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EE 4TM4: Digital Communications II

Scalar Gaussian Channel

I. D IFFERENTIAL ENTROPY

Let X be a continuous random variable with probability density function (pdf)f(x) (in shortX ∼ f(x)). The

differential entropy ofX is defined as

h(X) = −

∫

f(x) log f(x)dx.

For example, ifX ∼ Unif[a, b], then

h(X) = log(b− a).

As another example, ifX ∼ N(µ, σ2), then

h(X) =
1

2
log(2πeσ2).

The differential entropyh(X) is a concave function off(x). However, unlike entropy it is not always nonnegative,

and hence should not be interpreted directly as a measure of information. The differential entropy is invariant under

translation but not under scaling.

• Translation: For any constanta, h(X + a) = h(X).

• Scaling: For any nonzero constant a,h(aX) = h(X) + log |a|.

The maximum differential entropy of a continuous random variableX ∼ f(x) under the average power constraint

E(X2) ≤ P is

max
f(x):E(X2)≤P

h(X) =
1

2
log(2πeP ),

and is attained whenX is Gaussian with zero mean and powerP , i.e.,X ∼ N(0, P ). Thus, for anyX ∼ f(x),

h(X) = h(X − E(X)) ≤
1

2
log(2πeVar(X)).

February 1, 2016 DRAFT



2

Proof: Let g be any density with varianceP andφ be a zero-mean Gaussian density with varianceP . We

have

0 ≤ D(g‖φ)

=

∫

g log(g/φ)

= −h(g)−

∫

g logφ

= −h(g)−

∫

φ log φ

= −h(g) + h(φ),

where the substitution
∫

g logφ =
∫

φ log φ follows from the fact thatg andφ yield the same variance (note that

logφ = ax2 + b).

Let X ∼ F (x) be an arbitrary random variable andY |{X = x} ∼ f(y|x) be continuous for everyx. The

conditional differential entropyh(Y |X) of Y givenX is defined as

h(Y |X) = −EX,Y (log f(Y |X)).

Note thatI(X ;Y ) = h(Y )− h(Y |X). SinceI(X ;Y ) ≥ 0, it follows that

h(Y |X) ≤ h(Y ).

II. A DDITIVE WHITE GAUSSIAN NOISE CHANNEL

Channel model:Y (t) = X(t) +N(t), where{N(t)}t is an i.i.d. Gaussian process withN(t) ∼ N (0, σ2
N ) for

all t.

Theorem 1: The capacity of additive white Gaussian noise channel with average power constraintP is given by

CAWGN =
1

2
log

P + σ2
N

σ2
N

=
1

2
log(1 + SNR).

The achievability part follows by discretizing the channelinput and output and by a weak convergence argument.

Proof of the converse. First note that the proof of the converse for the DMC with input cost constraint applies

to arbitrary (not necessarily discrete) memoryless channels. Therefore, we have

CAWGN ≤ sup
F (x):E[X2]≤P

I(X ;Y ).

Now for anyX ∼ F (x) with E[X2] ≤ P ,

I(X ;Y ) = h(Y )− h(Y |X)

= h(Y )− h(N |X)

= h(Y )− h(N)

≤
1

2
log(2πe(P + σ2

N ))−
1

2
log(2πeσ2

N )

=
1

2
log

P + σ2
N

σ2
N

,
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where the inequality becomes equality ifX ∼ N(0, P ).

III. SCALAR FADING CHANNELS: ERGODIC CAPACITY

Channel model:Y (t) = H(t)X(t) + N(t), where{H(t)}t is a stationary and ergodic process with stationary

distributionp(h), {N(t)}t is an i.i.d. Gaussian process withN(t) ∼ N (0, σ2
N ) for all t.

1) {H(t)}t is known at the receiver: (coherent channel capacity)

C = max
E[X2]≤P

I(X ;Y |H)

= max
E[X2]≤P

EHI(X ;Y |H)

=
1

2
EH log

(

1 +
H2P

σ2
N

)

.

Define the averageSNR at the receiver as

SNR =
EH [H2]P

σ2
N

.

By Jensen’s inequality,

1

2
EH log

(

1 +
H2P

σ2
N

)

≤
1

2
log

(

1 +
EH [H2]P

σ2
N

)

=
1

2
log (1 + SNR) .

Bad news: the capacity of fading channel is smaller than thatof the AWGN channel with the same receiver

SNR. In the lowSNR regime, we have

1

2
EH log

(

1 +
H2P

σ2
N

)

≈
1

2
EH

(

H2P

σ2
N

)

log2 e =
1

2
SNR log2 e ≈ CAWGN.

At high SNR,

1

2
EH log

(

1 +
H2P

σ2
N

)

≈
1

2
EH log

(

H2P

σ2
N

)

=
1

2
log SNR +

1

2
EH log

(

H2

EH [H2]

)

≈ CAWGN +
1

2
EH log

(

H2

EH [H2]

)

.

2) {H(t)}t is known at the transmitter and the receiver: (dynamic powercontrol and opportunistic communica-

tion)

C = max
E[X2(H)]≤P

I(X ;Y |H)

= max
E[X2(H)]≤P

EH max
X(h)

I(X ;Y |H = h)

DefineE[X2(h)] = P (h). We have

max
E[X2(h)]≤P

EH max
X(h)

I(X ;Y |H = h) = max
EHP (H)≤P

1

2
EH log

(

1 +
H2P (H)

σ2
N

)

.

The maximizerP ∗(h) is

P ∗(h) = max

(

λ−
σ2
N

h2
, 0

)
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with λ given by

EH [P ∗(H)] = P.

Therefore,

C =
1

2

∫ ∞

|h|=σNλ−1/2

p(h) log

(

h2λ

σ2
N

)

dh

In the highSNR regime,λ is very large andP ∗(h) ≈ λ. Therefore the capacity converges to that of the case

with no state information at transmitter.

Suppose the channel gainh2 has a peak valueGmax. At low SNR, we have

P(h2 ≈ Gmax)

(

λ−
σ2
N

Gmax

)

= P

and thus

1

2
EH log

(

1 +
H2P ∗(H)

σ2
N

)

≈
1

2
P(h2 ≈ Gmax) log

(

1 +
GmaxP

σ2
NP(h2 ≈ Gmax)

)

≈
GmaxP
2σ2

N

log2 e

=
1

2
SNR

Gmax
EH [H2]

log2 e

≈
Gmax
EH [H2]

CAWGN.

Good news: the capacity gain over the AWGN channel depends onthe peakness of the fading process, which

can be unbounded.

Since the capacity scales linearly with the power at lowSNR ( 12 log(1 + SNR) ≈ 1
2SNR log2 e) and

logrithmically at highSNR ( 12 log(1 + SNR) ≈ 1
2 log(SNR)), power control is more effective in the low

SNR regime. We will see that at highSNR, a more efficient method is to increase the degree of freedom,

say, using multiple antennas.

When proving the capacity formula for the case where the state process is know at both the transmitter and

receiver, we adopted the multiplexing technique, i.e., using different coding schemes for different channel

states. But such a scheme may cause long decoding delay. Furthermore, for fading processes with continuous

amplitude, there are essentially infinite states, which make the multiplexing method infeasible. Fortunately,

for fading channels with additive Gaussian noise, the multiplexing method can be replaced by dynamic power

control. That is because we if assume the fading process is{
√

P ∗(H(t))H(t)}t and the power constraint is

E[X2] ≤ 1, then the capacity with the state information at the receiver is exactly

1

2
EH log

(

1 +
P ∗(H)H2

σ2
N

)

.

SinceP ∗(H(t)) is a deterministic function ofH(t), the receiver can compute{
√

P ∗(H(t))H(t)}t from the

fading process{H(t)}t. Out assumption is thus valid. So in order to achieve the capacity, we only need use

the power control policyP ∗(h) and a coding scheme with power constraintE[X2] ≤ 1 designed for the

effective fading process{
√

P ∗(H(t))H(t)}t. Note: the resulting transmission power isEH [P ∗(H)] = P .
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