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EE 4TM4: Digital Communications II

Matrix Factorization

Eigenvalue Decomposition: Every real symmetric matrixΣ can be written asΣ = UΛUT , whereU is a unitary

matrix (i.e.,UUT = UTU = I) andΛ is a real diagonal matrix.

Note thatU contains the eigenvectors ofΣ while Λ contains the eigenvalues ofΣ. Also note that the unitary

transform preserves theL2 norm, i.e.,‖Ua‖2 = ‖a‖2.

Singular Value Decomposition: Every matrixA ∈ R
m×n can be written as

A = U





S 0

0 0



V T ,

whereU and V are respectivelym × m and n × n unitary matrices, andS = diag(σ1, · · · , σr). The positive

numbersσ1 ≥ · · · ≥ σr > 0 are called the singular values ofA, wherer is the rank ofA.

All the random objects are assumed to be of mean zero unless specified otherwise. For random vectorsX =

(X1, · · · , Xk)
T andY = (Y1, · · · , Ym)T , we define the correlation matrix betweenX andY asΣX,Y = E[XY T ];

the covariance matrices ofX andY are defined asΣX = E[XXT ] andΣY = E[Y Y T ], respectively. Note that

the covariance matrix is symmetric.

A matrix Σ is said to be positive semidefinite ifaTΣa ≥ 0 for all a. Note that the covariance matrix is always

positive semidefinite. This is becauseaTΣXa = E[(aTX)2] ≥ 0. WhenΣ is positive semidefinite, the diagonal

entries ofΛ is non-negative. The eigenvalue decomposition theorem implies that one can obtain a random vector

with covariance matrixΣ by applying a linear transformU to a random vector with covariance matrixΛ. This also

implies that every positive semidefinite matrix can be viewed as the covariance matrix of a random vector. Note

that the determinant of a positive semidefinite matrix is non-negative.

Linear MMSE: For two jointly distributed random variablesX and Y , find a to minimize E[(X − aY )2].

By taking derivative with respect toa, it can be shown thata = E[XY ](E[Y 2])−1. A geometric interpretation:

E[(X − aY )Y ] = 0 implies a = E[XY ](E[Y 2])−1.

More generally, for two random vectorsX andY , we would like to find the optimal linear estimate fromY to

X . Let E[(X−AY )Y T ] = 0. We haveA = ΣX,Y Σ
−1

Y . Note that for anyB, we haveE[(X−AY )(X−AY )T ] �

E[(X − BY )(X −BY )T ], whereM1 � M2 meansM2 −M1 is positive semidefinite. Now we proceed to prove
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this,

E[(X −BY )(X −BY )T ] = E[(X −AY +AY −BY )(X −AY +AY −BY )T ]

= E[(X −AY )(X −AY )T ] + E[(X −AY )(Y −BY )T ]

+ E[(AY −BY )(X −AY )T ] + E[(AY −BY )(AY −BY )T ]

= E[(X −AY )(X −AY )T ] + E[(AY −BY )(AY −BY )T ]

� E[(X −AY )(X −AY )T ].

Note thatX − AY is uncorrelated withY . In particular, if X and Y are jointly Gaussian, thenX − AY is

independent ofY ; moreover,X − AY − Y form a Markov chain, i.e.,X andY are independent conditioned on

AY (we sayAY is a sufficient statistic ofY for estimatingX).

Gram-Schmidt orthogonalization:

I1 = X1,

I2 = X2 − a2,1I1,

I3 = X3 − a3,1I1 − a3,2I2,

...

Im = Xm − am,1I1 − · · · − am,m−1Im−1,

whereI1, · · · , Im are uncorrelated (they are sometimes referred to as innovation process). Therefore, we have

X1 = I1,

X2 = a2,1I1 + I2,

X3 = a3,1I1 + a3,2I2 + I3,

...

Xm = am1
I1 + · · ·+ am1,m−1Im−1 + Im.

This yields theLDLT decomposition of the covariance matrix ofX = (X1, · · · , Xm). Note that the diagonal

entries ofD is non-negative, and the diagonal entries ofL are all equal to 1. One can further write the covariance

matrix of X as the product of a lower triangular matrix and its transposeby groupingL andD
1

2 .

Multivariate Normal Distribution:The density of a zero-mean Gaussian random vectorX = (X1, · · · , Xk)
T

with covariance matrixΣ is given by

fX(x1, · · · , xk) =
1

(2π)k/2|Σ|1/2
exp

(

−
1

2
xTΣ−1x

)

.

Equivalently, we sayX is a zero-mean Gaussian random vector with covariance matrix Σ if its moment generating

function is given byexp(1
2
tTΣt). It is easy to show that two jointly Gaussian random vectors are uncorrelated if
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and only if they are independent. Note that ifX is a Gaussian random vector, thenAX is also a Gaussian random

vector. This is because the moment generating function ofAX is

E[exp(tTAX)] = E[exp((AT t)TX)] = exp(
1

2
(AT t)TΣAT t) = exp(

1

2
tT (AΣAT )t),

which is exactly the moment generating function of a zero-mean Gaussian random vector with covariance matrix

AΣAT .
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