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Outer Bounds on the Admissible Source Region for
Broadcast Channels With Correlated Sources

Kia Khezeli and Jun Chen, Member, IEEE

Abstract— Two outer bounds on the admissible source region
for broadcast channels with correlated sources are presented:
the first one is strictly tighter than the existing outer bound
by Gohari and Anantharam, while the second one provides a
complete characterization of the admissible source region in
the case where the two sources are conditionally independent
given the common part. These outer bounds are deduced from
the general necessary conditions established for the lossy source
broadcast problem via suitable comparisons between the virtual
broadcast channel (induced by the source and the reconstruc-
tions) and the physical broadcast channel.

Index Terms— Bandwidth mismatch, broadcast channel,
capacity region, deterministic channel, joint source-channel
coding.

I. INTRODUCTION

LET {S(t)}∞t=1 be an i.i.d. random process with marginal
distribution pS over alphabet S. In the lossy source

broadcast problem (see Fig. 1), an encoding function f (m,ρm) :
Sm → X ρm maps a source block Sm � (S(1), · · · , S(m)) to
a channel input block Xρm � (X (1), · · · , X (ρm)), which is
sent over a discrete memoryless broadcast channel pY1,Y2|X
with input alphabet X and output alphabets Yi , i = 1, 2;

at receiver i , a decoding function g(ρm,m)
i : Yρm

i → Ŝm
i

maps the channel output block Y ρm
i � (Yi (1), · · · , Yi (ρm))

(generated by Xρm ) to a source reconstruction block Ŝm
i �

(Ŝi (1), · · · , Ŝi (m)), i = 1, 2. The number of channel uses
per source sample, i.e., ρ, is referred to as the bandwidth
expansion ratio. We assume that S, Ŝ1, Ŝ2, X , Y1, and Y2
are finite sets throughout the paper.

Definition 1: Let wi : S × Ŝi → [0,∞), i = 1, 2, be
two distortion measures. We say distortion pair (d1, d2) is
achievable under distortion measures w1 and w2 subject to
bandwidth expansion constraint κ if, for every ε > 0, there
exist encoding function f (m,ρm) : Sm → X ρm and decoding
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functions g(ρm,m)
i : Yρm

i → Ŝm
i , i = 1, 2, with ρ ≤ κ + ε,

such that

1

m

m∑

t=1

E[wi (S(t), Ŝi (t))] ≤ di + ε, i = 1, 2.

A special case of the lossy source broadcast problem,
sometimes referred to as broadcasting correlated sources
(see Fig. 2), has received particular attention. In this case,
S(t) = (S1(t), S2(t)) with S1(t) and S2(t) jointly distributed
according to p(S1,S2) over alphabet S1 ×S2, t = 1, 2, · · · , and
receiver i wishes to reconstruct {Si (t)}∞t=1 almost losslessly,
i = 1, 2.

Definition 2: A source distribution p(S1,S2) is said to be
admissible for broadcast channel pY1,Y2|X subject to bandwidth
expansion constraint κ if, for every ε > 0, there exist encoding
function f (m,ρm) : Sm

1 × Sm
2 → X n and decoding functions

g(ρm,m)
i : Yρm

i → Sm
i , i = 1, 2, with ρ ≤ κ + ε, such that

1

m

m∑

t=1

Pr(Si (t) �= Ŝi (t)) ≤ ε, i = 1, 2.

The set of all such p(S1,S2) is referred to as the admissible
source region for broadcast channel pY1,Y2|X subject to
bandwidth expansion constraint κ .

Remark: Definition 2 is a special case of Definition 1 with
d1 = d2 = 0 and wi : S × Si → {0, 1} given by

wi ((s1, s2), ŝi ) =
{

0, si = ŝi

1, otherwise
, i = 1, 2. (1)

It is worth mentioning that, for the problem of broadcasting
correlated sources, typically the more restrictive block error
probability constraints are adopted. However, it is clear that
outer bounds derived under average symbol error probability
constraints automatically hold under block error probability
constraints.

Han and Costa [1] derived an inner bound on the admissible
source region; see [2] for a minor correction and [3] for an
alternative characterization. Outer bounds were established by
Gohari and Anantharam and by Kramer, Liang, and Shamai.
Note that, due to the lack of cardinality bounds on the
auxiliary random variables, neither the original version
of the Gohari-Anantharam outer bound [4], [5] nor the
Kramer-Liang-Shamai outer bound [6] is directly computable.
Thanks to [7], a computable characterization of the
Gohari-Anantharam outer bound has been found
recently [8], [9]. On the other hand, it is difficult, if not
impossible, to express the Kramer-Liang-Shamai outer bound
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Fig. 1. The lossy broadcast problem.

Fig. 2. Broadcasting correlated sources.

in a computable form because of the fact that certain auxiliary
random variables involved in this bound are constrained1

to be i.i.d. copies of the source variables. For this reason,
only the Gohari-Anantharam outer bound is considered in the
present work.

In this paper we establish two necessary conditions for
the lossy source broadcast problem. Both conditions are built
upon the intuition that the virtual broadcast channel (induced
by the source and the reconstructions) is dominated by the
physical broadcast channel. Our effort is largely devoted
to seeking mathematical formulations that can capture, to
a certain extent, this vague intuition. It will be seen that
the notion of dominance, which has a precise definition in
the point-to-point case due to the source-channel separation
theorem, permits several possible generalizations to the broad-
cast channel setting, and each generalization gives rise to a
necessary condition for the lossy source broadcast problem.
These necessary conditions, when specialized to the problem
of broadcasting correlated sources, yield two outer bounds on
the admissible source region: the first one is strictly tighter
than the Gohari-Anantharam outer bound while the second one
provides a complete characterization of the admissible source
region in the case where the two sources are conditionally
independent given the common part.

The rest of this paper is organized as follows. We explain
our general approach in Section II. Section III contains a
short review of the relevant capacity results for broadcast
channels. The necessary conditions for the lossy source
broadcast problem and the induced outer bounds on the
source admissible region are presented in Sections IV and V.
We conclude the paper in Section VI.

1If such a constraint is removed, then the Gohari-Anantharam outer bound
is at least as tight as the Kramer-Liang-Shamai outer bound.

II. VIRTUAL CHANNEL VERSUS PHYSICAL CHANNEL

For the purpose of illustrating our general approach, it is
instructive to first consider the point-to-point communication
problem. Specifically, in the point-to-point setting, an encoding
function f (m,ρm) : Sm → X ρm maps a source block Sm

to a channel input block Xρm , which is sent over a discrete
memoryless channel pY |X with input alphabet X and output
alphabet Y; at the receiver end, a decoding function
g(ρm,m) : Yρm → Ŝm maps the channel output block Y ρm

(generated by Xρm ) to a source reconstruction block Ŝm . For
any conditional distribution pŜm|Sm , let pŜ|S be its single-
letterized version defined as

pŜ|S(ŝ|s) = 1

m

m∑

t=1

pŜ(t)|S(t)(ŝ|s),

where

pŜ(t)|S(t)(ŝ|s) =
∑

sm :s(t)=s
ŝm :ŝ(t)=ŝ

pŜm|Sm (ŝm |sm)
∏

t ′:t ′ �=t

pS(s(t
′)).

One can readily verify that

E[w(S, Ŝ)] = 1

m

m∑

t=1

E[w(S(t), Ŝ(t))] (2)

for any distortion measure w : S × Ŝ → [0,∞). We say
that pŜm|Sm is degraded with respect to pY ρm |Xρm (where
pY ρm |Xρm (yρm |xρm) = ∏ρm

q=1 pY |X (y(q)|x(q))) if

pŜm|Sm (ŝm |sm)

=
∑

xρm ,yρm

pXρm |Sm (xρm |sm)pY ρm |Xρm (yρm |xρm)

×pŜm|Y ρm (ŝm |yρm)
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for some conditional distributions pXρm |Sm and pŜm|Y ρm ; note
that, in the point-to-point communication problem, we have

pXρm |Sm (xρm |sm) = I(xρm = f (m,ρm)(sm)),

pŜm|Y ρm (ŝm |yρm) = I(ŝm = g(ρm,m)(yρm)),

where I(·) is the indicator function. We shall refer to an
arbitrary conditional distribution pŜ|S as a virtual channel, and
say that it is realizable through the physical channel pY |X with
bandwidth expansion ratio ρ if it can be obtained, via
single-letterization, from certain pŜm|Sm degraded2 with
respect to pY ρm |Xρm . It is worth emphasizing that a realizable
pŜ|S is not necessarily degraded with respect to pY |X . Indeed,
even in the bandwidth-matched case (i.e., ρ = 1), there might
not exist conditional distributions pX |S and pŜ|Y such that

pŜ|S(ŝ|s) =
∑

x,y

pX |S(x |s)pY |X(y|x)pŜ|Y (ŝ|y)

since otherwise the end-to-end distortion
1
m

∑m
t=1 E[w(S(t), Ŝ(t))] could be achieved3 without

coding. Nevertheless, it can be shown that every realizable
pŜ|S is dominated by pY |X in the sense that

I (S; Ŝ) ≤ ρ I (X; Y ) (3)

for some input distribution pX . In a certain sense, (3) is
the only connection between a generic realizable virtual
channel and the physical channel. Indeed, the source-channel
separation theorem essentially asserts that a virtual channel
pŜ|S is (asymptotically) realizable through the physical
channel pY |X with bandwidth expansion ratio ρ if and only if
pŜ|S is dominated by pY |X in the sense of (3). Note that, given
bandwidth expansion ratio ρ, the achievability of end-to-end
distortion d is equivalent to the existence of a realizable virtual
channel pŜ|S satisfying E[w(S, Ŝ)] ≤ d . More generally,
one can formulate the question of determining whether
there exists a realizable virtual channel in a prescribed set;
imposing distortion constraints can be viewed as a specific
way of choosing such sets.

This perspective can also be adopted in the broadcast
channel setting. For any conditional distribution pŜm

1 ,Ŝm
2 |Sm ,

we define its single-letterized version pŜ1,Ŝ2|S as

pŜ1,Ŝ2|S(ŝ1, ŝ2|s) = 1

m

m∑

t=1

pŜ1(t),Ŝ2(t)|S(t)(ŝ1, ŝ2|s),

where

pŜ1(t),Ŝ2(t)|S(t)(ŝ1, ŝ2|s)
=

∑

sm :s(t)=s
ŝm

i :ŝi (t)=ŝi ,i=1,2

pŜm
1 ,Ŝm

2 |Sm(ŝm
1 , ŝm

2 |sm)
∏

t ′:t ′ �=t

pS(s(t
′)).

2Since pŜm |Sm is only required to be degraded with respect to pYρm |Xρm,
we essentially allow non-deterministic encoding and decoding functions.
However, it can be shown via a standard derandomization argument that
restricting encoding and decoding functions to deterministic ones does not
affect the set of (asymptotically) realizable virtual channels.

3One could simply use source variable S to generate channel input X
via pX |S , and use channel output Y to generate reconstruction variable Ŝ
via pŜ|Y . In light of (2), the resulting distortion E[w(S, Ŝ)] is the same as
1
m

∑m
t=1 E[w(S(t), Ŝ(t))].

It can be verified that

E[wi (S, Ŝi )] = 1

m

m∑

t=1

E[wi (S(t), Ŝi (t))]

for any distortion measure wi : S × Ŝ → [0,∞),
i = 1, 2. We say that pŜm

1 ,Ŝm
2 |Sm is degraded with respect

to pY ρm
1 ,Y ρm

2 |Xρm (where pY ρm
1 ,Y ρm

2 |Xρm (yρm
1 , yρm

2 |xρm) =∏ρm
q=1 pY |X (y1(q), y2(q)|x(q))) if

pŜm
1 ,Ŝm

2 |Sm (ŝm
1 , ŝm

2 |sm)

=
∑

xρm,yρm
1 ,yρm

2

pXρm |Sm (xρm |sm)

×pY ρm
1 ,Y ρm

2 |Xρm (yρm
1 , yρm

2 |xρm)

2∏

i=1

pŜm
i |Y ρm

i
(ŝm

i |yρm
i ) (4)

for some conditional distributions pXρm |Sm and pŜm
i |Y ρm

i
,

i = 1, 2; note that

pXρm |Sm (xρm |sm) = I(xρm = f (m,ρm)(sm)),

pŜm
i |Y ρm

i
(ŝm

i |yρm
i ) = I(ŝm

i = g(ρm,m)
i (yρm

i )), i = 1, 2,

in the lossy source broadcast problem. We shall refer to
an arbitrary conditional distribution pŜ1,Ŝ2|S as a virtual
broadcast channel,4 and say that it is realizable through the
physical broadcast channel pY1,Y2|X with bandwidth expansion
ratio ρ if it can be obtained, via single-letterization, from
certain pŜm

1 ,Ŝm
2 |Sm degraded with respect to pY ρm

1 ,Y ρm
2 |Xρm .

The fundamental problem here is to determine whether there
exists a realizable virtual broadcast channel satisfying the
distortion constraints (or more generally, whether there exists
a realizable virtual broadcast channel in a prescribed set). It is
conceivable that every realizable virtual broadcast channel
must be dominated, in a certain sense, by the physical
broadcast channel. However, it is apparently a formidable
task to develop a computable notion of dominance that can
completely characterize the set of realizable virtual broadcast
channels (since that would solve several long-standing open
problems in network information theory). Nevertheless, if one
does not insist on such a complete characterization, then it
is indeed possible to establish certain connections between a
generic realizable virtual broadcast channel and the physical
broadcast channel by suitably generalizing (3). For example,
it is straightforward to show that, if pŜ|S is realizable through
pY1,Y2|X with bandwidth expansion ratio ρ, then pŜ|S must
be dominated by pY1,Y2|X in the sense that

I (S; Ŝi ) ≤ ρ I (X; Yi ), i = 1, 2,

for some input distribution pX . This is by no means the only
possible generalization of (3) to the broadcast channel setting,
and two stronger notions of dominance will be presented
in Sections IV and V. Note that each notion of dominance
implicitly provides an outer bound on the set of realizable
virtual broadcast channels, which in turn yields a necessary
condition for the achievability of any given distortion pair.

4It is worth mentioning that the idea of viewing the conditional distribution
of the reconstructions given the source as a virtual broadcast channel was
exploited earlier in [10] and [11] through a different angle.
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Fig. 3. Broadcast channel with common and private messages.

III. REVIEW OF CAPACITY RESULTS FOR

BROADCAST CHANNELS

We shall give a brief review of certain capacity results
for broadcast channels that are relevant to the notions of
dominance developed in Sections IV and V. Let pY1,Y2|X be a
discrete memoryless broadcast channel with input alphabet X
and output alphabets Yi , i = 1, 2. A length-n coding scheme
(see Fig. 3) for pY1,Y2|X consists of

• a common message M0 and two private messages Mi ,
i = 1, 2, where (M0, M1, M2) is uniformly distributed
over M0 × M1 × M2,

• an encoding function f (n) : M0 ×M1 ×M2 → X n that
maps (M0, M1, M2) to a channel input block Xn ,

• two decoding functions g(n)
i : Yn

i → M0 ×Mi , i = 1, 2,
where g(n)

i maps the channel output block at receiver i ,
i.e., Y n

i,1, to (M̂0i , M̂i ), i = 1, 2.

Definition 3: A rate triple (R0, R1, R2) ∈ R
3+ is said to

be achievable for broadcast channel pY1,Y2|X if there exists a
sequence of encoding functions f (n) : M0×M1×M2 → X n

with 1
n log |Mi | ≥ Ri , i = 0, 1, 2, and decoding functions

g(n)
i : Yn

i → M0 × Mi , i = 1, 2, such that

lim
n→∞ Pr{(M̂01, M̂1) �= (M0, M1)

or (M̂02, M̂2) �= (M0, M2)} = 0.

The capacity region C(pY1,Y2|X ) is the closure of the set of all
achievable (R0, R1, R2) for broadcast channel pY1,Y2|X .

Let Cin(pX , pY1,Y2|X ) denote the set of (R0, R1, R2) ∈ R
3+

satisfying

R0 ≤ min{I (V0; Y1), I (V0; Y2)},
R0 + Ri ≤ I (V0, Vi ; Yi ), i = 1, 2,

R0 + R1 + R2 ≤ min{I (V0; Y1), I (V0; Y2)} + I (V1; Y1|V0)

+ I (V2; Y2|V0) − I (V1; V2|V0)

for some pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X . Here it
suffices to consider |V0| ≤ |X | + 4 and |Vi | ≤ |X |, i = 1, 2;
moreover, there is no loss of generality in assuming that X is
a deterministic function of (V0, V1, V2) [12, Th. 1].5 Define

Cin(pY1,Y2|X ) =
⋃

pX

Cin(pX , pY1,Y2|X ).

5It is expected [13] that one can further improve the cardinality bounds on
Vi , i = 1, 2, to |V1|+ |V2| ≤ |X |+1 by leveraging the techniques developed
in [14].

We have [15, Th. 1] [16, p. 391, Problem 10(c)]

Cin(pY1,Y2|X ) ⊆ C(pY1,Y2|X ).

Note that Cin(pY1,Y2|X ) is widely known as Marton’s inner
bound (see [17, Th. 2] for the case R0 = 0).

Let Cout(pX , pY1,Y2|X ) denote the set of (R0, R1, R2) ∈ R
3+

satisfying

R0 ≤ min{I (V0; Y1), I (V0; Y2)},
R0 + Ri ≤ min{I (V0; Y1), I (V0; Y2)} + I (Vi ; Yi |V0),

i = 1, 2,

R0 + R1 + R2 ≤ min{I (V0; Y1), I (V0; Y2)} + I (V1; Y1|V0)

+ I (X; Y2|V0, V1),

R0 + R1 + R2 ≤ min{I (V0; Y1), I (V0; Y2)} + I (V2; Y2|V0)

+ I (X; Y1|V0, V2)

for some pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X . Here it
suffices to consider |V0| ≤ |X | + 5 and |Vi | ≤ |X | + 1,
i = 1, 2 [7].6 Define

Cout(pY1,Y2|X ) =
⋃

pX

Cout(pX , pY1,Y2|X ).

We have [7]

C(pY1,Y2|X ) ⊆ Cout(pY1,Y2|X ). (5)

It is worth noting [15], [18] that Cin(pX , pY1,Y2|X ) can
be defined equivalently as the set of (R0, R1, R2) ∈ R

3+
satisfying

R0 ≤ min{I (V0; Y1), I (V0; Y2)},
R0 + Ri ≤ min{I (V0; Y1), I (V0; Y2)} + I (Vi ; Yi |V0),

i = 1, 2,

R0 + R1 + R2 ≤ min{I (V0; Y1), I (V0; Y2)} + I (V1; Y1|V0)

+ I (V2; Y2|V0) − I (V1; V2|V0)

for some pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X . With this
equivalent definition of Cin(pX , pY1,Y2|X ), one can readily
show

Cin(pX , pY1,Y2|X ) ⊆ Cout(pX , pY1,Y2|X )

6In fact, the cardinality bounds on Vi , i = 1, 2, can be further improved to
|Vi | ≤ |X |, i = 1, 2 [18].
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by invoking the fact that, for any pV0,V1,V2,X,Y1,Y2 =
pV0,V1,V2|X pX pY1,Y2|X ,

I (X; Y2|V0, V1) ≥ I (V2; Y2|V0, V1)

= I (V2; Y2, V1|V0) − I (V1; V2|V0)

≥ I (V2; Y2|V0) − I (V1; V2|V0)

and similarly

I (X; Y1|V0, V2) ≥ I (V1; Y1|V0) − I (V1; V2|V0).

IV. APPROACH I: COMPARISON OF CERTAIN

MEASUREMENTS INDUCED BY

TEST DISTRIBUTIONS

A. The Lossy Source Broadcast Problem

As explained in Section II, our goal is to develop suitable
notions of dominance that can (partially) characterize the set
of realizable virtual broadcast channels. One such notion is
established in the following Lemma (with its proof relegated
to Appendix A). Roughly speaking, it shows that every real-
izable virtual broadcast channel pŜ1,Ŝ2|S (with input distri-
bution pS) is dominated by the physical broadcast channel
pY1,Y2|X (with certain input distribution pX ) in the sense that,
given any test distribution pU0,··· ,UL |S for pŜ1,Ŝ2|S , one can find
a corresponding test distribution pV0,··· ,VL |X for pY1,Y2|X such
that certain measurements based on pU0,··· ,UL |S pS pŜ1,Ŝ2|S are
less than or equal to those based on pV0,··· ,VL |X pX pY1,Y2|X
multiplied by bandwidth expansion ratio ρ.

Lemma 1: If a virtual broadcast channel pŜ1,Ŝ2|S is real-
izable through the physical broadcast channel pY1,Y2|X with
bandwidth expansion ratio ρ, then there exists an input
distribution pX such that, for any pU0,··· ,UL ,S,Ŝ1,Ŝ2

=
pU0,··· ,UL |S pS pŜ1,Ŝ2|S , one can find pV0,··· ,VL ,X,Y1,Y2 =
pV0,··· ,VL |X pX pY1,Y2|X satisfying7

k∑

i=1

I (UAi ; Ŝa(i)|U∪i−1
j=1A j

) ≤ ρ

k∑

i=1

I (VAi ; Ya(i)|V∪i−1
j=1A j

)

for any Ai ⊆ {0, · · · , L} and a(i) ∈ {1, 2}, i = 1, · · · , k.
The following result, which gives a general necessary

condition for the lossy source broadcast problem, is a
simple consequence of Lemma 1. Its proof can be found
in Appendix B.

Theorem 1: If distortion pair (d1, d2) is achievable under
distortion measures w1 and w2 subject to bandwidth
expansion constraint κ , then there exists a virtual
broadcast channel pŜ1,Ŝ2|S with E[wi (S, Ŝi )] ≤ di ,
i = 1, 2, and an input distribution pX such that, for
any pU0,U1,U2,S,Ŝ1,Ŝ2

= pU0,U1,U2|S pS pŜ1,Ŝ2|S , one can find
pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X satisfying

I (U0; Ŝi ) ≤ κ I (V0; Yi ), i = 1, 2,

I (U0, Ui ; Ŝi ) ≤ κ I (V0, Vi ; Yi ), i = 1, 2,

I (U0; Ŝ1) + I (U2; Ŝ2|U0) ≤ κ[I (V0; Y1) + I (V2; Y2|V0)],
I (U0; Ŝ2) + I (U1; Ŝ1|U0) ≤ κ[I (V0; Y2) + I (V1; Y1|V0)],

7Here L and k are arbitrary positive integers. We define UA = (Ui )i∈A
when A is a non-empty subset of {0, · · · , L} and define UA = 0 otherwise;
VA is defined analogously.

I (U0, U1; Ŝ1) + I (S; Ŝ2|U0, U1)

≤ κ[I (V0, V1; Y1) + I (X; Y2|V0, V1)],
I (U0, U2; Ŝ2) + I (S; Ŝ1|U0, U2)

≤ κ[I (V0, V2; Y2) + I (X; Y1|V0, V2)],
I (U0; Ŝ1) + I (U2; Ŝ2|U0) + I (S; Ŝ1|U0, U2)

≤ κ[I (V0; Y1) + I (V2; Y2|V0) + I (X; Y1|V0, V2)],
I (U0; Ŝ2) + I (U1; Ŝ1|U0) + I (S; Ŝ2|U0, U1)

≤ κ[I (V0; Y2) + I (V1; Y1|V0) + I (X; Y2|V0, V1)].
Here it suffices to consider |U0| ≤ |S|, |V0| ≤ |X | + 5,
|Ui | ≤ |S|, and |Vi | ≤ |X |, i = 1, 2.

Remark: Gohari and Anantharam independently obtained
a necessary condition for the lossy source broadcast channel
[8, Th. 2], which is, roughly speaking, a special case
of Theorem 1 with κ = 1, S = (S1, S2), and Ui = Si , i = 1, 2.

The following result is a direct consequence of Theorem 1.
Corollary 1: If distortion pair (d1, d2) is achievable under

distortion measures w1 and w2 subject to bandwidth expansion
constraint κ , then there exists a virtual broadcast channel
pŜ1,Ŝ2|S with E[wi (S, Ŝi )] ≤ di , i = 1, 2 and an input
distribution pX such that

Cout(pS, pŜ1,Ŝ2|S) ⊆ κCout(pX , pY1,Y2|X ).

B. An Improved Outer Bound on the Source
Admissible Region

The following outer bound on the admissible source region
was established by Gohari and Anantharam [8, Corollary 2]
(see also [9, Th. 2]).

Let S0 denote the common part between S1 and S2 in the
sense of [19] and [20].

Theorem 2: If p(S1,S2) is admissible for broadcast channel
pY1,Y2|X subject to bandwidth expansion constraint κ , then
there exists pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X such
that

H (S0) ≤ κ min{I (V0; Y1), I (V0; Y2)},
H (Si) ≤ κ[min{I (V0; Y1), I (V0; Y2)} + I (Vi ; Yi |V0)],

i = 1, 2,

H (S1, S2) ≤ κ[min{I (V0; Y1), I (V0; Y2)} + I (V1; Y1|V0)

+ I (X; Y2|V0, V1)],
H (S1, S2) ≤ κ[min{I (V0; Y1), I (V0; Y2)} + I (V2; Y2|V0)

+ I (X; Y1|V0, V2)].

It is easy to observe that the inequalities in the statement
of Theorem 2 closely resemble those in the definition of
Cout(pY1,Y2|X ). In fact, one can readily establish Theorem 2 by
interpreting S0 as the common message and Si as the message
(including both the private message Mi and the common
message M0) intended for receiver i , i = 1, 2, and then
following the proof of (5). However, this approach is not
completely satisfactory. Note that M0, M1, and M2 are
assumed to be independent. If the correspondence between
sources and messages is exact, then S1 ↔ S0 ↔ S2 must
form a Markov chain. That is to say, the source-message
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correspondence does not fully capture the dependence
structure between S1 and S2.

We shall show that one can obtain a tighter outer bound
on the admissible source region by specializing Theorem 1
to the case of broadcasting correlated sources. Note that,
if

∑
s,ŝi

pS(s)pŜi |S(ŝi |s)wi (s, ŝi ) = 0 for wi given by (1),
i = 1, 2, then we must have8 pŜ1,Ŝ2|S = pS1,S2|(S1,S2), which
is a deterministic broadcast channel; moreover, in this case,
there is no loss of optimality in choosing Ui = Si , i = 1, 2.
As a consequence, we obtain the following outer bound on the
admissible source region.

Theorem 3: If p(S1,S2) is admissible for broadcast
channel pY1,Y2|X subject to bandwidth expansion constraint κ ,
then there exists an input distribution pX such that,
for any pU,(S1,S2) = pU |(S1,S2) p(S1,S2), one can find
pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X satisfying

I (U ; Si ) ≤ κ I (V0; Yi ), i = 1, 2,

H (Si) ≤ κ I (V0, Vi ; Yi ), i = 1, 2,

I (U ; S1) + H (S2|U) ≤ κ[I (V0; Y1) + I (V2; Y2|V0)],
I (U ; S2) + H (S1|U) ≤ κ[I (V0; Y2) + I (V1; Y1|V0)],
I (U ; S1) + H (S1, S2|U)

≤ κ[I (V0, V1; Y1) + I (X; Y2|V0, V1)],
I (U ; S2) + H (S1, S2|U)

≤ κ[I (V0, V2; Y2) + I (X; Y1|V0, V2)],
I (U ; S1) + H (S1, S2|U)

≤ κ[I (V0; Y1) + I (V2; Y2|V0) + I (X; Y1|V0, V2)],
I (U ; S2) + H (S1, S2|U)

≤ κ[I (V0; Y2) + I (V1; Y1|V0) + I (X; Y2|V0, V1)].
Here it suffices to consider |U | ≤ |S1| × |S2|, |V0| ≤ |X | + 5,
and |Vi | ≤ |X |, i = 1, 2.

It is easy to verify that

Cin(p(S1,S2), pS1,S2|(S1,S2)) = Cout(p(S1,S2), pS1,S2|(S1,S2))

= C(p(S1,S2)), (6)

where C(p(S1,S2)) denotes the set of (R0, R1, R2) ∈ R
3+

satisfying

R0 ≤ min{I (U ; S1), I (U ; S2)},
R0 + Ri ≤ min{I (U ; S1), I (U ; S2)} + H (Si |U),

i = 1, 2,

R0 + R1 + R2 ≤ min{I (U ; S1), I (U ; S2)} + H (S1, S2|U)

for some pU,(S1,S2) = pU |(S1,S2) p(S1,S2) with |U | ≤ |S1| ×
|S2|+2. One can deduce the following result from Theorem 3
(or Corollary 1).

Corollary 2: If p(S1,S2) is admissible for broadcast channel
pY1,Y2|X subject to bandwidth expansion constraint κ , then
there exists an input distribution pX such that

C(p(S1,S2)) ⊆ κCout(pX , pY1,Y2|X ). (7)

8More precisely, we have pŜ1,Ŝ2|S = pS1,S2|(S1,S2) when the input alphabet
restricted to {s ∈ S : pS(s) > 0}.

The necessary condition in Theorem 2 can be written
compactly as

(H (S0), H (S1|S0), H (S2|S0)) ∈ κCout(pY1,Y2|X ) (8)

when S1 ↔ S0 ↔ S2 form a Markov chain. The following
result shows that the same simplification is possible for
Theorem 3 and, as a consequence, these two theorems are
equivalent in this special case.

Theorem 4: The necessary condition in Theorem 3 is
equivalent to (8) when S1 ↔ S0 ↔ S2 form a Markov chain.

Proof: See Appendix C.
It is clear that one can recover Theorem 2 from Theorem 3

by choosing U = S0. Therefore, the new outer bound is at
least as tight as the Gohari-Anantharam outer bound. We shall
give an example to show that the improvement can be strict.
Our example is motivated by the observation that the charac-
terization of the capacity region of the deterministic broadcast
channel with a common message involves an auxiliary random
variable which is not necessarily a function of the channel
input [21] as well as the observation that H (S0) is not a
continuous function of p(S1,S2).

Now consider the example where the physical broadcast
channel is the Blackwell channel pB

Y1,Y2|X , where

pB
Y1,Y2|X (y1, y2|x)

=
{

1, (x, y1, y2) = (0, 0, 0), (1, 1, 1), (2, 0, 1)
0, otherwise

with x ∈ {0, 1, 2} and yi ∈ {0, 1}, i = 1, 2; more-
over, let S1 = (S̃0(α), S̃1) and S2 = (S̄0(α), S̄2) with
α ∈ [H −1

b ( 1
2 log2 3 − 2

3 ), H −1
b (log2 3 − 4

3 )), where S̃0(α),
S̄0(α), S̃1, and S̄2 are binary random variables defined
over {0, 1}, and H −1

b (·) : [0, 1] → [0, 1
2 ] is the inverse of the

binary entropy function Hb(·). Specifically, we assume that
(S̃0(α), S̄0(α)), S̃1, and S̄2 are mutually independent with

pS̃1
(0) = pS̄2

(0) = H −1
b (

2

3
),

pS̃0(α)(0) = pS̄0(α)(0) = α,

pS̄0(α)|S̃0(α)(1|0) = pS̃0(α)|S̄0(α)(1|0) = β(α),

pS̄0(α)|S̃0(α)(0|1) = pS̃0(α)|S̄0(α)(0|1) = 1 − αβ(α)

1 − α
,

where β(α) is the unique solution in (0, 1−α] of the following
equation

H (S̃0(α), S̄0(α)) = log2 3 − 4

3
.

Note that such S1 and S2 have no non-trivial common part,
i.e., H (S0) = 0. By setting pX (0) = pX (1) = pX (2) = 1

3 ,
V0 = 0, and Vi = Yi , i = 1, 2, one can readily verify that
p(S1,S2) satisfies the necessary condition in Theorem 2 with
κ = 1 for any α ∈ [H −1

b ( 1
2 log2 3 − 2

3 ), H −1
b (log2 3 − 4

3 )).
However, we shall show that this is not the case for Theorem 3.
It is easy to see that, if the afore-described p(S1,S2) is admis-
sible for the Blackwell channel pB

Y1,Y2|X subject to bandwidth
expansion constraint κ , then, by Corollary 2 as well as the fact
that Cout(pB

Y1,Y2|X ) = C(pB
Y1,Y2|X ), we must have

C(p(S1,S2)) ⊆ κC(pB
Y1,Y2|X ). (9)
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By choosing U = (S̃0(α), S̄0(α)), one can readily verify
that (Hb(α), 2

3 , 2
3 ) is contained in C(p(S1,S2)) for any

α ∈ [H −1
b ( 1

2 log2 3− 2
3 ), H −1

b (log2 3− 4
3 )). On the other hand,

it follows from [2, Lemma 1] that (log2 3 − 4
3 , 2

3 , 2
3 ) is not

contained in C(pB
Y1,Y2|X ). Note that (Hb(α), 2

3 , 2
3 ) converges to

(log2 3 − 4
3 , 2

3 , 2
3 ) as α → H −1

b (log2 3 − 4
3 ). Since C(pY1,Y2|X )

is closed, it follows that p(S1,S2) violates (9) with κ = 1
(and consequently the necessary condition in Theorem 3 with
κ = 1) when α is sufficiently close to H −1

b (log2 3 − 4
3 ).

This example indicates that choosing U = S0 in Theorem 3
is not always optimal. In this sense, the common part between
S1 and S2 does not play a fundamental role in the new outer
bound; see [3] for a related observation.

V. APPROACH II: COMPARISON OF CAPACITY REGIONS

A. The Lossy Source Broadcast Problem

In a certain sense, the notion of dominance in Section IV
hinges upon the converse results for broadcast channels. In this
section we shall develop a different notion of dominance that
is mainly based on the achievability results for broadcast
channels. This notion is captured by the following
lemma, which shows that every realizable virtual broadcast
channel pŜ1,Ŝ2|S is dominated by the physical broadcast
channel pY1,Y2|X in the sense that Marton’s inner bound of
pŜ1,Ŝ2|S with input distribution pS is contained in the capacity
region of pY1,Y2|X . The proof of this lemma is relegated to
Appendix D.

Lemma 2: If a virtual broadcast channel pŜ1,Ŝ2|S is
realizable through the physical broadcast channel pY1,Y2|X with
bandwidth expansion ratio ρ, then

Cin(pS, pŜ1,Ŝ2|S) ⊆ ρC(pY1,Y2|X ).
The following necessary condition for the lossy source

broadcast problem is a simple consequence of Lemma 2.
Theorem 5: If distortion pair (d1, d2) is achievable under

distortion measures w1 and w2 subject to bandwidth expansion
constraint κ , then there exists a virtual broadcast channel
pŜ1,Ŝ2|S with E[wi (S, Ŝi )] ≤ di , i = 1, 2, such that

Cin(pS, pŜ1,Ŝ2|S) ⊆ κC(pY1,Y2|X ).
Proof: Let (d1, d2) be a distortion pair that is achievable

under distortion measures w1 and w2 subject to bandwidth
expansion constraint κ . In view of Definition 1 and the
discussion in Section II, for every ε > 0, there exists a virtual
broadcast channel p

Ŝ(ε)
1 ,Ŝ(ε)

2 |S realizable through the physical
broadcast channel pY1,Y2|X with bandwidth expansion ratio
ρ ≤ κ + ε such that E[wi (S, Ŝ(ε)

i )] ≤ di + ε, i = 1, 2.
It follows from Lemma 2 that, for such p

Ŝ(ε)
1 ,Ŝ(ε)

2 |S , we have

Cin(pS, p
Ŝ(ε)

1 ,Ŝ(ε)
2 |S) ⊆ (κ + ε)C(pY1,Y2|X ).

Since {p
Ŝ(ε)

1 ,Ŝ(ε)
2 |S : ε > 0} can be viewed as a subset of

{π ∈ R
|S|×|Ŝ1|×|Ŝ2|
+ : ∑

ŝ1∈Ŝ1,ŝ2∈Ŝ2
π(s, ŝ1, ŝ2) = 1, s ∈ S},

which is compact under the Euclidean distance, one can find
a sequence ε1, ε2, · · · converging to zero such that

lim
k→∞ p

Ŝ
(εk)
1 ,Ŝ

(εk)
2 |S = pŜ1,Ŝ2|S

for some pŜ1,Ŝ2|S with E[wi (S, Ŝi )] ≤ di , i = 1, 2.
Now the proof can be completed via a simple limiting
argument.

B. Application to the Problem of Broadcasting
Correlated Sources

In view of (6), one can readily deduce from Theorem 5 the
following outer bound on the admissible source region.

Theorem 6: If p(S1,S2) is admissible for broadcast channel
pY1,Y2|X subject to bandwidth expansion constraint κ ,
then

C(p(S1,S2)) ⊆ κC(pY1,Y2|X ). (10)

The following result provides a complete characterization
of the source admissible region and a rigorous justification
of the source-message correspondence in the case where
S1 ↔ S0 ↔ S2 form a Markov chain.

Corollary 3: A source distribution p(S1,S2) with
S1 ↔ S0 ↔ S2 forming a Markov chain is admissible for
broadcast channel pY1,Y2|X subject to bandwidth expansion
constraint κ if and only if

(H (S0), H (S1|S0), H (S2|S0)) ∈ κC(pY1,Y2|X ). (11)
Proof: The proof of the “if” part is based on a simple

separation-based scheme. The transmitter first compresses Sm
0

via entropy coding and maps the resulting bits to the common
message M0; given Sm

0 , the transmitter further compresses Sm
i

via conditional entropy coding and maps the resulting bits
to the private message Mi , i = 1, 2. Note that (11) ensures
the existence of a good broadcast channel code such that
receiver i can recover (M0, Mi ) and consequently Sm

i with
high probability, i = 1, 2.

The “only if” part follows from Theorem 6 as well as
the fact that (H (S0), H (S1|S0), H (S2|S0)) ∈ C(p(S1,S2)) when
S1 ↔ S0 ↔ S2 form a Markov chain.

In view of Theorem 4 and Corollary 3, the necessary
conditions in Theorem 3 and Theorem 6 are equivalent
to (8) and (11), respectively, when S1 ↔ S0 ↔ S2 form a
Markov chain. It is known [22] that in general Cout(pY1,Y2|X )
can be strictly larger than C(pY1,Y2|X ). So it is possible to find
an example for which

(H (S0), H (S1|S0), H (S2|S0)) /∈ κC(pY1,Y2|X ),

(H (S0), H (S1|S0), H (S2|S0)) ∈ κCout(pY1,Y2|X ).

This means9 that Theorem 6 cannot be deduced from
Theorem 3.

Note that both (7) and (10) imply

C(p(S1,S2)) ⊆ κCout(pY1,Y2|X ). (12)

We shall show that (12) suffices to recover several existing
results. Let CD(pY1,Y2|X ) denote the capacity region of
broadcast channel pY1,Y2|X with degraded message sets, i.e.,

CD(pY1,Y2|X ) = {(R0, R2) : (R0, 0, R2) ∈ C(pY1,Y2|X )}.
9We believe that Theorem 3 also cannot be deduced from Theorem 6.



KHEZELI AND CHEN: OUTER BOUNDS ON THE ADMISSIBLE SOURCE REGION FOR BROADCAST CHANNELS 4623

It is known [23] that CD(pY1,Y2|X ) is given by the set of
(R0, R2) ∈ R

2+ satisfying

R0 ≤ I (V ; Y1),

R2 ≤ I (X; Y2|V ),

R0 + R2 ≤ I (X; Y2)

for some pV ,X,Y1,Y2 = pV |X pX pY1,Y2|X with |V| ≤ |X | + 1.
Moreover, it can be verified that

{(R0, R2) : (R0, 0, R2) ∈ Cout(pY1,Y2|X )} = CD(pY1,Y2|X ).

(13)

The following result is a special case of [24, Th. 2 and 3].
Corollary 4: A source distribution p(S1,S2) with S1 being

a deterministic function of S2 is admissible for broadcast
channel pY1,Y2|X subject to bandwidth expansion constraint κ
if and only if

(H (S1), H (S2|S1)) ∈ κCD(pY1,Y2|X ). (14)

Proof: The proof of the “if” part is based on a simple
separation-based scheme. The transmitter first compresses Sm

1
via entropy coding and maps the resulting bits to the common
message M0; given Sm

1 , the transmitter further compresses Sm
2

via conditional entropy coding and maps the resulting bits to
the private message M2. Note that (14) ensures the existence
of a good broadcast channel code such that receiver 1 can
recover M0 and consequently Sm

1 with high probability while
receiver 2 can recover (M0, M2) and consequently Sm

2 with
high probability.

The “only if” part follows by (12) and (13) as well as
the fact that (H (S1), 0, H (S2|S1)) ∈ C(p(S1,S2)) when S1 is
a deterministic function of S2.

We say pY2|X is more capable than pY1|X if
I (X; Y2) ≥ I (X; Y1) for all pX [25] [26, p. 121]. It can
be verified that

{(0, R1, R2) ∈ Cout(pY1,Y2|X )} = CD(pY1,Y2|X ) (15)

when pY2|X is more capable than pY1|X .
The following result [6, Th. 4] is a dual version

of Corollary 4.
Corollary 5: A source distribution p(S1,S2) is admissible for

broadcast channel pY1,Y2|X (with pY2|X more capable than
pY1|X ) subject to bandwidth expansion constraint κ if and only
if (14) holds.

Proof: The proof of the “if” part is the same as that for
Corollary 4. The “only if” part follows by (12) and (15) as
well as the fact that (0, H (S1), H (S2|S1)) ∈ C(p(S1,S2)).

VI. CONCLUSION

We have established two necessary conditions for the lossy
source broadcast problem (Theorem 1 and Theorem 5), from
which new outer bounds on the admissible source region
(Theorem 3 and Theorem 6) are deduced. It is expected that
the idea of deriving converse results via suitable comparisons
between the virtual channel (induced by the source(s) and the
reconstruction(s)) and the physical channel has potential appli-
cations beyond the lossy source broadcast problem considered
in the present paper.

APPENDIX A
PROOF OF LEMMA 1

Let (Xρm , Y ρm
1 , Y ρm

2 , Ŝm
1 , Ŝm

2 ) be jointly distributed
with Sm according to

pSm(sm)pXρm |Sm (xρm |sm)pY ρm
1 ,Y ρm

2 |Xρm (yρm
1 , yρm

2 |xρm)

×
2∏

i=1

pŜm
i |Y ρm

i
(ŝm

i |yρm
i ), (16)

where

pSm(sm) =
m∏

t=1

pS(s(t)),

pY ρm
1 ,Y ρm

2 |Xρm (yρm
1 , yρm

2 |xρm) =
ρm∏

q=1

(y1(q), y2(q)|x(q)).

Note that the induced conditional distribution10 pŜm
1 ,Ŝm

2 |Sm

is degraded with respect to pY ρm
1 ,Y ρm

2 |Xρm ; in fact, every
pŜm

1 ,Ŝm
2 |Sm degraded with respect to pY ρm

1 ,Y ρm
2 |Xρm can be

obtained in this way.
Let (Um

0 , · · · , Um
L ) be jointly distributed with

(Sm , Xρm , Y ρm
1 , Y ρm

2 , Ŝm
1 , Ŝm

2 ) such that (Um
0 , · · · , Um

L ) ↔
Sm ↔ (Xρm , Y ρm

1 , Y ρm
2 , Ŝm

1 , Ŝm
2 ) form a Markov chain, and

(U0(t), · · · , UL(t), S(t)), t = 1, · · · , m, are independent
and identically distributed. Let T be a random variable
independent of (Um

0 , · · · , Um
L , Sm , Ŝm

1 , Ŝm
2 ) and uniformly

distributed over {1, · · · , m}. Define

Ui = Ui (T ), i = 0, · · · , L,

S = S(T ),

Ŝi = Ŝi (T ), i = 1, 2.

The following properties of (U0, · · · , UL , S, Ŝ1, Ŝ2) can be
easily verified:

1) the distribution of (U0, · · · , UL , S) is identical with that
of (U0(t), U1(t), U2(t), S(t)) for every t ;

2) (U0, · · · , UL) ↔ S ↔ (Ŝ1, Ŝ2) form a Markov chain;
3) pŜ1,Ŝ2|S is the single-letterized version11 of pŜm

1 ,Ŝm
2 |Sm .

Note that
k∑

i=1

I (Um
Ai

; Ŝm
a(i)|Um

∪i−1
j=1A j

)

=
k∑

i=1

m∑

t=1

I (UAi (t); Ŝm
a(i)|Um

∪i−1
j=1A j

, Ut−1
Ai

)

=
k∑

i=1

m∑

t=1

I (UAi (t); Ŝm
a(i), Ut−1

∪i−1
j=1A j

, Um
∪i−1

j=1A j ,t+1
,

Ut−1
Ai

|U∪i−1
j=1A j

(t))

10If pS(s) > 0 for all s ∈ S , then pŜm
1 ,Ŝm

2 |Sm is uniquely given by (4).

If pS(s) = 0 for some s ∈ S , then the conditional distribution in (4) is not
the only one that is compatible with the joint distribution in (16); in this case
we simply use (4) as the definition of pŜm

1 ,Ŝm
2 |Sm .

11Strictly speaking, pŜ1,Ŝ2|S(·, ·|s) is uniquely specified only for those

s ∈ {s′ ∈ S : pS(s′) > 0}. However, this suffices for our purpose since
the results in the present paper depend on pŜ1,Ŝ2|S only through pS pŜ1,Ŝ2|S .
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≥
k∑

i=1

m∑

t=1

I (UAi (t); Ŝa(i)(t)|U∪i−1
j=1A j

(t))

= m
k∑

i=1

I (UAi (T ); Ŝa(i)(T )|U∪i−1
j=1A j

(T ), T )

= m
k∑

i=1

I (UAi (T ); Ŝa(i)(T ), T |U∪i−1
j=1A j

(T ))

≥ m
k∑

i=1

I (UAi (T ); Ŝa(i)(T )|U∪i−1
j=1A j

(T ))

= m
k∑

i=1

I (UAi ; Ŝa(i)|U∪i−1
j=1A j

).

On the other hand, we have

k∑

i=1

I (Um
Ai

; Ŝm
a(i)|Um

∪i−1
j=1A j

) ≤
k∑

i=1

I (Um
Ai

; Y ρm
a(i)|Um

∪i−1
j=1A j

).

(17)

We shall show that, for l = 1, · · · , k,

k∑

i=l

I (Um
Ai

; Y ρm
a(i)|Um

∪i−1
j=1A j

)

≤
ρm∑

q=1

I (Y ρm
2,q+1; Y1(q)|Um

∪l−1
j=1A j

, Y q−1
1 )

+
k∑

i=l

ρm∑

q=1

I (Um
Ai

; Ya(i)(q)|Um
∪i−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1), (18)

which, in light of the Csiszár sum identity [26, p. 25],
is equivalent to

k∑

i=l

I (Um
Ai

; Y ρm
a(i)|Um

∪i−1
j=1A j

)

≤
ρm∑

q=1

I (Y q−1
1 ; Y2(q)|Um

∪l−1
j=1A j

, Y ρm
2,q+1)

+
k∑

i=l

ρm∑

q=1

I (Um
Ai

; Ya(i)(q)|Um
∪i−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1). (19)

First consider the case l = k. If a(k) = 1, we have

I (Um
Ai

; Y ρm
a(k)|Um

∪k−1
j=1A j

)

=
ρm∑

q=1

I (Um
Ai

; Y1(q)|Um
∪k−1

j=1A j
, Y q−1

1 )

≤
ρm∑

q=1

I (Um
Ai

, Y ρm
2,q+1; Y1(q)|Um

∪k−1
j=1A j

, Y q−1
1 )

=
ρm∑

q=1

I (Y ρm
2,q+1; Y1(q)|Um

∪k−1
j=1A j

, Y q−1
1 )

+
ρm∑

q=1

I (Um
Ai

; Y1(q)|Um
∪k−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1);

if a(k) = 2, we have

I (Um
Ai

; Y ρm
a(k)|Um

∪k−1
j=1A j

)

=
ρm∑

q=1

I (Um
Ai

; Y2(q)|Um
∪k−1

j=1A j
, Y ρm

2,q+1)

≤
ρm∑

q=1

I (Um
Ai

, Y q−1
1 ; Y2(q)|Um

∪k−1
j=1A j

, Y ρm
2,q+1)

=
ρm∑

q=1

I (Y q−1
1 ; Y2(q)|Um

∪k−1
j=1A j

, Y ρm
2,q+1)

+
ρm∑

q=1

I (Um
Ai

; Y2(q)|Um
∪k−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1).

Therefore, (18) and (19) hold when l = k. Now we proceed
by induction on l. If a(l) = 1, we have

k∑

i=l

I (Um
Ai

; Y ρm
a(i)|Um

∪i−1
j=1A j

)

= I (Um
Al

; Y ρm
1 |Um

∪l−1
j=1A j

) +
k∑

i=l+1

I (Um
Ai

; Y ρm
a(i)|Um

∪i−1
j=1A j

)

≤ I (Um
Al

; Y ρm
1 |Um

∪l−1
j=1A j

)

+
ρm∑

q=1

I (Y ρm
2,q+1; Y1(q)|Um

∪l
j=1A j

, Y q−1
1 )

+
k∑

i=l+1

ρm∑

q=1

I (Um
Ai

; Ya(i)(q)|Um
∪i−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1) (20)

=
ρm∑

q=1

I (Um
Al

; Y1(q)|Um
∪l−1

j=1A j
, Y q−1

1 )

+
ρm∑

q=1

I (Y ρm
2,q+1; Y1(q)|Um

∪l
j=1A j

, Y q−1
1 )

+
k∑

i=l+1

ρm∑

q=1

I (Um
Ai

; Ya(i)(q)|Um
∪i−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1)

=
ρm∑

q=1

I (Um
Al

, Y ρm
2,q+1; Y1(q)|Um

∪l−1
j=1A j

, Y q−1
1 )

+
k∑

i=l+1

ρm∑

q=1

I (Um
Ai

; Ya(i)(q)|Um
∪i−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1)

=
ρm∑

q=1

I (Y ρm
2,q+1; Y1(q)|Um

∪l−1
j=1A j

, Y q−1
1 )

+
k∑

i=l

ρm∑

q=1

I (Um
Ai

; Ya(i)(q)|Um
∪i−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1),

where (20) follows by the induction hypothesis. Therefore,
(18) holds when a(l) = 1. Similarly, it can be shown that (19)
holds when a(l) = 2. This finishes the induction argument.

Let Q be a random variable independent of
(Um

0 , · · · , Um
L , Xρm , Y ρm

1 , Y ρm
2 ) and uniformly distributed
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over {1, · · · , ρm}. Define

Vi = (Um
i , Y Q−1

1 , Y ρm
2,Q+1, Q), i = 0, · · · , L,

X = X (Q),

Yi = Yi (Q), i = 1, 2.

It is clear that (V0, · · · , VL) ↔ X ↔ (Y1, Y2) form a
Markov chain; moreover, pX does not depend on the choice
of pU0,··· ,UL |S . Continuing from (17),

k∑

i=1

I (Um
Ai

; Ŝm
a(i)|Um

∪i−1
j=1A j

)

≤
ρm∑

q=1

I (Um
A1

, Y q−1
1 , Y ρm

2,q+1; Ya(1)(q))

+
k∑

i=2

ρm∑

q=1

I (Um
Ai

; Ya(i)(q)|Um
∪i−1

j=1A j
, Y q−1

1 , Y ρm
2,q+1) (21)

= ρm I (Um
A1

, Y Q−1
1 , Y ρm

2,Q+1; Ya(1)(Q)|Q)

+ρm
k∑

i=2

I (Um
Ai

; Ya(i)(Q)|Um
∪i−1

j=1A j
, Y Q−1

1 , Y ρm
2,Q+1, Q)

≤ ρm I (Um
A1

, Y Q−1
1 , Y ρm

2,Q+1, Q; Ya(1)(Q))

+ρm
k∑

i=2

I (Um
Ai

; Ya(i)(Q)|Um
∪i−1

j=1A j
, Y Q−1

1 , Y ρm
2,Q+1, Q)

= ρm
k∑

i=1

I (VAi ; Ya(i)|V∪i−1
j=1A j

),

where (21) is due to (18) and (19) as well as the fact that

ρm∑

q=1

I (Y ρm
2,q+1; Y1(q)|Y q−1

1 )

+
ρm∑

q=1

I (Um
A1

; Ya(1)(q)|Y q−1
1 , Y ρm

2,q+1)

=
ρm∑

q=1

I (Y q−1
1 ; Y2(q)|Y ρm

2,q+1)

+
ρm∑

q=1

I (Um
A1

; Ya(1)(q)|Y q−1
1 , Y ρm

2,q+1)

≤
ρm∑

q=1

I (Um
A1

, Y q−1
1 , Y ρm

2,q+1; Ya(1)(q)).

This completes the proof of Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

According to Lemma 1, for every virtual broadcast channel
pŜ1,Ŝ2|S realizable through the physical broadcast channel
pY1,Y2|X with bandwidth expansion ratio ρ, there exists an
input distribution pX such that, for any pU0,··· ,UL ,S,Ŝ1,Ŝ2

=

pU0,··· ,UL |S pS pŜ1,Ŝ2|S , one can find pV0,··· ,VL ,X,Y1,Y2 =
pV0,··· ,VL |X pX pY1,Y2|X satisfying

k∑

i=1

I (UAi ; Ŝa(i)|U∪i−1
j=1A j

) ≤ ρ

k∑

i=1

I (VAi ; Ya(i)|V∪i−1
j=1A j

)

(22)

for any Ai ⊆ {0, · · · , L} and a(i) ∈ {1, 2}, i = 1, · · · , k.
Now choose L = 2. Setting k = 1, A1 = {0}, and a(1) = 1
in (22) gives

I (U0; Ŝ1) ≤ ρ I (V0; Y1). (23)

Setting k = 1, A1 = {0}, and a(1) = 2 in (22) gives

I (U0; Ŝ2) ≤ ρ I (V0; Y2). (24)

Setting k = 1, A1 = {0, 1}, and a(1) = 1 in (22) gives

I (U0, U1; Ŝ1) ≤ ρ I (V0, V1; Y1). (25)

Setting k = 1, A1 = {0, 2}, and a(1) = 2 in (22) gives

I (U0, U2; Ŝ2) ≤ ρ I (V0, V2; Y2). (26)

Setting k = 2, A1 = {0}, A2 = {2}, a(1) = 1, and a(2) = 2
in (22) gives

I (U0; Ŝ1) + I (U2; Ŝ2|U0) ≤ ρ[I (V0; Y1) + I (V2; Y2|V0)].
(27)

Setting k = 2, A1 = {0}, A2 = {1}, a(1) = 2, and a(2) = 1
in (22) gives

I (U0; Ŝ2) + I (U1; Ŝ1|U0) ≤ ρ[I (V0; Y2) + I (V1; Y1|V0)].
(28)

Setting k = 2, A1 = {0, 1}, A2 = {2}, a(1) = 1, and a(2) = 2
in (22) gives

I (U0, U1; Ŝ1) + I (U2; Ŝ2|U0, U1)

≤ ρ[I (V0, V1; Y1) + I (V2; Y2|V0, V1)]. (29)

Setting k = 2, A1 = {0, 2}, A2 = {1}, a(1) = 2, and a(2) = 1
in (22) gives

I (U0, U2; Ŝ2) + I (U1; Ŝ1|U0, U2)

≤ ρ[I (V0, V2; Y2) + I (V1; Y1|V0, V2)]. (30)

Setting k = 3, A1 = {0}, A2 = {2}, A3 = {1}, a(1) =
a(3) = 1, and a(2) = 2 in (22) gives

I (U0; Ŝ1) + I (U2; Ŝ2|U0) + I (U1; Ŝ1|U0, U2)

≤ ρ[I (V0; Y1) + I (V2; Y2|V0) + I (V1; Y1|V0, V2)]. (31)

Setting k = 3, A1 = {0}, A2 = {1}, A3 = {2}, a(1) =
a(3) = 2, and a(2) = 1 in (22) gives

I (U0; Ŝ2) + I (U1; Ŝ1|U0) + I (U2; Ŝ2|U0, U1)

≤ ρ[I (V0; Y2) + I (V1; Y1|V0) + I (V2; Y2|V0, V1)]. (32)

Let R(pS, pŜ1,Ŝ2|S) denote the set of (r1, · · · , r10) ∈ R
10+

satisfying

r1 ≤ I (U0; Ŝ1),

r2 ≤ I (U0; Ŝ2),
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r3 ≤ I (U0, U1; Ŝ1),

r4 ≤ I (U0, U2; Ŝ2),

r5 ≤ I (U0; Ŝ1) + I (U2; Ŝ2|U0),

r6 ≤ I (U0; Ŝ2) + I (U1; Ŝ1|U0),

r7 ≤ I (U0, U1; Ŝ1) + I (S; Ŝ2|U0, U1),

r8 ≤ I (U0, U2; Ŝ2) + I (S; Ŝ1|U0, U2),

r9 ≤ I (U0; Ŝ1) + I (U2; Ŝ2|U0) + I (S; Ŝ1|U0, U2),

r10 ≤ I (U0; Ŝ2) + I (U1; Ŝ1|U0) + I (S; Ŝ2|U0, U1)

for some pU0,U1,U2,S,Ŝ1,Ŝ2
= pU0,U1,U2|S pS pŜ1,Ŝ2|S ; analo-

gously, let R(pX , pY1,Y2|X ) denote the set of (r1, · · · , r10) ∈
R

10+ satisfying

r1 ≤ I (V0; Y1),

r2 ≤ I (V0; Y2),

r3 ≤ I (V0, V1; Y1),

r4 ≤ I (V0, V2; Y2),

r5 ≤ I (V0; Y1) + I (V2; Y2|V0),

r6 ≤ I (V0; Y2) + I (V1; Y1|V0),

r7 ≤ I (V0, V1; Y1) + I (X; Y2|V0, V1),

r8 ≤ I (V0, V2; Y2) + I (X; Y1|V0, V2),

r9 ≤ I (V0; Y1) + I (V2; Y2|V0) + I (X; Y1|V0, V2),

r10 ≤ I (V0; Y2) + I (V1; Y1|V0) + I (X; Y2|V0, V1)

for some pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X . It can be
shown (see [27, Remark 3.6]) that (23)-(32) can be stated
equivalently as

R(pS, pŜ1,Ŝ2|S) ⊆ ρR(pX , pY1,Y2|X ). (33)

Moreover, the following argument by Nair [18] indicates that,
to compute R(pS, pŜ1,Ŝ2|S) and R(pX , pY1,Y2|X ), it suffices
to consider |U0| ≤ |S| + 5, |V0| ≤ |X | + 5, |Ui | ≤ |S|, and
|Vi | ≤ |X |, i = 1, 2. We shall only give the proof for
R(pS, pŜ1,Ŝ2|S) since R(pX , pY1,Y2|X ) can be treated in the

same way. The main idea is that it suffices for U1 and U2
to preserve the extreme points of R(pS, pŜ1,Ŝ2|S), and then
U0 can be used to convexify the region. Note that every
convex combination of the constraints in the definition of
R(pS, pŜ1,Ŝ2|S) can be written in the form

λ1 H (Ŝ1) + λ2 H (Ŝ2) + λ3 I (S; Ŝ1) + λ4 I (S; Ŝ2)

+ λ5 H (Ŝ1|U0) + λ6 H (Ŝ2|U0) + λ7 H (Ŝ1|U0, U1)

+ λ8 H (Ŝ2|U0, U2) + λ9 H (Ŝ1|U0, U2) + λ10 H (Ŝ2|U0, U1),

which depends on pU0,U1,U2,S only through pU0,U1,S and
pU0,U2,S . First fix pU0 . For every U0 = u0, one can find
pS,U1|U0(·, ·|u0) with |U1| ≤ |S| that preserves pS|U0(·|u0) and
λ7 H (Ŝ1|U0 = u0, U1) + λ10 H (Ŝ2|U0 = u0, U1); similarly,
one can find pS,U2|U0(·, ·|u0) with |U2| ≤ |S| that preserves
pS|U0(·|u0) and λ8 H (Ŝ2|U0 = u0, U2) + λ9 H (Ŝ1|U0 =
u0, U2). We can get a consistent joint distribution pU0,U1,U2,S

by setting pU0,U1,U2,S = pU0,S pU1|U0,S pU2|U0,S . Finally,
it suffices to have |U0| ≤ |S|+5 for preserving pS , H (Ŝi |U0),
H (Ŝi |U0, U1), and H (Ŝi |U0, U2), i = 1, 2.

Let (d1, d2) be a distortion pair that is achievable under
distortion measures w1 and w2 subject to bandwidth expansion
constraint κ . In view of Definition 1 and the discussion
in Section II, for every ε > 0, there exists a virtual broadcast
channel p

Ŝ(ε)
1 ,Ŝ(ε)

2 |S realizable through the physical broadcast
channel pY1,Y2|X with bandwidth expansion ratio ρ ≤ κ + ε

such that E[wi (S, Ŝ(ε)
i )] ≤ di + ε, i = 1, 2. It follows by (33)

that, for such p
Ŝ(ε)

1 ,Ŝ(ε)
2 |S , we have

R(pS, p
Ŝ(ε)

1 ,Ŝ(ε)
2 |S) ⊆ (κ + ε)R(pX (ε), pY1,Y2|X )

for some pX (ε) . Since {(p
Ŝ(ε)

1 ,Ŝ(ε)
2 |S, pX (ε)) : ε > 0} can be

viewed as a subset of {(π, π ′) ∈ R
|S|×|Ŝ1|×|Ŝ2|
+ × R

|X |
+ :∑

ŝ1∈Ŝ1,ŝ2∈Ŝ2
π(s, ŝ1, ŝ2) = 1, s ∈ S, and

∑
x∈X π ′(x) = 1},

which is compact under the Euclidean distance, one can find
a sequence ε1, ε2, · · · converging to zero such that

lim
k→∞ p

Ŝ
(εk)
1 ,Ŝ

(εk )
2 |S = pŜ1,Ŝ2|S,

lim
k→∞ pX (εk) = pX

for some pŜ1,Ŝ2|S with E[wi (S, Ŝi )] ≤ di , i = 1, 2, and pX .
Now a simple limiting argument yields

R(pS, pŜ1,Ŝ2|S) ⊆ κR(pX , pY1,Y2|X ). (34)

Note that R(pX , pY1,Y2|X ) is a convex set. As a consequence,
(34) holds if and only if κR(pX , pY1,Y2|X ) contains all extreme
points of R(pS, pŜ1,Ŝ2|S). To realize all such extreme points,
it suffices to consider |U0| ≤ |S|. This completes the proof of
Theorem 1.

APPENDIX C
PROOF OF THEOREM 4

We shall only prove that (8) implies the necessary condition
in Theorem 3 when S1 ↔ S0 ↔ S2 form a Markov chain since
the other direction is straightforward.

Note that the necessary condition in Theorem 3 can be
written equivalently as

R(p(S1,S2)) ⊆ κR(pX , pY1,Y2|X ) (35)

for some pX , where R(p(S1,S2)) is the set of
(r1, · · · , r10) ∈ R

10+ satisfying

r1 ≤ I (U ; S1),

r2 ≤ I (U ; S2),

r3 ≤ H (S1),

r4 ≤ H (S2),

r5 ≤ I (U ; S1) + H (S2|U),

r6 ≤ I (U ; S2) + H (S1|U),

r7 ≤ I (U ; S1) + H (S1, S2|U),

r8 ≤ I (U ; S2) + H (S1, S2|U),

r9 ≤ I (U ; S1) + H (S1, S2|U),

r10 ≤ I (U ; S2) + H (S1, S2|U)

for some pU,(S1,S2) = pU |(S1,S2) p(S1,S2) with |U | ≤ |S| + 2,
and R(pX , pY1,Y2|X ) is defined in Appendix B. On the
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other hand, (8) can be written equivalently as

(H (S0), H (S1|S0), H (S2|S0)) ∈ κCout(pX , pY1,Y2|X ) (36)

for some pX . Therefore, it suffices to show that (36) implies
(35) when S1 ↔ S0 ↔ S2 form a Markov chain. Throughout
the proof we assume pX is fixed.

It is clear that both R(p(S1,S2)) and R(pX , pY1,Y2|X ) are
closed convex sets. Let λ1, · · · , λ10 be arbitrary non-negative
numbers. We have

max
(r1,··· ,r10)∈R(p(S1,S2))

10∑

i=1

λi ri

= max
pU |(S1,S2)

λ1 I (U ; S1) + λ2 I (U ; S2) + λ3 H (S1)

+ λ4 H (S2) + λ5[I (U ; S1) + H (S2|U)]
+ λ6[I (U ; S2) + H (S1|U)]
+ λ7[I (U ; S1) + H (S1, S2|U)]
+ λ8[I (U ; S2) + H (S1, S2|U)]
+ λ9[I (U ; S1) + H (S1, S2|U)]
+ λ10[I (U ; S2) + H (S1, S2|U)] (37)

= max
pU |(S1,S2)

(λ1 + λ3 + λ5 + λ7 + λ9)H (S1)

+ (λ2 + λ4 + λ6 + λ8 + λ10)H (S2)

− (λ1 + λ5 − λ6 + λ7 + λ9)H (S1|U)

− (λ2 − λ5 + λ6 + λ8 + λ10)H (S2|U)

+ (λ7 + λ8 + λ9 + λ10)H (S1, S2|U)

= max
pU |(S1,S2)

(λ1 + λ3 + λ5 + λ7 + λ9)H (S1)

+ (λ2 + λ4 + λ6 + λ8 + λ10)H (S2)

− (λ1 + λ2)H (S0|U)

− (λ1 + λ5 − λ6 + λ7 + λ9)H (S1|S0, U)

− (λ2 − λ5 + λ6 + λ8 + λ10)H (S2|S0, U)

+ (λ7 + λ8 + λ9 + λ10)H (S1, S2|S0, U)

≤ max
pU |(S1,S2)

(λ1 + λ3 + λ5 + λ7 + λ9)H (S1)

+ (λ2 + λ4 + λ6 + λ8 + λ10)H (S2)

− (λ1 + λ2)H (S0|U)

− (λ1 + λ5 − λ6 − λ8 − λ10)H (S1|S0, U)

− (λ2 − λ5 + λ6 − λ7 − λ9)H (S2|S0, U), (38)

where the last inequality follows from the fact that

H (S1, S2|S0, U) ≤ H (S1|S0, U) + H (S2|S0, U). (39)

Let a = λ1 +λ5−λ6 −λ8 −λ10 and b = λ2−λ5 +λ6 −λ7−λ9.
Consider the following four possible cases.

1) a ≤ 0 and b ≤ 0: The maximum value of (38) is attained
when U = S0.

2) a ≥ 0 and b ≤ 0: The maximum value of (38) is attained
when U = S1.

3) a ≤ 0 and b ≥ 0: The maximum value of (38) is attained
when U = S2.

4) a ≥ 0 and b ≥ 0: The maximum value of (38) is attained
when U = (S1, S2).

It is clear that the equality holds in (39) for the following
four choices of U :

1) U = S0,
2) U = S1,
3) U = S2,
4) U = (S1, S2).

Therefore, the maximum value of (37) is also attained by one
of these four choices of U ; as a consequence, for the necessary
condition in Theorem 3, there is no loss of generality in
restricting U to such choices. Note that (36) can be expressed
alternatively as

H (S0) ≤ κ min{I (V ∗
0 ; Y1), I (V ∗

0 ; Y2)}, (40)
H (S1) ≤ κ[min{I (V ∗

0 ; Y1), I (V ∗
0 ; Y2)} + I (V ∗

1 ; Y1|V ∗
0 )],
(41)

H (S2) ≤ κ[min{I (V ∗
0 ; Y1), I (V ∗

0 ; Y2)} + I (V ∗
2 ; Y2|V ∗

0 )],
(42)

H (S1, S2) ≤ κ[min{I (V ∗
0 ; Y1), I (V ∗

0 ; Y2)} + I (V ∗
1 ; Y1|V ∗

0 )

+ I (X; Y2|V ∗
0 , V ∗

1 )], (43)
H (S1, S2) ≤ κ[min{I (V ∗

0 ; Y1), I (V ∗
0 ; Y2)} + I (V ∗

2 ; Y2|V ∗
0 )

+ I (X; Y1|V ∗
0 , V ∗

2 )] (44)

for some pV ∗
0 ,V ∗

1 ,V ∗
2 ,X,Y1,Y2 = pV ∗

0 ,V ∗
1 ,V ∗

2 |X pX pY1,Y2|X . Setting
U = S0 in Theorem 3 yields the same set of constraints.
On the other hand, when U = S1, the necessary condition in
Theorem 3 can be written as

H (S0) ≤ κ I (V0; Y2), (45)

H (S1) ≤ κ I (V0; Y1), (46)

H (S2) ≤ κ I (V0, V2; Y2), (47)

H (S2) ≤ κ[I (V0; Y2) + I (V1; Y1|V0) + I (X; Y2|V0, V1)],
(48)

H (S1, S2) ≤ κ[I (V0; Y1) + I (V2; Y2|V0)], (49)

H (S1, S2) ≤ κ[I (V0, V1; Y1) + I (X; Y2|V0, V1)] (50)

for some pV0,V1,V2,X,Y1,Y2 = pV0,V1,V2|X pX pY1,Y2|X . By choos-
ing V0 = V1 = (V ∗

0 , V ∗
1 ) and V2 = X , we can see that

(40)⇒(45), (41)⇒(46), (42)⇒(47), (42)⇒(48), (43)⇒(49),
and (43)⇒(50). The case U = S2 follows by symmetry. When
U = (S1, S2), the necessary condition in Theorem 3 can be
written as

H (S1) ≤ κ I (V0; Y1), (51)

H (S2) ≤ κ I (V0; Y2), (52)

for some pV0,X,Y1,Y2 = pV0|X pX pY1,Y2|X . By choosing
V0 = X , we can see that (41)⇒(51) and (42)⇒(52). Hence,
(35) is indeed implied by (36) when S1 ↔ S0 ↔ S2 form a
Markov chain. This completes the proof of Theorem 4.

APPENDIX D
PROOF OF LEMMA 2

Let (Ŝm
1 , Ŝm

2 ) be jointly distributed with Sm according to

pSm(sm)pŜm
1 ,Ŝm

2 |Sm (ŝm
1 , ŝm

2 |sm),

where pSm(sm) = ∏m
t=1 pS(s(t)). We assume that

pŜm
1 ,Ŝm

2 |Sm is degraded with respect to pY ρm
1 ,Y ρm

2 |Xm ,
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where pY ρm
1 ,Y ρm

2 |Xm (yρm
1 , yρm

2 |xm) = ∏ρm
q=1 pY1,Y2|X

(y1(q), y2(q)|x(q)). As a consequence,

ρC(pŜm
1 ,Ŝm

2 |Sm) ⊆ C(pY ρm
1 ,Y ρm

2 |Xm ) = ρmC(pY1,Y2|X ). (53)

Let C̃in(pSm , pŜm
1 ,Ŝm

2 |Sm ) denote the set of (R0, R1, R2) ∈ R
3+

satisfying

R0 ≤ min{I (Um
0 ; Ŝm

1 ), I (Um
0 ; Ŝm

2 )},
R0 + Ri ≤ I (Um

0 , Um
i ; Ŝm

i ), i = 1, 2,

R0 + R1 + R2 ≤ min{I (Um
0 ; Ŝm

1 ), I (Um
0 ; Ŝm

2 )}
+ I (Um

1 ; Ŝm
1 |Um

0 ) + I (Um
2 ; Ŝm

2 |Um
0 )

− I (Um
1 ; Um

2 |Um
0 )

for some (Um
0 , Um

1 , Um
2 ) jointly distributed with (Sm , Ŝm

1 , Ŝm
2 )

such that (Um
0 , Um

1 , Um
2 ) ↔ Sm ↔ (Ŝm

1 , Ŝm
2 ) form a Markov

chain, and (U0(t), U1(t), U2(t), S(t)), t = 1, · · · , m, are
independent and identically distributed. It is clear that

C̃in(pSm , pŜm
1 ,Ŝm

2 |Sm) ⊆ Cin(pSm , pŜm
1 ,Ŝm

2 |Sm )

⊆ C(pŜm
1 ,Ŝm

2 |Sm ). (54)

Let T be a random variable independent of
(Um

0 , Um
1 , Um

2 , Sm , Ŝm
1 , Ŝm

2 ) and uniformly distributed
over {1, · · · , m}. Define

Ui = Ui (T ), i = 0, 1, 2,

S = S(T ),

Ŝi = Ŝi (T ), i = 1, 2.

Note that

I (Um
0 ; Ŝm

i ) =
m∑

t=1

I (U0(t); Ŝm
i |Ut−1

0 )

=
m∑

t=1

I (U0(t); Ŝm
i , Ut−1

0 )

≥
m∑

t=1

I (U0(t); Ŝi (t))

= m I (U0(T ); Ŝi (T )|T )

= m I (U0(T ); Ŝi (T ), T )

≥ m I (U0(T ); Ŝi (T ))

= m I (U0; Ŝi ), i = 1, 2;
moreover,

I (Um
i ; Ŝm

i |Um
0 )

=
m∑

t=1

I (Ui (t); Ŝm
i |Um

0 , Ut−1
i ),

=
m∑

t=1

I (Ui (t); Ŝm
i , Ut−1

0 , Um
0,t+1, Ut−1

i |U0(t))

≥
m∑

t=1

I (Ui (t); Ŝi (t)|U0(t))

= m I (Ui (T ); Ŝi (T )|U0(T ), T )

= m I (Ui (T ); Ŝi (T ), T |U0(T ))

≥ m I (Ui (T ); Ŝi (T )|U0(T ))

= m I (Ui ; Ŝi |U0), i = 1, 2,

and

I (Um
1 ; Um

2 |Um
0 ) = m I (U1; U2|U0).

Therefore, we have

mCin(pS, pŜ1,Ŝ2|S) ⊆ C̃in(pSm , pŜm
1 ,Ŝm

2 |Sm ). (55)

Combining (53), (54), and (55) completes the proof
of Lemma 2.
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