EE 4TM4. Digital Communications |l

Vector Gaussian Channel

I. WATER-FILLING

Theorem 1: Let the random vectoX € R™ have zero mean and covarianée = EXX?. Then h(X) <
1 log(2me)"det K), with equality iff X ~ A(0, K).

Theorem 2 (Hadamard's inequality): Let K be a non-negative definite symmetrig n matrix. We have dé&’) <
[T K., with equality iff K,; = 0, i # 5.
lZIY = HX + N, whereY,N € R", X € R™, H € R"™™, andN ~ N(0,Kn). Let Kn = UXUT be
the eigenvalue decomposition éfn, whereX = diag{o?,--- ,02}. Let N’ = X~Y2UTN, H' = ¥~Y/2U"TH,
Y’ = 271207y, andX’ = X. We define an equivalent channel mod&l = H'X’ + N’, whereN’ ~ N (0, I,,).
Let H' = VAWT be the singular value decomposition &f, where A = diag{\;,--- , \,0,---,0} € R™*™
(r = rankH’), andV € R™", W € R™*™ are unitary matrices. LeK” = WTX’, Y = VTY’, andN" =
VTN'’. Now we get another equivalent channel mo¥& = AX” + N”, whereN” ~ N(0, I,,). We have

trace&%ﬂ)gp I(X5Y7) = traC&EI)Iil/E}))é”T) <P IXT5 YY),
Let the components aX” be independehtand jointly Gaussian witlEX"X"” = diag{u1,-- -, for,
,0}. We have

I(X"Y") = #<P2210g 1+ pid?
Yoy i

Zmax( log (v\?), )

max
traceex”x"T)<p

where the maximizeyp. is

andv is given by the equation

1For the independent parallel channels, the input should l@sindependent over the parallel channels in order to nizagithe sum channel
capacity.
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1. MIMO: ERGODIC CAPACITY
Y (t) = H(¢) X (¢t) + N(¢), where{H(t) € R"*™}, is stationary and ergodic, adN(t)}, is i.i.d. with N(¢) ~
N(0,0%1,) for all t.
1) {H(t)}; is known at the receiver: Lekx = EXXT. We have

Cc = max I(X;Y[H)
tracekx)<p

max ]EHI(X;Y|H = H)
tracekx)<p

1 1
max  -Eglog det(In + —QHKXHT> :
tracexx)<p 2 o

Raleigh fading: the entries df are i.i.d.A(0,1).
Let Kx = UDUT be the eigenvalue decomposition Kfc, whereU is a unitary matrix andD is a diagonal
with nonnegative entries. Note: trddéx) = tracé D).
Lemma 1: The distribution ofHU is the same as that &f.
Proof: Let g; ; be the(i, ) entry of HU. Let H! be theith row of H, andU; be thejth column ofU.

We have
Egijgr, = E(H]UHLU)
= E(H]U;U"H;)
= E(U/HHUj)
= U/'E(H:H])U;.

If i # k, we haveE (H,H/) = 0 and thusEg; ;g = 0. Fori = k, we haveE (H,H]) = I,, and thus

Eg;i jgr; = 0if j # [ and 1 otherwise. [ |
By the above lemma, we have
1 1 T 1 1 T
max sEnlogdet| I, + =—HKxH" | = max -Eglogdet(l, + -—HDH" ).
tracexx)<p 2 o tracep)<p 2 oy

By symmetry, if D,; is a diagonal matrix obtained via permutating the diagonalies of D, then

1 1 1 1
—Eg log det (In + —QHDWHT) = —Eg log det (In + —2HDHT) :
2 % 2 oN

Hence by the concavity dbg det and the power constraint, the optiniaimust be%[m. Therefore, we have

1 P
C = -Enlog det<]n +— HHT> .
2 moy;
LetH = VAWT be the singular value decompositionHf Let \;, o, - - - s Amin(m,n) D€ the singular values
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of H. Note: A\{, A3, -+, A2 ., @re the non-zero eigenvalues HIHL" and H" H. We have

1 P
C = —Eﬂlogdet<In 5 )

2 maN
1

= 51EHlogdet(1r + VAATVT>

mo?

1 T

= —Eglogdet| I, + AA
2 maN

min(m,n)

1 PX2
= 5En > log(l—i-mazzv).

=1

Note: tracel AT = traced” 4 = 5. Law of energy (/power) conservation:

.7 z]

min(m,n)
Zh;{j:trace(HHT):trace(VAATVT):trace(ATA): >

=1
DefineSNR = —=-. In the low SNR regime, we have
N

min(m,n)

—SNRlong > Eu)

=1

C

Q

min(m,n)
= —SNRlong > EntracdHH)

=1
= ﬁSNRlongZEhﬁj
.7

= gsNRlog2 e
Thus at lowSNR, anm by n system yields a power gain of over a single antenna system. This is due
to the fact that the multiple receive antennas can cohgreotinbine their received signals to get a power
boost (Note: at [owSNR, the capacity scales linearly with the power). Note thateasing the number of
transmit antennas does not increase the power gain sintike timle case when the channel is known at the
transmitter, transmit beamforming cannot be done to coastely add signals from the different antennas.
Thus, at lowSNR and without channel knowledge at the transmitter, multipd@smit antennas are not very
useful: the performance of an by n channel is comparable with that of a 1 hychannel.

At high SNR, we have

min(m,n)
1 1 2
C ~ SEm Z} log<ESNR/\i)
— min(m,n)l SNR-i—lE min(zm.’n)l )\_2
= —5 g 5B 2 og

Hence the capacity gain iain(m,n) over a single antenna systemin(m,n) is referred to as the degree

of freedom.
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2) {H(¢)}; is known at both the transmitter and receiver:

Cc = max I(X;Y|H)
traCeEKx (H))<P

= max Egl(X;YH=H)
traCeEKx (H))<P

= max —IEH log det (I + HKX(H)HT>
trac@EKx (H))<P 2 o3

= max —IEH 1ogdet(I + HKX(H)HT>.
traceEKx (H))<P 2

Let H= VAWTY be the singular decomposition 5. We have

max —IEH log det (I + HKX(H)HT>
traceEKx (H))<P 2

= max —IEH log det (I + AKX(A)AT)
traceEKx (A))<P 2

min(m,n) 2
1 N2
= max —Eg Z log < ()\2)/\1 ) .
me(wn ,n) ]EP( 2 N
The optimal power control policy’();) is given by
. ok
P*()\;) = max /L—)\—?,O ,
where . is determined by the power constraint

Z EP* =P

Note that this is waterfilling over time and space (the eigedes).
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