EE 4TM4. Digital Communications |l

Matrix Factorization

Eigenvalue Decomposition: Every real symmetric matril can be written a& = UAUT, whereU is a unitary
matrix (i.e.,UUT = UTU = I) and A is a real diagonal matrix.

Note thatU contains the eigenvectors af while A contains the eigenvalues &f. Also note that the unitary
transform preserves the, norm, i.e.,|Ua|? = ||a|*.

Singular Value Decomposition: Every matrix A € R™*™ can be written as

S 0
A=U v,
0 0
whereU and V' are respectivelyn x m andn x n unitary matrices, and’ = diag(o1,---,0,). The positive

numberss; > --- > o, > 0 are called the singular values df, wherer is the rank ofA.

All the random objects are assumed to be of mean zero unlesifisd otherwise. For random vectals =
(X1, -+, Xp)T andY = (Y1,---,Yn,)T, we define the correlation matrix betwed&handY asXyxy = E[XYT];
the covariance matrices of andY are defined a&x = E[XX7] andYy = E[YYT], respectively. Note that
the covariance matrix is symmetric.

A matrix X is said to be positive semidefinite i Xa > 0 for all a. Note that the covariance matrix is always
positive semidefinite. This is becaugéYya = E[(a? X)?] > 0. WhenX is positive semidefinite, the diagonal
entries of A is non-negative. The eigenvalue decomposition theorenlies\that one can obtain a random vector
with covariance matrix. by applying a linear transfory to a random vector with covariance matrix This also
implies that every positive semidefinite matrix can be viéves the covariance matrix of a random vector. Note
that the determinant of a positive semidefinite matrix is-negative.

Linear MMSE: For two jointly distributed random variable¥ and Y, find a to minimize E[(X — aY)?].

By taking derivative with respect ta, it can be shown that = E[XY](E[Y?])~!. A geometric interpretation:
E[(X —aY)Y] =0 impliesa = E[XY](E[Y?])~!.

More generally, for two random vectofs andY’, we would like to find the optimal linear estimate frorhto
X. Let E[(X — AY)YT] = 0. We haveA = Sy y ¥, '. Note that for anyB, we haveE[(X — AY)(X — AY)T] <
E[(X — BY)(X — BY)T], whereM; < M, meansM, — M, is positive semidefinite. Now we proceed to prove
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this,

E[(X - BY)(X — BY)"] = E[(X — AY + AY — BY)(X — AY + AY — BY)"]
= E[(X - AY)(X — AY)"] + E[(X — AY)(Y — BY)7]
+ E[(AY — BY)(X — AY)"] + E[(AY — BY)(AY — BY)"]
= E[(X — AY)(X — AY)"] + E[(AY — BY)(AY — BY)"]
= E[(X — AY)(X — AY)T].
Note that X — AY is uncorrelated withY. In particular, if X and Y are jointly Gaussian, theX — AY is
independent of”; moreover,X — AY — Y form a Markov chain, i.e.X andY are independent conditioned on

AY (we sayAY is a sufficient statistic ot” for estimatingX).

Gram-Schmidt orthogonalization:
Il = le
Iy = X9 —an1ly,

I3 = X3 —a3111 — a3 213,

Im = Xm - am,lll - am,m—llm—la
wherel,,--- , I,, are uncorrelated (they are sometimes referred to as inoovatocess). Therefore, we have
Xl = Ilv

Xo =ag11i + I,

X3 =a3 111 + a3zl + I3,

Xm = amlll +---+ aml,m—IIm—l + 1.

This yields theLDL” decomposition of the covariance matrix &f = (Xi,---,X,,). Note that the diagonal
entries of D is non-negative, and the diagonal entries/oére all equal to 1. One can further write the covariance
matrix of X as the product of a lower triangular matrix and its transpgmsgroupingZ and Dz.

Multivariate Normal Distribution:The density of a zero-mean Gaussian random ve&tor (Xi,---, X;)T

with covariance matrixX: is given by

1 L A
fx(irl’... ,Ik)—Wexp <—§x b)) :17>
Equivalently, we sayX is a zero-mean Gaussian random vector with covariance>xaiatif its moment generating

function is given byexp(%tTEt). It is easy to show that two jointly Gaussian random vectoesumcorrelated if
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and only if they are independent. Note thatXifis a Gaussian random vector, thdiX is also a Gaussian random

vector. This is because the moment generating functioA ®fis
1 1
Elexp(tT AX)] = Elexp((ATH)T X)] = exp(E(ATt)TEATt) = exp(EtT(AEAT)t),

which is exactly the moment generating function of a zer@m&aussian random vector with covariance matrix

AT AT,
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