫ (X,Y ) =

{

(xn, yn) :

∣

∣

∣

∣

1

n
N(x, y|xn, yn)− pX,Y (x, y)

∣

∣

∣

∣

≤ ǫpX,Y (x, y) for all (x, y) ∈ X × Y
}

.

Also define the set of conditionallyǫ-typical n sequences asT (n)
ǫ (Y |xn) =

{

yn : (xn, yn) ∈ T (n)
ǫ (X,Y )

}

. The

properties of typical sequences can be extended to jointly typical sequences as follows.

1) Let (xn, yn) ∈ T (n)
ǫ (X,Y ) andp(xn, yn) =

∏n
i=1 pX,Y (xi, yi). Then

(a) xn ∈ T (n)
ǫ (X) andyn ∈ T (n)

ǫ (Y ),

(b) 2−n(1+ǫ)H(X) ≤ p(xn) ≤ 2−n(1−ǫ)H(X) and2−n(1+ǫ)H(Y ) ≤ p(yn) ≤ 2−n(1−ǫ)H(Y ),

(c) 2−n(1+ǫ)H(X|Y ) ≤ p(xn|yn) ≤ 2−n(1−ǫ)H(X|Y ) and2−n(1+ǫ)H(Y |X) ≤ p(yn|xn) ≤ 2−n(1−ǫ)H(Y |X),

(d) 2−n(1+ǫ)H(X,Y ) ≤ p(xn, yn) ≤ 2−n(1−ǫ)H(X,Y ).

2) |T (n)
ǫ (X,Y )| ≤ 2n(1+ǫ)H(X,Y ).

3) If p(xn, yn) =
∏n

i=1 pX,Y (xi, yi), then limn→∞ P{(Xn, Y n) ∈ T (n)
ǫ (X,Y )} = 1.
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4) |T (n)
ǫ (X,Y )| ≥ (1− ǫ)2n(1−ǫ)H(X,Y ) for n sufficiently large.

5) For everyxn ∈ Xn, we have|T (n)
ǫ (Y |xn)| ≤ 2n(1+ǫ)H(Y |X).

6) Let X ∼ pX(x) andY = g(X). Let xn ∈ T (n)
ǫ (X). Thenyn ∈ T (n)

ǫ (Y |xn) if and only if yi = g(xi) for

i ∈ [1 : n].

The following property deserves special attention.

Lemma 3:Conditional Typicality Lemma: Let(X,Y ) ∼ p(x, y). Suppose thatxn ∈ T (n)
ǫ′ (X) and Y n ∼

p(yn|xn) =
∏n

i=1 pY |X(yi|xi). Then, for everyǫ > ǫ′,

lim
n→∞

P{(xn, Y n) ∈ T (n)
ǫ (X,Y )} = 1.

The proof of this lemma follows by the LLN.

The conditional typicality lemma implies the following additional property of jointly typical sequences.

5) If xn ∈ T (n)
ǫ′ (X) andǫ′ < ǫ, then forn sufficiently large,

|T (n)
ǫ (Y |xn)| ≥ (1 − ǫ)2n(1−ǫ)H(X|Y ).

Joint Typicality for a Triple of Random Variables

Let (X,Y, Z) ∼ p(x, y, z). The set of jointlyǫ-typical (xn, yn, zn) sequences is defined as

T (n)
ǫ (X,Y, Z) = {(xn, yn, zn) : |N(x, y, z|xn, yn, zn)− p(x, y, z)| ≤ ǫp(x, y, z) for all (x, y, z) ∈ X × Y × Z}.

Suppose that(xn, yn, zn) ∈ T (n)
ǫ (X,Y, Z) andp(xn, yn, zn) =

∏n
i=1 pX,Y,Z(xi, yi, zi). Then

1) xn ∈ T (n)
ǫ and (yn, zn) ∈ T (n)

ǫ (Y, Z),

2) p(xn, yn, zn) ≈ 2−nH(X,Y,Z),

3) p(xn, yn|zn) ≈ 2−nH(X,Y |Z),

4) |T (n)
ǫ (X |yn, zn)| ≤ 2n(H(X|Y,Z)+δ(ǫ)), and

5) if (yn, zn) ∈ T (n)
ǫ′ (Y, Z) andǫ′ < ǫ, then forn sufficiently large,|T (n)

ǫ (X |yn, zn)| ≥ 2n(H(X|Y,Z)−δ(ǫ)).

The following two-part lemma will be used in many achievability proofs of coding theorem.

Lemma 4:Joint Typicality Lemma: Let(X,Y, Z) ∼ p(x, y, z) andǫ′ < ǫ. Then there existsδ(ǫ) > 0 that tends

to zero asǫ → 0 such that the following statements hold:

1) If (x̃n, ỹn) is a pair of arbitrary sequences and̃Zn ∼ ∏n
i=1 pZ|X(z̃i|x̃i), then

P{(x̃n, ỹn, Z̃n) ∈ T (n)
ǫ (X,Y, Z)} ≤ 2−n(I(Y ;Z|X)−δ(ǫ)).

2) If (xn, yn) ∈ T (n)
ǫ′ and Z̃n ∼ ∏n

i=1 pZ|X(z̃i|xi), then forn sufficiently large,

P{(xn, yn, Z̃n) ∈ T (n)
ǫ (X,Y, Z)} ≥ 2−n(I(Y ;Z|X)+δ(ǫ)).
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Proof: To prove the first statement, consider

P{(x̃n, ỹn, Z̃n ∈ T (n)
ǫ (X,Y, Z))} =

∑

z̃n∈T
(n)
ǫ (Z|x̃n,ỹn)

p(z̃n|x̃n)

≤ |T (n)
ǫ (Z|x̃n, ỹn)|2−n(H(Z|X)−ǫH(Z|X))

≤ 2n(H(Z|X,Y )+ǫH(Z|X,Y ))2−n(H(Z|X)−ǫH(Z|X))

= 2−n(I(Y ;Z|X)−δ(ǫ)).

Similarly, for everyn sufficiently large,

P{(xn, yn, Z̃n) ∈ T (n)
ǫ (X,Y, Z)} ≥ |T (n)

ǫ (Z|xn, yn)|2−n(H(Z|X)+ǫH(Z|X))

≥ (1− ǫ)2n(H(Z|X,Y )−ǫH(Z|X,Y ))2−n(H(Z|X)+ǫH(Z|X))

= 2−n(I(Y ;Z|X)+δ(ǫ)),

which proves the second statement.
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