EE 4TM4: Digital Communications II Matrix Factorization

Eigenvalue Decomposition: Every real symmetric matrix Σ can be written as $\Sigma = U\Lambda U^T$, where U is a unitary matrix (i.e., $UU^T = U^T U = I$) and Λ is a real diagonal matrix.

Note that U contains the eigenvectors of Σ while Λ contains the eigenvalues of Σ . Also note that the unitary transform preserves the L_2 norm, i.e., $||Ua||^2 = ||a||^2$.

Singular Value Decomposition: Every matrix $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U \left(\begin{array}{cc} S & 0 \\ 0 & 0 \end{array} \right) V^T,$$

where U and V are respectively $m \times m$ and $n \times n$ unitary matrices, and $S = \text{diag}(\sigma_1, \dots, \sigma_r)$. The positive numbers $\sigma_1 \ge \dots \ge \sigma_r > 0$ are called the singular values of A, where r is the rank of A.

All the random objects are assumed to be of mean zero unless specified otherwise. For random vectors $X = (X_1, \dots, X_k)^T$ and $Y = (Y_1, \dots, Y_m)^T$, we define the correlation matrix between X and Y as $\Sigma_{X,Y} = E[XY^T]$; the covariance matrices of X and Y are defined as $\Sigma_X = E[XX^T]$ and $\Sigma_Y = E[YY^T]$, respectively. Note that the covariance matrix is symmetric.

A matrix Σ is said to be positive semidefinite if $a^T \Sigma a \ge 0$ for all a. Note that the covariance matrix is always positive semidefinite. This is because $a^T \Sigma_X a = E[(a^T X)^2] \ge 0$. When Σ is positive semidefinite, the diagonal entries of Λ is non-negative. The eigenvalue decomposition theorem implies that one can obtain a random vector with covariance matrix Σ by applying a linear transform U to a random vector with covariance matrix Λ . This also implies that every positive semidefinite matrix can be viewed as the covariance matrix of a random vector. Note that the determinant of a positive semidefinite matrix is non-negative.

Linear MMSE: For two jointly distributed random variables X and Y, find a to minimize $E[(X - aY)^2]$. By taking derivative with respect to a, it can be shown that $a = E[XY](E[Y^2])^{-1}$. A geometric interpretation: E[(X - aY)Y] = 0 implies $a = E[XY](E[Y^2])^{-1}$.

More generally, for two random vectors X and Y, we would like to find the optimal linear estimate from Y to X. Let $E[(X - AY)Y^T] = 0$. We have $A = \sum_{X,Y} \sum_{Y}^{-1}$. Note that for any B, we have $E[(X - AY)(X - AY)^T] \preceq E[(X - BY)(X - BY)^T]$, where $M_1 \preceq M_2$ means $M_2 - M_1$ is positive semidefinite. Now we proceed to prove

1

this,

$$E[(X - BY)(X - BY)^{T}] = E[(X - AY + AY - BY)(X - AY + AY - BY)^{T}]$$

= $E[(X - AY)(X - AY)^{T}] + E[(X - AY)(Y - BY)^{T}]$
+ $E[(AY - BY)(X - AY)^{T}] + E[(AY - BY)(AY - BY)^{T}]$
= $E[(X - AY)(X - AY)^{T}] + E[(AY - BY)(AY - BY)^{T}]$
 $\succeq E[(X - AY)(X - AY)^{T}].$

Note that X - AY is uncorrelated with Y. In particular, if X and Y are jointly Gaussian, then X - AY is independent of Y; moreover, X - AY - Y form a Markov chain, i.e., X and Y are independent conditioned on AY (we say AY is a sufficient statistic of Y for estimating X).

Gram-Schmidt orthogonalization:

$$I_{1} = X_{1},$$

$$I_{2} = X_{2} - a_{2,1}I_{1},$$

$$I_{3} = X_{3} - a_{3,1}I_{1} - a_{3,2}I_{2},$$

$$\vdots$$

$$I_{m} = X_{m} - a_{m,1}I_{1} - \dots - a_{m,m-1}I_{m-1},$$

where I_1, \cdots, I_m are uncorrelated (they are sometimes referred to as innovation process). Therefore, we have

$$X_{1} = I_{1},$$

$$X_{2} = a_{2,1}I_{1} + I_{2},$$

$$X_{3} = a_{3,1}I_{1} + a_{3,2}I_{2} + I_{3},$$

$$\vdots$$

$$X_{m} = a_{m_{1}}I_{1} + \dots + a_{m_{1},m-1}I_{m-1} + I_{m}.$$

This yields the LDL^T decomposition of the covariance matrix of $X = (X_1, \dots, X_m)$. Note that the diagonal entries of D is non-negative, and the diagonal entries of L are all equal to 1. One can further write the covariance matrix of X as the product of a lower triangular matrix and its transpose by grouping L and $D^{\frac{1}{2}}$.

Multivariate Normal Distribution: The density of a zero-mean Gaussian random vector $X = (X_1, \dots, X_k)^T$ with covariance matrix Σ is given by

$$f_X(x_1, \cdots, x_k) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} x^T \Sigma^{-1} x\right)$$

Equivalently, we say X is a zero-mean Gaussian random vector with covariance matrix Σ if its moment generating function is given by $\exp(\frac{1}{2}t^T\Sigma t)$. It is easy to show that two jointly Gaussian random vectors are uncorrelated if

and only if they are independent. Note that if X is a Gaussian random vector, then AX is also a Gaussian random vector. This is because the moment generating function of AX is

$$\mathbb{E}[\exp(t^T A X)] = \mathbb{E}[\exp((A^T t)^T X)] = \exp(\frac{1}{2}(A^T t)^T \Sigma A^T t) = \exp(\frac{1}{2}t^T (A \Sigma A^T) t),$$

which is exactly the moment generating function of a zero-mean Gaussian random vector with covariance matrix $A\Sigma A^{T}$.