Homework 1

1. Evaluate (a) $(1-j)^{6}$; (b) $(1+j \sqrt{3})^{1 / 3}$; (c) $j^{1 / 5}$; (d) $(-j)^{1 / 3}$.
2. Find $u(x, y)$ and $v(x, y)$ if $f(z)$ is given by (a) $\cos z$; (b) $\cosh z$; (c) $\tan z$.
3. Integrate $\frac{z+1}{z^{2}(z+2)}$ around the circle $|z|=1$.
4. Evaluate the integral $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta d \theta}{a+b \cos \theta}$ for a and b real and $a>b>0$.
5. Find the Laurent expansion of $f(z)$ if $f(z)$ is given by (a) $\frac{z}{z^{2}-1}$ for $|z|>1$; (b) $\frac{1}{(z-1)(2-z)}$ in $1<|z|<2$; (c) $\frac{1}{(z-1)(2-z)}$ for $|z|>2$.
6. We have shown that $\mathcal{L}\left\{\sin \omega_{0} t\right\}=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$. From this fact, and by using properties of the Laplace transforms, find the transforms of the following functions: (a) $t \sin \omega_{0} t$; (b) $\frac{\sin \omega_{0} t}{t}$; (c) $e^{-a t} \sin \omega_{0} t$ ($a>0$ and real).
7. Given $F(s)=\frac{-3 s^{3}+2 s^{2}+10 s+2}{\left(s^{2}+2 s+10\right)^{2}}$ without ever finding $f(t)$, calculate $f\left(0_{-}\right)$, $f(\infty), f^{\prime}\left(0_{-}\right)$, and $f^{\prime}(\infty)$.
8. Let a system be described by $\frac{d^{y}}{d t^{2}}+2 \frac{d y}{d t}+10 y=\frac{d^{2} p}{d t^{2}}-3 \frac{d p}{d t}+5 p$. Find its impulse response.
9. Find the Laplace transform of the following functions: (a) $\frac{1}{2 \sqrt{\pi t^{3}}}\left(e^{-a t}-\right.$ $\left.e^{-b t}\right) u(t) ;(b) \frac{1}{\sqrt{t}} \cos 2 \sqrt{k t} u(t) ;(c) \frac{1}{\sqrt{\pi t}} e^{-\lambda^{2} / 4 t} u(t)$.
10. Find the inverse Laplace transform of the following functions, by use of the Laplace inversion theorem: (a) $\frac{1}{s\left(s^{2}+a^{2}\right)}$; (b) $\frac{1}{s^{4}-a^{4}}$; (c) $\frac{1}{s\left(e^{s T}-a\right)}$.
