EE 4TM4. Digital Communications |l

Information Measures

Definition 1: The entropyH (X) of a discrete random variabl¥ is defined by

H(X) = =3 pla)logp(a).

reX

We also writeH (p) for the above quantity.
Lemma 1: H(X) > 0.
Proof: 0 < p(z) < 1 implieslog(1/p(z)) > 0. [ |
Definition 2: The relative entropy or Kullback Leibler distance betwegao probability mass functiong(z) and

q(x) is defined as

D) = 3 pla) log 2.

= q(z

Theorem 1:Jensen’s inequality: If is a convex function and is a random variable, then

Ef(X) = f(EX). 1)
Moreover, if f is strictly convex, then equality in (1) implies that = £ X with probability 1, i.e., X is a constant.
Theorem 2:Let p(z), ¢(z), z € X, be two probability mass functions. Then
D(pllq) = 0

with equality if and only ifp(x) = ¢(z) for all .
Proof: Let A = {z : p(z) > 0} be the support set gf(x). Then

—D@llg) = - 3 ple) log 22

= q(z)
q(x)

Zp »(z)
zeA
< log Z p(z &

zeA p SC
=log »  q()

zeA
<log » _ q(x)

zeX
=logl

:0’
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where the first inequality follows from Jensens’ inequalyncelogt is a strictly concave function of, we have
the first inequality becomes equality if and onlygifz)/p(z) = 1 everywhere, i.e.p(z) = ¢(z). Hence we have
D(pllq) = 0 if and only if p(z) = ¢(x) for all z. [ |

Definition 3: The type P,» (or empirical probability distribution) of a sequeneg, z2, - - - , z, is the relative
proportion of occurrences of each symbol®f i.e., Py»(a) = N(a|z™)/n for all a € X, whereN (a|z™) is the
number of times the symbal occurs in the sequencee’ € X™.

Definition 4: Let P,, denote the set of types with denominator

Definition 5: If P € P,, then the set of sequences of lengtland typeP is called the type class d?, denoted
T(P),i.e.,T(P)={z" € X" : Pyn = P}.

Theorem 3:|P,| = (”‘t‘(f_';l) < (n+1)*,

Theorem 4:If X, X, -, X,, are drawn i.i.d. according t@(x), then the probability oft™ depends only on
its type and is given by

Qn (xn) _ 2—n(H(Pmn)+D(Pw” 1Q)) .
Proof:

Q"(a") =] Qx:)
1=1

= T @ty
aceX
= T @t
aeX
= JJ 2P @t
aeX
= T 20 (P (@198 Qa)~Porn () 108 Pan (a) P () g Pon ()
aceX
_ gt B P los Pen &) 1 Pym (a) log Pon (a))

— 9(=D(Pen |Q)—H(Pen))

Corollary 1: If 2™ is in the type class of), then

Theorem 5:For any typeP € P,

1
(n+ 1)1

Proof: Note that the exact size @f(P) is given by

n n!

T(P) = (nP(al),nP(ag),-~- ,nP(a|X)> = (nP(a1))(nP(a2))!- - (nP(ajx)))!
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We first prove the upper bound. Since a type class must hawmbildy < 1, we have
1>PY(T(P)= Y P = > 2P = p(p))2 AP,
zneT(P) zneT(P)

Thus|T(P)| < 2" (P), Now for the lower bound. We first prove that the type cl&$#®) has the highest probability
among all type classes under the probability distribut®ni.e., P"(T'(P)) > P™(T(P)), for all P € P,. We
lower bound the ratio of probabilities,

PYT(P)  T(P)| Tuex PP

PU(T(P))  |T(P)[T,ex Pla) @
(nP(al),nP(a:),m,nP(a‘X‘)) Hae){ P(a)np(a)
(np(al),np(a;),m,n]s(a‘x‘)) [Toex P(a)"P(@

_ ng _EZI]Z 8;: P(a)n(P@-P(@),

Now using the simple bound (easy to prove by separately deriag the cases: > n andm < n) ’;}—,' >nmn,

we obtain

P™(T(P)) H (a) nP(a)P(a)n(P(a)*ﬁ(a))
P (T( P cx
H n(P(a)—P(a))

— " (Caex P(a)=,cx P(a))

><

— nn(lfl)

=1

HenceP™(T(P)) > P™(T(P)). The lower bound now follows easily from this result, since

1= Y PrIQ)

er7l

Z max PY(T(Q))

QEPx

=Y PMT(P)

er7l

< (n+ DI¥IP(T(P))

=+ 3 P

€T (P)

SR Sl
€T (P)

= (n+ )T (P)|2 "HE),
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Theorem 6:For any P € P,, and any distribution®, the probability of the type clas®'(P) under Q" is
2-nD(PIQ) to first order in the exponent. More precisely,

1

= 9—nD(P|Q) n —nD(P|Q)

Proof: We have

QU T(P)= > Q")

xneT(P)

= Y oI HE)
€T (P)

= |T(P)|2~PPIQ+HP)

Using the bounds ofif’(P)|, we have

1
——  9—nD(PIQ) <« on(T(P)) < 2~ "P(PIQ)
T <Q(I(P)) <
[ ]
Theorem 7:Let X1, X2, , X, be iid. ~ Q(x). Then
PriD(Py||Q) > €} < 27— IX =505,
Proof:
Pr{D(Pwn|Q) > e} = > Q“(T(P))
P:D(P||Q)>e
< Y 2o
P:D(P|Q)>¢
< Z g—ne
P:D(P||Q)>e¢
< (n 4 1)I¥lg=ne
— g nlem| X REGED)
[ ]

Theorem 8:Sanov’s theorem: LetX;, Xo,--- , X, be iid. ~ Q(x). Let E C P be a set of probability

distributions. Then
Q"(E) = Q" (ENTP,) < (n+1) 2 nPFIQ)]

where P* = arg gli% D(P||Q) is the distribution inE that is closest t@ in relative entropy. If, in addition, the
(S

set F is the closure of its interior, then

08 Q"(E) » ~D(P*[[Q).

February 22, 2016 DRAFT



Proof: We first prove the upper bound:

QUE)= Y  QUT(P)

PeENP,

S gnorle)

PcENP,

S max 27019

PEENP
PEENP, "

Z 9—nminpepnp, D(P|Q)

PcENP,

Z 27nminp€E D(PHQ)
PcENP,

3 2RI

PcENP,

< (n 4 1)/¥lg=nDEPIQ)

IN

IN

IN

Note thatP* need not be a member @,,. We now come to the lower bound, for which we need a “nice”
set I/, so that for all largen, we can find a distribution i N P,, which is close toP*. If we now assume that
E is the closure of its interior (thus the interior must be rmpty), then sincg J,, P,, is dense in the set of all
distributions, it follows thatE NP, is non-empty for alln > ny for somen > ny. We can then find a sequence
of distributionsP,, such thatP, € ENP, andD(FP,||Q) — D(P*||Q). For eachn > nyg,

QUE)= )  QMT(P)

PeENP,
> Q"(T(Py))
> mg—nmmnm
Consequently,
lim inf % log Q" (FE) > lim inf(—% — D(P,]|Q)) = —D(P*||Q).
Combining this with the upper bound establishes the theorem [ ]

We can summarize the basic theorems concerning types inefpuations:
Pu| < (n+1)F]
Q" (z") = 27 (P (Panl|Q+H(Per))
|T(P)| ~ 2"H P
QM(T(P)) ~ 2 "PPIQ),

Theorem 9:Weak Law of Large Numbers: Lek;, X5,--- be a sequence of independent random variables

having a common distributiof), and letE[X;] = u. Then for anye > 0
X X et X,
P { ‘ 1+ Xo 4+

n

—u’Ze}%O asn — oo
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Proof: Let Y,, = 2+Xet+Xa _ ), Note thatE[Y;,] = 0 and Va(Y,) = =, wheres? = Var(X;). Therefore,
by Chebyshev’s inequality

2
o
P{lY»,JZE}S@%O asn — oo

[ |
Remark: This proof shows that the probability goes to zerleadt as fast a%. In fact, it is possible to derive
a tighter bound. Without loss of generality, we assufij&;] = 0. Note that

PYal > ¢} = PVt > ) < Zal.

SinceE(X1 + Xao + -+ X,)* = nE(X?) + 3n(n — 1)(E(X?))?, it follows that the probability goes to zero at
least as fast agy.

Remark: According to Sanov’s theorem, the probability gmmezero exponentially fast with the exponent given

by
D(P||Q).

Theorem 10:Central Limit Theorem: LetX;, Xo,--- be a sequence of independent, identically distributed

min
P:| 3, aP(x)—p|>e

random variables, each with meanand variancer?. Then the distribution of

X1+X2++Xn—nu
o/n

tends to the standard normal as— oco. That is,

P{X1+X2+---+X —n,u /
0'\/ﬁ \/271'

—m2/2dx

asn — oo.

Connection between the central limit theorem and the dereg: LetX;, X, - - - be a sequence of i.i.d. Bernoulli
random variables with parameter i.e., P(X; = 1) = p and P(X; = 0) = 1 — p. Note thatE[X;] = p and
Var(X;) = E[X?] — E[X;]? = p— p? = p(1 — p). According to the central limit theorem,

X+ Xo4 -+ X, — 1 b
p(Rutdet Xz oy L [,
2

V(1 —=p)v/n

Note that here we are essentially counting the total prdibalbif type classes such that; + Xo +--- + X, €

[p+a/p(1 = p)v/n,np+b+/p(1 = p)v/nl, i.e., the empiricap,» € [p+ay/p(1 = p)/v/n,p+by/p(1 = p)/v/n].

Now consider the Taylor expansion &f(q||p) at the neighborhood gf. Note that

q 1 -
D(qllp) = qlog]; + (1 —q)log 7—

So

d q 1
d—qD(QHP) = 10g]—3 —log

which equals 0 wher = p, and

d? 1
— D(q|lp) = ;
dg? (dlp) q(1—q)
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which equalsﬁ when g = p. Therefore, forg = p + z+/p(1 — p)/+/n, we have

2p :v\/p p)/Vn)®

Consequently, the probability of the type class with encpirp,» ~ p + z+/p(1 — p)/+/n is approximately

D(qllp) =~

2

2
e—n% — e 7 /2

)

which gives the right exponent in the central limit theoréyote that in the limit, one can replace the sum of the
probabilities of type classes by integral to recover thetreétimit theorem (the constant factay /27 requires a
more accurate approximation using Stirling’s formula)t fi@ non-binary case, one can also establish a connection
between divergence and the multi-dimensional centrak litheorem.
Theorem 11:H(X) < log|X|, where|X| denotes the number of elements in the rang&ofwith equality if
and only if X has a uniform distribution ovet'.
Proof: Let u(z) = % be the uniform probability mass function ovat, and letp(x) be the probability mass

function for X. Then

D(plu) = p(x 10g

Hence by the non-negativity of relative entropy,

=log|X| — H(X).

0 < D(pllu) =log |X| — H(X).
This result can also be proved using Lagrangian multiplier. [ ]
Conditional entropy:

HYIX)=— 3 pla,y)logple) = — 3 p@) S plyle) logp(ylz) = S p(a) HY|X = 2).

reX,yey reX yeY reX

Conditional entropy: residual uncertainty

Joint entropy:

HX,Y)=- Y p(z,y)logp(z,y).
reEX ,yey

We haveH(X,Y)=H(X)+ H(Y|X)=H(Y)+ H(X|Y). More generally,
H(X™") =H(X1)+H(X|X1)+ -+ HX,| X1, -, Xno1).

Mutual information:

XY = Y pley)log %

(z,y)eX XY
— H(X) - H(X|Y)
— H(Y) - H(Y|X)

— H(X)+H(Y) - H(X,Y).
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Note that

I(X;Y) = D(p(x,y)llp(z)p(y)).

Therefore,/(X;Y) > 0 with equality if and only if X andY are independent.
SinceI(X;Y) > 0, it follows that

HY|X) < H(Y)

H(X,Y)< H(X)+H().
Moreover,H (g(X)) < H(X) with equality if g is one-to-one over the support&f, i.e., the se{z € X : p(x) > 0}.
This is becausd? (X, g(X)) = H(g(X)|X)+ H(X) = H(X) and H(X, g(X)) = H(9(X)) + H(X|g(X)) >
H{(g(X)).

Theorem 12:Fano’s inequality: Suppose we wish to estimate a randonabirX with a distributionp(z). We

observe a random variablé which is related taX by the conditional distributiop(x|y). FromY’, we calculate a
function g(Y') = X, which is an estimate ok. We wish to bound the probability thaf # X. We observe that

X —Y — X forms a Markov chain. Define the probability of error
P, = P{X +# X}.
Then
H(P.)+ P.log(|X| — 1) > H(X|Y),

whereH (P.) = —P.log P. — (1 — P.) log(1 — P.). This inequality can be weakenedta- P. log |X| > H(X|Y).
Proof: Let E =1 if X # X andE =0 if X = X. Note that

H(E,X|Y) = H(X|Y) + H(E|X,Y) = HX|Y).
On the other hand,
H(E,X|Y)=H(E|Y)+ H(X|E,Y)
<H(E)+ H(X|E,Y)
= H(P.) + H(X|E,Y)
= H(P.)+ P(E=0)H(X|Y,E=0)+ P(E =1)H(X|Y,E =1)

< H(P.)+ (1= P.)0+ P.log(|X| —1).

Conditional mutual information:

I(X;Y]Z2) =Y p)I(X:Y|Z=2)=) pz) > p(x,mz)logpr%:r,iylz)

z€EZ zZEZ reEX ,yey (:C|z)p(y|z)
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Note that

I(X;Y12) = Y p(z)D(p(x,yl2)[Ip(]2)p(y|2) = D(p(z,y|2)|p(x]2)p(y|2)[p(2))-
z€Z

Also note that
I(X;Y|Z)=H(X|Z) - HX|Y, Z)
=H(Y|Z)-H(Y|X,Z)
=H(X|Z)+ H(Y|Z) - H(X,Y|Z).
The conditional mutual informatiodi(X;Y|Z) is nonnegative and is equal to zero if and onlyXfandY are

conditionally independent give#, i.e., X — Z — Y form a Markov chain.

Theorem 13:Data processing inequality: K — Y — Z form a Markov chain, then
I(X;2) <I(X;Y).
Consequently, for any function, I(X;¢(Y)) < I(X;Y).
Proof: To prove the data processing inequality, we use the chamteubxpand (X;Y, Z) in two ways as
I(X;Y,2)=1(X;Y)+ [(X; Z]Y) = [(X;Y)
=I(X;2)+1(X;Y|Z) > I(X; Z).

|
Note that unlike entropy, no general inequality relatiopsexists between the conditional mutual information

I(X;Y|Z) and the mutual informatiodi(X;Y"). There are, however two important special cases.

o If X andZ are independent, then
I(X;Y|Z) > I(X;Y).

This is becausd (X;Y|Z) = I(X;Y,Z) > I(X;Y).
o If Z— X —Y form a Markov chain, then
I(X;Y|Z) < I(X;Y).
This is becausd (X;Y|Z) < I(Z,X;Y) = I(X;Y).
Typical Sequences

Let X1, X2, -+ be a sequence of independent and identically distributedo@ variables. Then by the (weak)

law of large numbers, for eache X,
N(z|z") — p(x) in probability.

Thus, with high probability, the random empirical pri¥f(z|X™) does not deviate much from the true ppif).

For X ~ p(x) ande € (0, 1), define the set of-typical n-sequences™ (or the typical set in short) as

T(X) = {2 : [N (z|z") — p(z)| < ep(z) for all z € X}.
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Note that the typical set can be viewed as the union of typsselmwhose type is close tdx). Also note that
p(z) = 0 implies N(z|2™) = 0 because otherwis® (p.«||p) = oo.
Lemma 2: Typical Average Lemma: Let" € 7 (X). Then for any nonnegative functigf{z) on X,

1 n
(1= B(g(X)) € =" glx:) < (1+)B(g(X)).
i=1
Typical sequences satisfy the following properties:
1) Letp(z™) =11, px(x;). Then for eache™ € T.(X),
9 n(H(X)+5(e) < () < 2~ MHE)=8(9)
whered(e) = eH(X). This follows by the typical average lemma wigllx) = — logp(z).
2) The cardinality of the typical set is upper bounded as
| T < 2HX)+3(0))
This can be shown by summing the lower bound in property 1 twerttypical set.
3) If Xy, Xo, .-+ are i.i.d. withX; ~ px(z;), then by the LLN,
nl;rIgOP{X eT M}y =1.
This result can also be proved using Theorem 7 in Lecture 1e Mt the size of the typical set is in general

negligible compared withX'|™. However, it captures almost all probability.

4) The cardinality of the typical set is lower bounded as
17| > (1 = €)2n(HE)=8(e)

for n sufficiently large. This follows by property 3 and the uppeuhbd in property 1.
Explain these properties from the perspective of method/péd.
Jointly Typical Sequences

Let (X,Y) ~ px y(x,y). The set of jointlye-typical n-sequences is defined as

1
70 Y) = {m ) [N Gl ) — o ()| < e (o) Torall () € 2 x

Also define the set of conditionally-typical » sequences a%;(”)(Y|x") = {y" t(z™y") € 7™ (X, Y)}. The
properties of typical sequences can be extended to joiptlical sequences as follows.
1) Let (2", y") € TX(X,Y) andp(z™, y™) = [, px.y (zi,v:). Then
(@) 2" € 74" (xX) andy" € T(Y),
(b) 27n(1+e)H(X) < p(xn) < 2771(175)H(X) and 27n(1+E)H(Y) < p(yn) < 27n(175)H(Y)’
(C) 27n(1+5)H(X\Y) < p(xnhjn) < 27n(175)H(X\Y) and 27n(1+e)H(Y|X) < p(yn|xn) < 27n(175)H(Y\X)’
(d) 9—n(l+e)H(X,Y) < p(xn7yn) < 9—n(l—e)H(X,Y)
2) |7;(71)(X7 V)| < on(l+e)H(XY)
3) If pa™,y™) = [, px.v (@i, y:), thenlim, o P{(X™,Y") € T (X,Y)} = 1.
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4) [TA(X,Y)| > (1 — €)2r(=9HXY) for p sufficiently large.

5) For everyz" € X", we have|T{™ (Y]a")| < 2n(1+aHYIX),

6) Let X ~ px(z) andY = g(X). Letz" € T (X). Theny™ € T (Y|2") if and only if y; = g(a;) for
i€[l:n].

The following property deserves special attention.

Lemma 3:Conditional Typicality Lemma: Le{X,Y) ~ p(z,y). Suppose that™ € 7;(,”)(X) and Y™ ~

p(y"=™) =TT, py|x (yilz:). Then, for everye > ¢,

lim P{(z",Y") e T(M(X,Y)} =1.

n—oo

The proof of this lemma follows by the LLN.
The conditional typicality lemma implies the following atidnal property of jointly typical sequences.

5) If 2 € 7'6§") (X) and€ < e, then forn sufficiently large,
[T (Y]2™)] 2 (1 = 2=,

Joint Typicality for a Triple of Random Variables
Let (X,Y, Z) ~ p(x,y, z). The set of jointlye-typical (z™, y", 2™) sequences is defined as

7;(")(X, Y, Z)={(z",y", 2") : IN(z,y, z|2",y", 2") — p(x,y,2)| < ep(x,y,2) for all (z,y,2) € X x Y x Z}.

Suppose thatz™, y", z") € T4 (X, Y, Z) andp(z™, y", 2") = [T, px,v,z(zi,yi, z;). Then

1) 2" € 7 and (y", 2") € T(Y, 2),

2) p(a”,y", ") m 2 MHXYD),

3) plam,y"|an) m 2 HONYIZ),

4) |7;(")(X|yn’zn)| < 9n(H(X|Y,2)+5(9) | and

5) if (y",z") € TS (Y, Z) and¢’ < ¢, then forn sufficiently large,| 7™ (X |y, 27)| > 2n(H(X[Y.2)=6(e))
The following two-part lemma will be used in many achieviapiproofs of coding theorem.

Lemma 4:Joint Typicality Lemma: Le(X,Y, Z) ~ p(z,y, z) ande’ < e. Then there exist§(e) > 0 that tends

to zero asx — 0 such that the following statements hold:

1) If (z",¢™) is a pair of arbitrary sequences aad ~ [T pz x (%), then
P{(&",§",2") € T"(X,Y, 2)} < 2705210700,
2) If (=™, y") € 73") and 2" ~ [T pzx (Zi|x:), then forn sufficiently large,

P{(z",y", Z") € T (X,Y, Z)} > 2~ "U(V:Z1X)+6(e))
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Proof: To prove the first statement, consider

P{(‘%nvgnvzn et(n)(vavZ))}: Z p(Z"2")
zneTi™ (Z)3m,57)

< |7;(n)(Z|i,n’ gn)|2—n(H(Z\X)—eH(Z\X))
< 2n(H(Z\X,Y)+eH(Z|X,Y))2—n(H(Z\X)—eH(Z\X))

— 9-n(I(Y32]X)=5(e))

Similarly, for everyn sufficiently large,

P{(xn’yn,Zn) e t(n)(X,KZ)} > |7;(n)(Z|xn,yn)|2—n(H(Z\X)+€H(Z|X))

> (1 — )2 HZIXY)=eH(ZX.Y)) g =n(H(Z|X)+H(Z]X))

= 9~ nI(V3Z1X)+8(e)
which proves the second statement. [ ]
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