EE 4TM4. Digital Communications |l

Scalar Gaussian Channel

I. DIFFERENTIAL ENTROPY
Let X be a continuous random variable with probability densityction (pdf) f(z) (in short X ~ f(z)). The

differential entropy ofX is defined as

h(X) = [ fla)log f(a)da.
For example, ifX ~ Unif[a, b], then

h(X) = log(b — a).
As another example, ik ~ N(u,0?), then
h(X) = %10g(27r602).

The differential entropy:(X) is a concave function of (x). However, unlike entropy it is not always nonnegative,
and hence should not be interpreted directly as a measundoofriation. The differential entropy is invariant under
translation but not under scaling.

« Translation: For any constant h(X + a) = h(X).

« Scaling: For any nonzero constant/da X ) = h(X) + log|al.

The maximum differential entropy of a continuous randomalgle X ~ f(x) under the average power constraint
E(X?) < Pis

f(m);gl(%()%)gp h(X) = % log(2mweP),

and is attained wheiX is Gaussian with zero mean and poweri.e., X ~ N(0, P). Thus, for anyX ~ f(z),

h(X) = h(X — E(X)) < %1og(27reVar(X)).
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Proof: Let g be any density with varianc® and ¢ be a zero-mean Gaussian density with variafceNe

have
0 < D(gll¢)

= / glog(g/9)

where the substitutiorf glog ¢ = [ ¢log ¢ follows from the fact thay and ¢ yield the same variance (note that
log ¢ = az? + b). [
Let X ~ F(z) be an arbitrary random variable ang{X = x} ~ f(y|z) be continuous for every. The

conditional differential entropy:(Y|X) of Y given X is defined as
hMY|X) = —Ex,y(log f(Y|X)).
Note that/(X;Y) = h(Y) — h(Y|X). Sincel(X;Y) > 0, it follows that
R(Y|X) < h(Y).

II. ADDITIVE WHITE GAUSSIAN NOISE CHANNEL

Channel modelY () = X (t) + N(t), where{N(¢)}, is an i.i.d. Gaussian process wiffi(t) ~ N(0,03%) for
all ¢.
Theorem 1: The capacity of additive white Gaussian noise channel widrage power constrairi is given by
P+

1 1
Cawen = 5log—3—= =5 log(1 4+ SNR).
N

The achievability part follows by discretizing the chanimgdut and output and by a weak convergence argument.

Proof of the converse. First note that the proof of the caswdor the DMC with input cost constraint applies
to arbitrary (not necessarily discrete) memoryless chianiderefore, we have
Cawan < sup I(X;Y).
F(z):E[X?]<P
Now for any X ~ F(z) with E[X?] < P,
I(X;Y)=h(Y) - h(Y|X)
=h(Y) — h(N|X)

= h(Y) — h(N)

IN

1 1
3 log(2me(P + o%)) — 3 log(2mec?;)

1 P+ 03
Zlog ——N
B 0og O_ZQV )
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where the inequality becomes equalityXf ~ N (0, P).

IIl. SCALAR FADING CHANNELS: ERGODIC CAPACITY

Channel modelY (t) = H(t)X(t) + N(t), where{H (t)}; is a stationary and ergodic process with stationary
distributionp(h), {N(¢)}: is an i.i.d. Gaussian process witfi(t) ~ N (0,0%;) for all ¢.

1) {H(t)}: is known at the receiver: (coherent channel capacity)
= max I[(X;Y|H)
E[X?2]<P

= max FEgl(X;Y|H)
E[X?|<P

1 H?P
= —EHlog(l—i— 5 )
2 %

Define the averagBNR at the receiver as

2
sxm  EultIP,
ON

By Jensen’s inequality,

1 H?P 1 Eg[H?|P 1
_ < — _ = — .
2EHlog (1—|— o2 ) < 2log (1—|— = 210g(1+SNR)
Bad news: the capacity of fading channel is smaller thandah#te AWGN channel with the same receiver

SNR. In the lowSNR regime, we have

1 H?PpP 1 H?PpP 1
—FEylog (1 + —2> ~ —-Fy (—2> log, e = -SNRlog, e =~ CanGN-
2 oN 2 oN 2

At high SNR,

1 H?P 1 H?P
—Frl 1 ~ —Fygl —_—
2Hog(+0?v) 2Hog(a?v>

1 1 H?
— —10gSNR + = Ep log [ ———
5 (08 SNR A+ 5 B log (EH[HQ])

~ C _’_EE lo H72
~ “AWGN T 55H 108 EqlH?] )

2) {H(t)}; is known at the transmitter and the receiver: (dynamic paveaitrol and opportunistic communica-
tion)
c = max I(X;Y|H)
E[X2(H)]<P

= max FymaxI(X;Y|H =h)
EX2(H)<P — X(h)

Define E[X?(h)] = P(h). We have

1 H?P(H
max FEpmaxI(X;Y|H=h) = max —FEpglog (1 + #) )
E[X2(h)]<P X (h) EgP(H)<P 2 oN

The maximizerP*(h) is
ox
P*(h) = Imax <)\ — ﬁ,())
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with A\ given by

Ey[P*(H)| = P,

o} 2
C= l/ p(h)log <h—2/\> dh
2 |h|=onA—1/2 ON

In the highSNR regime, X is very large and”*(h) ~ A. Therefore the capacity converges to that of the case

Therefore,

with no state information at transmitter.

Suppose the channel galirf has a peak valu€max. At low SNR, we have

o2
P(hQQGmax) <)\— e N > =P

max
and thus
1 H?P*(H) GmaxP
e 1+ —= = —]P’ ~ G 1
21 Og< " oX ) 2 (» ma Og< o%P(h? ~ Gmax)
N GmaxP1
~ Gy 2 0ogo €
Gmax
= —SNR B [H7] log, e
Gmax

~
~

T (2] CAWGN:

Good news: the capacity gain over the AWGN channel dependseopeakness of the fading process, which
can be unbounded.

Since the capacity scales linearly with the power at ISWR (% log(l + SNR) = %SNRIog2 e) and
logrithmically at highSNR (3 log(1 + SNR) ~ 3 log(SNR)), power control is more effective in the low
SNR regime. We will see that at highNR, a more efficient method is to increase the degree of freedom,
say, using multiple antennas.

When proving the capacity formula for the case where the giatcess is know at both the transmitter and
receiver, we adopted the multiplexing technique, i.e.ngisiifferent coding schemes for different channel
states. But such a scheme may cause long decoding delalyeFudre, for fading processes with continuous
amplitude, there are essentially infinite states, which entile multiplexing method infeasible. Fortunately,

for fading channels with additive Gaussian noise, the ipleXing method can be replaced by dynamic power

control. That is because we if assume the fading proce§g/iB*(H (t))H(t)}: and the power constraint is
E[X?] < 1, then the capacity with the state information at the recreryexactly

1 P*(H)H?

—Fyrlog (1 + %) .

2 oN

Since P*(H (t)) is a deterministic function ofi (¢), the receiver can compute/P*(H (t))H (t)}: from the
fading procesq H (¢)};. Out assumption is thus valid. So in order to achieve the @gpave only need use
the power control policyP*(h) and a coding scheme with power constralfitY?] < 1 designed for the
effective fading proces$,/P+(H (t))H(t)};. Note: the resulting transmission powerAs;[P*(H)] = P.
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