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Generalized Gaussian Multiterminal Source
Coding in the High-Resolution Regime

Li Xie, Xiaolan Tu, Siyao Zhou, and Jun Chen , Senior Member, IEEE

Abstract— A conjectural expression of the asymptotic gap
between the rate-distortion function of an arbitrary generalized
Gaussian multiterminal source coding system and that of its
centralized counterpart in the high-resolution regime is proposed.
The validity of this expression is verified when the number of
sources is no more than 3.

Index Terms— Gaussian source, information matrix, mean
squared error, multiterminal source coding, rate-distortion.

I. INTRODUCTION

CONSIDER a generalized multiterminal source coding
system with L sources and M encoders (see Fig. 1).

Each encoder compresses its observed subset of sources and
forwards the compressed data to a central decoder, which
attempts to reconstruct all L sources based the received data to
meet a prescribed distortion constraint. Such a system model
arises in various scenarios. For example, the encoders and the
decoder here can correspond respectively to the sensors and
the fusion center in a sensor network; the flexibility of the
model makes it possible to take into account the fact that the
signals captured by two different sensors might share common
components. Moreover, one may interpret the encoders as a
sequence of operations ordered in the temporal domain rather
than some physical entities deployed in the spatial domain. For
instance, the whole generalized multiterminal source coding
system can be viewed as a video coding process, where at
each time instant an encoding operation is performed on a
batch of video frames (overlaps are allowed from batch to
batch).

Two extreme cases of generalized multiterminal source cod-
ing are well known. The first one is centralized coding, where
all L sources are connected to a common encoder. The other
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Fig. 1. A generalized multiterminal source coding system with L sources
and M encoders.

one is distributed coding, where each source is connected to a
different encoder. Intuitively, the optimal rate-distortion perfor-
mance of any generalized multiterminal source coding system
must be no superior to that of its centralized counterpart and
no inferior to that of its distributed counterpart.

Special attention has been paid to the setting known as
generalized (quadratic) Gaussian multiterminal source coding,
where the sources are jointly Gaussian and the mean squared
error distortion measure is adopted. For the centralized coding
case, the rate-distortion function is given by the celebrated
reverse water-filling formula [1, Theorem 13.3.3]. However,
for the distributed coding case, the exact characterization
of the rate-distortion limit is a longstanding open problem,
and so far the complete solution has only been obtained
when L = 2 [2] (see also [3]–[18] for some related
results). Beyond these two extreme cases, our understanding
is rather limited, and the relevant research has just started
recently [19], [20]. Moreover, there are strong evidences that
for most generalized Gaussian multiterminal source coding
systems, their rate-distortion limits might not be expressible
using closed-form formulae. Indeed, the existing conclusive
results for the distributed coding case are typically given in
the form of semidefinite programming [12]–[17]; neverthe-
less, it is not always easy to extract useful insights from
numerical solutions produced by semidefinite programming
algorithms. Therefore, even if one manages to characterize
the rate-distortion limit of a generalized Gaussian multitermi-
nal source coding system, additional work is likely needed
to convert it to a certain analytical form that facilitates
understanding.

A potentially important finding of this work is that a simple
picture might emerge in the high-resolution regime. Specif-
ically, we propose a conjectural expression of the asymp-
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totic gap between the rate-distortion function of an arbitrary
generalized Gaussian multiterminal source coding system and
that of its centralized counterpart. This expression delineates
how the fundamental performance limit of a generalized
Gaussian multiterminal source coding system depends on
the source statistics and the system topology. To provide
supporting evidences, we verify the validity of this expression
for L ≤ 3.

The rest of this paper is organized as follows. We introduce
the problem definition and our conjecture in Section II. The
main result is presented in Section III. We conclude the paper
in Section IV.

Notation: E[·], det(·), and tr(·) are respectively the expecta-
tion operator, the determinant operator, and the trace operator.
We use Xn as an abbreviation of (X(1), · · · , X(n)). For
any random vector Y and random object ω, the distortion
covariance matrix incurred by the minimum mean squared
error estimator of Y from ω is denoted by cov(Y |ω). We write
A � 0 to indicate that A is a positive definite matrix.
Throughout this paper, little-o notation g(d) = o(f(d)) means
limd↓0

g(d)
f(d) = 0, and the base of the logarithm function is e.

II. PROBLEM DEFINITION AND CONJECTURE

Let {X�(t)}∞t=1, � = 1, · · · , L, be L sources with
{X�(t)}∞t=1, � ∈ Sm, connected to encoder m, m = 1, · · · , M .
We require that each source be connected to at least one
encoder, and each encoder be connected to at least one
source. As a consequence, S � {S1, · · · ,SM} is a cover of
{1, · · · , L} (in other words, S is a family of nonempty subsets
of {1, · · · , L} whose union contains {1, · · · , L}).

In this paper, (X1(t), · · · , XL(t)), t = 1, 2, · · · , are
assumed to be i.i.d. copies of a zero-mean Gaussian ran-
dom vector (X1, · · · , XL) with positive definite covariance
matrix Γ. The information matrix (or the precision matrix) Θ
is defined as the inverse of Γ. The (i, j)-entries of Γ and Θ
are denoted by γi,j and δi,j , respectively, i, j ∈ {1, · · · , L}.

Definition 1: Given a cover S � {S1, · · · ,SM} of
{1, · · · , L} and a positive number d, we say that rate r is
achievable if for any � > 0, there exist encoding functions
φ

(n)
m : R|Sm|×n → C(n)

m , m = 1, · · · , M , satisfying

1
n

M∑
m=1

log |C(n)
m | ≤ r + �,

1
Ln

L∑
�=1

n∑
t=1

E[(X�(t) − X̂�(t))2] ≤ d + �,

where

X̂n
� � E[Xn

� |φ(n)
1 ((Xn

�1)�1∈S1), · · · , φ
(n)
M ((Xn

�M
)�M∈SM )],
� = 1, · · · , L.

The minimum of such r is denoted by rS(d). We shall refer
to rS(·) as the rate-distortion function (or more precisely,
the sum-rate-distortion function) of the generalized Gaussian
multiterminal source coding system associated with S.

The main objective of the present work is to compare
analytically the rate-distortion functions of coding systems
with different topologies (i.e., different S) for a given Gaussian

source model (i.e., Γ, or equivently Θ, is fixed). We are par-
ticularly interested in the high-resolution regime (i.e., d ≈ 0).
Note that in this regime the sources are reconstructed almost
losslessly, which is of clear practical relevance. Moreover,
from a technical perspective, the high-resolution regime is
analytically more tractable due to the existence of several
related information-theorectic results and the convex nature
of the relevant optimization problems.

Remark 1: Let S and S′ be two covers of {1, · · · , L}.
We say that S′ dominates S if for any S ∈ S, there exists
some S′ ∈ S′ such that S ⊆ S′. It is clear that

rS(d) ≥ rS′(d), d > 0, (1)

if S′ dominates1 S because each encoder in the system
associated with S is functionally realizable by some encoder in
the system associated with S′ that is connected to the same or
more sources. Two covers S and S′ are said to be equivalent2 if
they dominate each other. For two equivalent covers S and S′,
we have

rS(d) = rS′(d), d > 0. (2)

A cover is said to be non-redundant3 if none of its elements
is contained in another. It is easy to show that there exists a
unique non-redundant cover among all equivalent ones.

Let rC(·) and rD(·) denote the rate-distortion functions
for the centralized coding case (i.e., S = {{1, · · · , L}})
and the distributed coding case (i.e., S = {{1}, · · · , {L}}),
respectively. In view of Remark 1, we have

rC(d) ≤ rS(d) ≤ rD(d), d > 0, (3)

for any cover S of {1, · · · , L}. A result by Zamir and
Berger [21] (see also [22] for a related result) indicates that

lim
d↓0

rD(d) − rC(d) = 0,

which, together with (3), implies

lim
d↓0

rS(d) − rC(d) = 0 (4)

for any cover S of {1, · · · , L}. However, (4) falls short of
capturing the dependency of rS(d) on Γ (or equivalently, Θ)
and S. The following conjecture aims to provide a characteri-
zation of the asymptotic gap between rS(d) and rC(d) in the
high-resolution regime that is more informative than (4).

Conjecture 1: For any cover S of {1, · · · , L},

rS(d) − rC(d) =
1
2

∑
(i,j)∈E(S)

δ2
i,jd

2 + o(d2), (5)

where E(S) � {(i, j) : 1 ≤ i < j ≤ L and
{i, j} � S for all S ∈ S}.

1For example, {{1, 2}, {1, 3}} dominates {{1, 2}, {3}}, but is dominated
by {{1, 2}, {1, 3}, {2, 3}}. Moreover, every cover of {1, · · · , L} dominates
{{1}, · · · , {L}}, but is dominated by {{1, · · · , L}}.

2For example, {{1, 2}, {2, 3}} and {{1}, {1, 2}, {2, 3}} are equivalent.
3For example, {{1, 2}, {2, 3}} is a non-redundant cover of {1, 2, 3}

whereas {{1}, {1, 2}, {2, 3}} is a redundant cover (since {1} is contained
in {1, 2}).
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Fig. 2. Examples of generalized multiterminal source coding systems: (a) L = 2 and S = {{1}, {2}}, (b) L = 3 and S = {{1}, {2}, {3}}, (c) L = 3 and
S = {{1, 2}, {3}}, (d) L = 3 and S = {{1, 2}, {1, 3}}, (e) L = 3 and S = {{1, 2}, {1, 3}, {2, 3}}.

Remark 2: It is easy to verify that∑
(i,j)∈E(S)

δ2
i,j ≥

∑
(i,j)∈E(S′)

δ2
i,j

if S′ dominates S, and∑
(i,j)∈E(S)

δ2
i,j =

∑
(i,j)∈E(S′)

δ2
i,j

if S and S′ are equivalent. Therefore, Conjecture 1 is consistent
with (1) and (2).

Remark 3: Note that rC(·) is given by the reverse
water-filling formula [1, Theorem 13.3.3]. Specifically,
we have

rC(d) =
1
2

L∑
�=1

log
( λ�

min{δ, λ�}
)
, d > 0, (6)

where λ1, · · · , λL are the eigenvalues of Γ, and δ is the unique
solution to

L∑
�=1

min{δ, λ�} = min{Ld, tr(Γ)}.

In light of (6) and the fact that det(Γ) =
∏L

�=1 λ�,

rC(d) =
1
2

log
(det(Γ)

dL

)
, d ∈ (0, min{λ1, · · · , λL}). (7)

As a consequence, (5) can be written alternatively as

rS(d) =
1
2

log
(det(Γ)

dL

)
+

1
2

∑
(i,j)∈E(S)

δ2
i,jd

2 + o(d2),

which provides conjecturally an explicit asymptotic expression
of rS(d) in the high-resolution regime.

III. MAIN RESULT

The main contribution of this work is the following result.
Theorem 1: Conjecture 1 is true for L ≤ 3.

Proof: In view of Remark 1 and the fact that Conjecture 1
is trivially true if S = {{1, · · · , L}}, it suffices to consider
(possibly through relabelling)4 the following cases:

1) L = 2 and S = {{1}, {2}} (see Fig. 2 (a)),
2) L = 3 and S = {{1}, {2}, {3}} (see Fig. 2 (b)),
3) L = 3 and S = {{1, 2}, {3}} (see Fig. 2 (c)),
4) L = 3 and S = {{1, 2}, {1, 3}} (see Fig. 2 (d)),
5) L = 3 and S = {{1, 2}, {1, 3}, {2, 3}} (see Fig. 2 (e)).

We will provide a case-by-case study in the following
subsections.

Remark 4: In fact, for each of the above cases, we have an
exact characterization of the rate-distortion function when d
is sufficiently close to 0. Although such characterizations can

4For example, if we relabel 1 as 2, 2 as 3, and 3 as 1, then {{1, 3}, {2, 3}}
becomes {{1, 2}, {1, 3}}. Clearly, it suffices to consider one of them for the
purpose of proving Theorem 1.
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be deduced from the existing results in a relatively straight-
forward manner for the first three cases, they are not known
for the last two cases and require ideas beyond those in the
literature. Moreover, such characterizations are often expressed
in the form of semidefinite programming, and one has to
perform non-trivial analysis to find the explicit asymptotic
solutions needed for proving Theorem 1. It is also worth
mentioning that the techniques used in the present work can
actually settle many more cases of Conjecture 1. Neverthess,
starting from L = 4, there exist system topologies for which
our techniques appear to be inadequate. In favor of conciseness
over generality, we choose to state Theorem 1 in the current
form.

A. L = 2 and S = {{1}, {2}}

Lemma 1: For d sufficiently close to 0,

r{{1},{2}}(d) =
1
2

log
(det(Γ)

2d2

(
1 +

√
1 + 4δ2

1,2d
2
))

.

Proof: See Appendix A.
In view of (7) and Lemma 1,

r{{1},{2}}(d) − rC(d) =
1
2

log
(1

2
+

1
2

√
1 + 4δ2

1,2d
2
)

(8)

for d sufficiently close to 0. It can be verified that

1
2

log
(1

2
+

1
2

√
1 + 4δ2

1,2d
2
)

=
1
2

log
(
1 + δ2

1,2d
2 + o(d2)

)
=

1
2
δ2
1,2d

2 + o(d2). (9)

Substituting (9) into (8) yields

r{{1},{2}}(d) − rC(d) =
1
2
δ2
1,2d

2 + o(d2).

B. L = 3 and S = {{1}, {2}, {3}}

Lemma 2: For d sufficiently close to 0,

r{{1},{2},{3}}(d) = min
Ξ

1
2

log
( det(Γ)

det(D)

)
(10)

subject to Ξ � 0,

εi,j = 0, i 	= j,

tr(D) ≤ 3d,

where εi,j denotes the (i, j)-entry of Ξ, i, j ∈ {1, 2, 3}, and
D � (Θ + Ξ−1)−1.

Proof: This result can be deduced from
[12, Theorem 5].

According to [16, Theorem 8], for d sufficiently close to 0,
we can find a positive definite diagonal matrix Ξ such that
d�,� = d, � = 1, 2, 3, where di,j denotes the (i, j)-entry of D,
i, j ∈ {1, 2, 3}; clearly,

r{{1},{2},{3}}(d) − rC(d)

≤ 1
2

log
( det(Γ)

det(D)

)
− 1

2
log

(det(Γ)
d3

)

=
1
2

log
( d3

det(D)

)
(11)

for this specifically constructed D. Since

(δ�,� + ε−1
�,� )−1 ≤ d�,� ≤ (γ−1

�,� + ε−1
�,� )−1, � = 1, 2, 3, (12)

it follows that ε�,� = d + o(d), � = 1, 2, 3. When the entries
of Ξ are sufficiently close to 0, we have

D = Ξ − ΞΘΞ +
∞∑

n=2

(−1)n(ΞΘ)nΞ. (13)

It can be verified that

di,j = −δi,jεi,iεj,j + o(d2)
= −δi,jd

2 + o(d2), i 	= j,

which, together with the fact that d� = d, � = 1, 2, 3, implies

det(D) = d3 − (δ2
1,2 + δ2

1,3 + δ2
2,3)d

5 + o(d5). (14)

Substituting (14) into (11) and invoking the asymptotic for-
mula log(1 − x) = −x + o(x) gives

r{{1},{2},{3}}(d) − rC(d) ≤ 1
2
(δ2

1,2 + δ2
1,3 + δ2

2,3)d
2 + o(d2).

(15)

It remains to show that the above upper bound is actually
tight. Let D∗ � (Θ + (Ξ∗)−1)−1, where Ξ∗ is the minimizer
of the optimization problem in (10). Denote the (i, j)-entries
of Ξ∗ and D∗ by ε∗i,j and d∗i,j , respectively, i, j ∈ {1, 2, 3}.
Clearly, for d sufficiently close to 0,

r{{1},{2},{3}}(d) − rC(d)

=
1
2

log
( det(Γ)

det(D∗)

)
− 1

2
log

(det(Γ)
d3

)

=
1
2

log
( d3

det(D∗)

)
. (16)

Since d∗1,1 + d∗2,2 + d∗3,3 = tr(D∗) ≤ 3d and d∗�,� > 0, � =
1, 2, 3, it follows that d∗1,1d

∗
2,2d

∗
3,3 ≤ d3; moreover, we must

have d∗�,� = d + o(d), � = 1, 2, 3, because5 otherwise

lim sup
d↓0

r{{1},{2},{3}}(d) − rC(d) > 0,

wich is contradictory to (15). It can be shown by leverag-
ing (12) and (13) that ε∗�,� = d + o(d), � = 1, 2, 3, and
d∗i,j = −δi,jd

2 + o(d2), i 	= j. Now one can readily verify
that

det(D∗) = d∗1,1d
∗
2,2d

∗
3,3 − (d∗1,2)

2d∗3,3 − (d∗1,3)
2d∗2,2

− (d∗2,3)
2d∗1,1 + o(d5)

≤ d3 − (d∗1,2)
2d∗3,3 − (d∗1,3)

2d∗2,2 − (d∗2,3)
2d∗1,1

+ o(d5)
= d3 − (δ2

1,2 + δ2
1,3 + δ2

2,3)d
5 + o(d5). (17)

Substituting (17) into (16) and invoking the asymptotic for-
mula log(1 − x) = −x + o(x) gives

r{{1},{2},{3}}(d) − rC(d) ≥ 1
2
(δ2

1,2 + δ2
1,3 + δ2

2,3)d
2 + o(d2).

(18)

5By Hadamard’s inequality, det(D∗) ≤ d∗1,1d∗2,2d∗3,3. Under the con-
straints d∗1,1 + d∗2,2 + d∗3,3 ≤ 3d and d∗�,� > 0, � = 1, 2, 3, the ratio of
d3 to d∗1,1d∗2,2d∗3,3 converges to 1 as d ↓ 0 if and only if d∗�,� = d + o(d),
� = 1, 2, 3.
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Combining (15) and (18) proves

r{{1},{2},{3}}(d) − rC(d) =
1
2
(δ2

1,2 + δ2
1,3 + δ2

2,3)d
2 + o(d2).

C. L = 3 and S = {{1, 2}, {3}}

Lemma 3: For d sufficiently close to 0,

r{{1,2},{3}}(d) = min
Ξ

1
2

log
( det(Γ)

det(D)

)
(19)

subject to Ξ � 0,

ε1,3 = ε2,3 = 0,

tr(D) ≤ 3d,

where D is defined as in Lemma 2, and Ξ is a symmetric
matrix with its (i, j)-entry denoted by εi,j , i, j ∈ {1, 2, 3}.

Proof: This result can be deduced from [15, Theorem 9]
and [16, Theorem 9].

According to [16, Theorem 8], for d sufficiently close to 0,
we can find a positive definite symmetric matrix Ξ with ε1,3 =
ε2,3 = 0 such that d�,� = d, � = 1, 2, 3, and d1,2 = 0, where
di,j denotes the (i, j)-entry of D, i, j ∈ {1, 2, 3}; clearly,

r{{1,2},{3}}(d) − rC(d)

≤ 1
2

log
( det(Γ)

det(D)

)
− 1

2
log

(det(Γ)
d3

)

=
1
2

log
( d3

det(D)

)
(20)

for this specifically constructed D. In view of (12), we must
have ε�,� = d + o(d), � = 1, 2, 3, which, together with the
fact that Ξ is a positive definite symmetric matrix, implies
ε1,2 ≤ d + o(d). It can be verified by leveraging (13) that

d1,2 = ε1,2 − δ1,1ε1,1ε1,2 − δ1,2ε
2
1,2 − δ1,2ε1,1ε2,2

− δ2,2ε1,2ε2,2 + o(d2), (21)

d1,3 = −δ1,3ε1,1ε3,3 − δ2,3ε1,2ε3,3 + o(d2),
d2,3 = −δ1,3ε1,2ε3,3 − δ2,3ε2,2ε3,3 + o(d2).

Since d1,2 = 0 and ε�,� = d + o(d), � = 1, 2, 3, it follows
by (21) that ε1,2 = δ1,2d

2 + o(d2). Now one can easily show

d1,3 = −δ1,3d
2 + o(d2),

d2,3 = −δ2,3d
2 + o(d2),

which, in conjunction with the fact that d�,� = d, � = 1, 2, 3,
and d1,2 = 0, implies

det(D) = d3 − (δ2
1,3 + δ2

2,3)d
5 + o(d5). (22)

Substituting (22) into (20) and invoking the asymptotic for-
mula log(1 − x) = −x + o(x) gives

r{{1,2},{3}}(d) − rC(d) ≤ 1
2
(δ2

1,3 + δ2
2,3)d

2 + o(d2). (23)

It remains to show that the above upper bound is actually
tight. Let D∗ � (Θ + (Ξ∗)−1)−1, where Ξ∗ is the minimizer

of the optimization problem in (19). Clearly, for d sufficiently
close to 0,

r{{1,2},{3}}(d) − rC(d)

=
1
2

log
( det(Γ)

det(D∗)

)
− 1

2
log

(det(Γ)
d3

)

=
1
2

log
( d3

det(D∗)

)
. (24)

Denote the (i, j)-entries of Ξ∗ and D∗ by ε∗i,j and d∗i,j , respec-
tively, i, j ∈ {1, 2, 3}. It is easy to see that d∗1,1d

∗
2,2d

∗
3,3 ≤ d3,

d∗�,� = d + o(d), � = 1, 2, 3, ε∗�,� = d + o(d), � = 1, 2, 3, and
ε∗1,2 ≤ d + o(d). Moreover, we must have

lim sup
d↓0

|ε∗1,2|
d2

< ∞

since otherwise

lim sup
d↓0

r{{1,2},{3}}(d) − rC(d)
d2

= lim sup
d↓0

1
2d2

log
( d3

det(D∗)

)

= lim sup
d↓0

1
2d2

log
( d3

d∗1,1d
∗
2,2d

∗
3,3 − (d∗1,2)2d

∗
3,3

)

≥ lim sup
d↓0

1
2d2

log
( d3

d3 − (d∗1,2)2d
∗
3,3

)

= lim sup
d↓0

(d∗1,2)
2d∗3,3

2d5

= lim sup
d↓0

(ε∗1,2)2

2d4

= ∞,

wich is contradictory to (23). This along with the fact that
ε∗� = d + o(d), � = 1, 2, 3, implies

d∗1,3 = −δ1,3d
2 + o(d2),

d∗2,3 = −δ2,3d
2 + o(d2).

Now it can be verified that

det(D∗) = d∗1,1d
∗
2,2d

∗
3,3 − (d∗1,2)

2d∗3,3 − (d∗1,3)
2d∗2,2

− (d∗2,3)
2d∗1,1 + o(d5)

≤ d3 − (d∗1,3)
2d∗2,2 − (d∗2,3)

2d∗1,1 + o(d5)

= d3 − (δ2
1,3 + δ2

2,3)d
5 + o(d5). (25)

Substituting (25) into (24) and invoking the asymptotic for-
mula log(1 − x) = −x + o(x) gives

r{{1,2},{3}}(d) − rC(d) ≥ 1
2
(δ2

1,3 + δ2
2,3)d

2 + o(d2). (26)

Combining (23) and (26) proves

r{{1,2},{3}}(d) − rC(d) =
1
2
(δ2

1,3 + δ2
2,3)d

2 + o(d2).
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D. L = 3 and S = {{1, 2}, {1, 3}}

Lemma 4: For d sufficiently close to 0,

r{{1,2},{1,3}}(d) = min
d1,d2,d3

r(d1, d2, d3)

subject to d� > 0, � = 1, 2, 3,

d2 = d3,

d1 + d2 + d3 = 3d,

where

r(d1, d2, d3) � 1
2

log
( det(Γ)

2d1d2d3

(
1 +

√
1 + 4δ2

2,3d2d3

))
.

Proof: See Appendix B.
Note that

r(d1, d2, d2)

=
1
2

log
(det(Γ)

d1d2
2

)
+

1
2

log
(
1 + δ2

2,3d
2
2 + o(d2

2)
)

=
1
2

log
(det(Γ)

d1d2
2

)
+

1
2
δ2
2,3d

2
2 + o(d2

2). (27)

Consider the following convex optimization problem:

min
d1,d2

−1
2

log(d1d
2
2) +

1
2
δ2
2,3d

2
2

subject to d� > 0, � = 1, 2,

d1 + 2d2 = 3d.

It can be readily shown that the optimizer satisfies

d2 =

⎧⎪⎪⎨
⎪⎪⎩

−1 +
√

1 + 4δ2
2,3d

2
1

2δ2
2,3d1

, δ2,3 	= 0,

d1, δ2,3 = 0.

In either case we have

d2 = d1 − δ2
2,3d

3
1 + o(d3

1),

which, together with the constraint d1 + 2d2 = 3d, implies

d1 = d +
2
3
δ2
2,3d

3 + o(d3), (28)

d2 = d − 1
3
δ2
2,3d

3 + o(d3). (29)

Combining Lemma 4, (27), (28), and (29) yields

r{{1,2},{1,3},{2,3}}(d) =
1
2

log
(det(Γ)

d3

)
+

1
2
δ2
2,3d

2 + o(d2),

which, together with (7), implies

r{{1,2},{1,3},{2,3}}(d) − rC(d) =
1
2
δ2
2,3d

2 + o(d2).

E. L = 3 and S = {{1, 2}, {1, 3}, {2, 3}}

The desired result for this case, i.e.,

r{{1,2},{1,3},{2,3}}(d) − rC(d) = o(d2),

is a simple consequence of the following lemma.
Lemma 5: For d sufficiently close to 0,

r{{1,2},{1,3},{2,3}}(d) = rC(d).

Proof: See Appendix C.
This completes the proof of Theorem 1.

IV. CONCLUSION

We have proposed a conjectural expression of the asymp-
totic gap between the rate-distortion function of an arbitrary
generalized Gaussian multiterminal source coding system and
that of its centralized counterpart in the high-resolution regime,
and provided some supporting evidences by showing that this
expression is valid when the number of sources is no more
than 3. It is clear that the case-by-case study, as done in this
work, is infeasible for proving the conjecture in its full gen-
erality, and a more conceptual approach is needed. We intend
to give a more comprehensive treatment of this conjecture
in a follow-up work by unifying and extending the existing
achievability and converse arguments for multiterminal source
coding using probabilistic graphical models.

APPENDIX A
PROOF OF LEMMA 1

The following result is a simple consequence of
[12, Theorem 6].

Proposition 1: For d sufficiently close to 0,

r{{1},{2}}(d) = min
d1,d2

r(d1, d2) (30)

subject to d� > 0, � = 1, 2,

d1 + d2 ≤ 2d,

where

r(d1, d2) � 1
2

log
(det(Γ)

2d1d2

(
1 +

√
1 + 4δ2

1,2d1d2

))
.

One can readily prove Lemma 1 by observing that the
minimum in (30) is achieved at d1 = d2 = d.

APPENDIX B
PROOF OF LEMMA 4

The well-known Berger-Tung scheme [23], [24] (see
also [25]) can be leveraged to establish the following upper
bound on rS(·) for any cover S of {1, · · · , L}.

Proposition 2: For any Gaussian random variables/vectors
WS , S ∈ S, jointly distributed with (X1, · · · , XL) such that
WS ↔ (X�)�∈S ↔ ((X�′)�′∈{1,··· ,L}\S , (WS′ )S′∈S\S) form a
Markov chain for any S ∈ S, we have

rS

( 1
L

tr(cov((X1, · · · , XL)|(WS)S∈S))
)

≤ 1
2

log
( det(Γ)

det(cov((X1, · · · , XL)|(WS )S∈S))

)
.

Let U{1,2}, U{1,3}, V1, V2, and V3 be defined as in
Appendix C. The following facts can be verified via direct
calculation.

1) The conditional joint distribution of U{1,2}, U{1,3}, V1,
V2, and V3 given (X1, X2, X3) factors as

p(u{1,2}, u{1,3}, v1, v2, v3|x1, x2, x3)
= p(u{1,2}|x1, x2)p(u{1,3}|x1, x3)

× p(v1|x1)p(v2|x2)p(v3|x3).
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2) The conditional joint distribution of X1, X2, and X3

given (U{1,2}, U{1,3}, V1, V2, V3) factors as

p(x1, x2, x3|u{1,2}, u{1,3}, v1, v2, v3)
= p(x1|u{1,2}, u{1,3}, v1)

× p(x2, x3|u{1,2}, u{1,3}, v2, v3).

Let W{1,2} � (U{1,2}, V1, V2) and W{1,3} � (U{1,3}, V3).
In light of the above two facts, W{1,2} and W{1,3} satisfy
the Markov chain constraints in Proposition 2 for S =
{{1, 2}, {1, 3}}, and

cov((X1, · · · , XL)|(WS )S∈S)

=

⎛
⎜⎝d̃1 0 0

0 d̃2 ρ̃
√

d̃2d̃3

0 ρ̃
√

d̃2d̃3 d̃3

⎞
⎟⎠,

where

d̃1 � E[(X1 − E[X1|U{1,2}, U{1,3}, V1])2],

d̃2 � E[(X2 − E[X2|U{1,2}, U{1,3}, V2, V3])2],

d̃3 � E[(X3 − E[X3|U{1,2}, U{1,3}, V2, V3])2],

ρ̃ �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√√√√1 − 2

1 +
√

1 + 4δ2
2,3d̃2d̃3

, δ2,3 ≤ 0,

−
√√√√1 − 2

1 +
√

1 + 4δ2
2,3d̃2d̃3

, δ2,3 > 0.

For any d�, � = 1, 2, 3, sufficiently close to 0, we can choose
α�, � = 1, 2, 3, such that d̃� = d�, � = 1, 2, 3. Now invoking
Proposition 2 shows that for d sufficiently close to 0,

r{{1,2},{1,3}}(d) ≤ min
d1,d2,d3

r(d1, d2, d3),

where d�, � = 1, 2, 3, are subject to the constraints stated in
Lemma 4.

It remains to prove that this upper bound is in fact tight.
Consider two arbitrary encoding functions φ

(n)
1 : R2×n →

C(n)
1 and φ

(n)
2 : R2×n → C(n)

2 satisfying

1
n

n∑
t=1

E[(X�(t) − X̂�(t))2] ≤ d̂�, � = 1, 2, 3,

where

X̂n
� � E[Xn

� |φ(n)
1 (Xn

1 , Xn
2 ), φ(n)

2 (Xn
1 , Xn

3 )], � = 1, 2, 3.

Note that

2∑
m=1

log |C(n)
m |

≥ H(φ(n)
1 (Xn

1 , Xn
2 ), φ(n)

2 (Xn
1 , Xn

3 ))

= I(Xn
1 , Xn

2 , Xn
3 ; φ(n)

1 (Xn
1 , Xn

2 ), φ(n)
2 (Xn

1 , Xn
3 ))

= I(Xn
1 ; φ(n)

1 (Xn
1 , Xn

2 ), φ(n)
2 (Xn

1 , Xn
3 ))

+ I(Xn
2 , Xn

3 ; φ(n)
1 (Xn

1 , Xn
2 ), φ(n)

2 (Xn
1 , Xn

3 )|Xn
1 ). (31)

We have

I(Xn
1 ; φ(n)

1 (Xn
1 , Xn

2 ), φ(n)
2 (Xn

1 , Xn
3 ))

≥ I(Xn
1 ; X̂n

1 )

=
n∑

t=1

I(X1(t); X̂n
1 |Xt−1

1 )

=
n∑

t=1

I(X1(t); X̂n
1 , Xt−1

1 )

≥
n∑

t=1

I(X1(t); X̂1(t))

≥
n∑

t=1

1
2

log
( γ1,1

E[(X1(t) − X̂1(t))2]

)

≥ n

2
log

( γ1,1

1
n

∑n
t=1 E[(X1(t) − X̂1(t))2]

)
≥ n

2
log

(γ1,1

d̂1

)
. (32)

Now let

φ
(n)
1 (Xn

1 , Xn
2 ) � φ

(n)
1 (Y n

2 |Xn
1 ),

φ
(n)
2 (Xn

1 , Xn
3 ) � φ

(n)
2 (Y n

3 |Xn
1 ),

where

Y n
� � Xn

� − E[Xn
� |Xn

1 ], � = 2, 3.

Clearly,

I(Xn
2 , Xn

3 ; φ(n)
1 (Xn

1 , Xn
2 ), φ(n)

2 (Xn
1 , Xn

3 )|Xn
1 )

= I(Y n
2 , Y n

3 ; φ(n)
1 (Y n

2 |Xn
1 ), φ(n)

2 (Y n
3 |Xn

1 )|Xn
1 ). (33)

Note that given Xn
1 , φ

(n)
1 (Y n

2 |Xn
1 ) ↔ Y n

2 ↔ Y n
3 ↔

φ
(n)
2 (Y n

3 |Xn
1 ) form a Markov chain. This observation sug-

gests that one can establish a lower bound on I(Y n
2 , Y n

3 ;
φ

(n)
1 (Y n

2 |xn
1 ), φ(n)

2 (Y n
3 |xn

1 )|Xn
1 = xn

1 ) by leveraging the con-
verse arguments developed for characterizing the minimum
achievable sum-rate of quadratic Gaussian two-terminal source
coding with source covariance matrix cov((X2, X3)|X1)
under distortion constraints δ2(xn

1 ) and δ3(xn
1 ), where

δ�(xn
1 ) � 1

n

n∑
t=1

E[(Y�(t) − Ỹ�(t))2|Xn
1 = xn

1 ], � = 2, 3,

with

Ỹ n
� � E[Y n

� |Xn
1 , φ

(n)
1 (Y n

2 |Xn
1 ), φ(n)

2 (Y n
3 |Xn

1 )], � = 2, 3.

Specifically, we have [2], [12], [17], [26], [27]

I(Y n
2 , Y n

3 ; φ(n)
1 (Y n

2 |xn
1 ), φ(n)

2 (Y n
3 |xn

1 )|Xn
1 = xn

1 )
≥ nr̃(δ2(xn

1 ), δ3(xn
1 )), (34)
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where

r̃(δ2, δ3)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log
( det(Γ)

2γ1,1δ2δ3

(
1 +

√
1 + 4δ2

2,3δ2δ3

))
,

max
{ δ2

γ2,2|1
,

δ3

γ3,3|1

}
≤ min

{
1,

γ2,2|1γ3,3|1 − γ2
2,3|1

γ2,2|1γ3,3|1

+
γ2
2,3|1

γ2,2|1γ3,3|1
min

{ δ2

γ2,2|1
,

δ3

γ3,3|1

}}
,

1
2

log
(

min
{

1,
γ2,2|1

δ2
,
γ3,3|1
δ3

})
, otherwise,

for δ� > 0, � = 2, 3, with γ2,2|1, γ3,3|1, and γ2,3|1 defined
in (38), (39), and (40), respectively. Note that

E[δ�(Xn
1 )] =

1
n

n∑
t=1

E[(Y�(t) − Ỹ�(t))2]

=
1
n

n∑
t=1

E[(X�(t) − X̃�(t))2]

≤ 1
n

n∑
t=1

E[(X�(t) − X̂�(t))2]

≤ d̂�, � = 2, 3, (35)

where

X̃n
� � E[Xn

� |Xn
1 , φ

(n)
1 (Xn

1 , Xn
2 ), φ(n)

2 (Xn
1 , Xn

3 )], � = 2, 3.

Since r̃(δ2, δ3) is a convex and monotonically decreasing
function of (δ2, δ3), it follows by (35) that

E[r̃(δ2(Xn
1 ), δ3(Xn

1 ))] ≥ r̃(d̂2, d̂3). (36)

Combining (33), (34), and (36) shows that for d̂2 and d̂3

sufficiently close to 0,

I(Xn
2 , Xn

3 ; φ(n)
1 (Xn

1 , Xn
2 ), φ(n)

2 (Xn
1 , Xn

3 )|Xn
1 )

≥ n

2
log

( det(Γ)
2γ1,1d̂2d̂3

(
1 +

√
1 + 4δ2

2,3d̂2d̂3

))
. (37)

Substituting (32) and (37) into (31) yields

2∑
m=1

log |C(n)
m | ≥ nr(d̂1, d̂2, d̂3)

for d̂�, � = 1, 2, 3, sufficiently close to 0, which, together with
a simple continuity argument, implies that for d sufficiently
close to 0,

r{{1,2},{1,3}}(d) ≥ min
d1,d2,d3

r(d1, d2, d3)

subject to d� > 0, � = 1, 2, 3,

d1 + d2 + d3 ≤ 3d.

Clearly, there is no loss of optimality in assuming that
d2 = d3 = d and d1 + d2 + d3 = 3d. This completes the
proof of Lemma 4.

APPENDIX C
PROOF OF LEMMA 5

Let N{1,2}, N{1,3}, N{2,3}, Z1, Z2, and Z3 be zero-mean
unit-variance Gaussian random variables. They are assumed to
be mutually independent and independent of (X1, · · · , XL) as
well. For any λ ∈ (0, 1), let

U{1,2} �

⎧⎪⎨
⎪⎩

(1 − λ)X1 + λX2 + η1,2N{1,2}, δ1,2 < 0,

0, δ1,2 = 0,

(1 − λ)X1 − λX2 + η1,2N{1,2}, δ1,2 > 0,

U{1,3} �

⎧⎪⎨
⎪⎩

(1 − λ)X3 + λX1 + η1,3N{1,3}, δ1,3 < 0,

0, δ1,3 = 0,

(1 − λ)X3 − λX1 + η1,3N{1,3}, δ1,3 > 0,

U{2,3} �

⎧⎪⎨
⎪⎩

(1 − λ)X2 + λX3 + η2,3N{2,3}, δ2,3 < 0,

0, δ2,3 = 0,

(1 − λ)X2 − λX3 + η2,3N{1,2}, δ2,3 > 0,

where

η1,2 �

√
(1 − λ)λ(γ1,1|3γ2,2|3 − γ2

1,2|3)

|γ1,2|3| ,

η1,3 �

√
(1 − λ)λ(γ1,1|2γ3,3|2 − γ2

1,3|2)

|γ1,3|2| ,

η2,3 �

√
(1 − λ)λ(γ2,2|1γ3,3|1 − γ2

2,3|1)

|γ2,3|1|
with

γ1,1|3 � δ2,2

δ1,1δ2,2 − δ2
1,2

,

γ2,2|3 � δ1,1

δ1,1δ2,2 − δ2
1,2

,

γ1,2|3 � − δ1,2

δ1,1δ2,2 − δ2
1,2

,

γ1,1|2 � δ3,3

δ1,1δ3,3 − δ2
1,3

,

γ3,3|2 � δ1,1

δ1,1δ3,3 − δ2
1,3

,

γ1,3|2 � − δ1,3

δ1,1δ3,3 − δ2
1,3

,

γ2,2|1 � δ3,3

δ2,2δ3,3 − δ2
2,3

, (38)

γ3,3|1 � δ2,2

δ2,2δ3,3 − δ2
2,3

, (39)

γ2,3|1 � − δ2,3

δ2,2δ3,3 − δ2
2,3

. (40)

Moreover, for any α� ≥ 0, � = 1, 2, 3, let

V1 � α1X1 + Z1,

V2 � α2X2 + Z2,

V3 � α3X3 + Z3.

The following facts can be verified via direct calculation.
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1) The conditional joint distribution of U{1,2}, U{1,3},
U{2,3}, V1, V2, and V3 given (X1, X2, X3) factors as

p(u{1,2}, u{1,3}, u{2,3}, v1, v2, v3|x1, x2, x3)
= p(u{1,2}|x1, x2)p(u{1,3}|x1, x3)p(u{2,3}|x2, x3)

× p(v1|x1)p(v2|x2)p(v3|x3).

2) The conditional joint distribution of X1, X2, and X3

given (U{1,2}, U{1,3}, U{2,3}, V1, V2, V3) factors as

p(x1, x2, x3|u{1,2}, u{1,3}, u{2,3}, v1, v2, v3)
= p(x1|u{1,2}, u{1,3}, v1)p(x2|u{1,2}, u{2,3}, v2)

× p(x3|u{1,3}, u{2,3}, v3).

Let W{1,2} � (U{1,2}, V1), W{1,3} � (U{1,3}, V3), and
W{2,3} � (U{2,3}, V2). In light of the above two facts, W{1,2},
W{1,3}, and W{2,3} satisfy the Markov chain constraints in
Proposition 2 for S = {{1, 2}, {1, 3}, {2, 3}}, and

cov((X1, · · · , XL)|(WS)S∈S) =

⎛
⎝d̄1 0 0

0 d̄2 0
0 0 d̄3

⎞
⎠ ,

where

d̄1 � E[(X1 − E[X1|U{1,2}, U{1,3}, V1])2],

d̄2 � E[(X2 − E[X2|U{1,2}, U{2,3}, V2])2],

d̄3 � E[(X3 − E[X3|U{1,3}, U{2,3}, V3])2].

For any d sufficiently close to 0, we can choose α�, � = 1, 2, 3,
such that d̄� = d, � = 1, 2, 3. Now invoking Proposition 2
completes the proof of Lemma 5.
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