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A Source-Channel Separation Theorem With
Application to the Source Broadcast Problem

Kia Khezeli and Jun Chen, Member, IEEE

Abstract— A converse method is developed for the source
broadcast problem. Specifically, it is shown that the separation
architecture is optimal for a variant of the source broadcast prob-
lem, and the associated source-channel separation theorem can
be leveraged, via a reduction argument, to establish a necessary
condition for the original problem, which unifies several existing
results in the literature. Somewhat surprisingly, this method,
albeit based on the source-channel separation theorem, can be
used to prove the optimality of non-separation-based schemes
and determine the performance limits in certain scenarios where
the separation architecture is suboptimal.

Index Terms— Bandwidth mismatch, broadcast channel,
capacity region, joint source-channel coding, separation theorem,
side information.

I. INTRODUCTION

IN THE source broadcast problem, a source is sent
over a broadcast channel through suitable encoding and

decoding so that the reconstructions at the receivers sat-
isfy the prescribed constraints. The special case of sending
a Gaussian source over a Gaussian broadcast channel has
received particular attention. For this special case, it is known
that source-channel separation is in general suboptimal [1]
and hybrid digital-analog coding schemes can outperform
pure digital/analog schemes [2]–[5]. The extension of the
hybrid coding architecture to the non-Gaussian setting can be
found in [6].

In contrast, the progress on the converse side is still some-
what limited. To the best of our knowledge, the first non-
trivial result in this direction was obtained by Reznic et al. [3]
for the scalar version of the aforementioned Gaussian case.
The converse argument in [3] involves an auxiliary random
variable, which is generated by the source via an additive
Gaussian noise channel. This auxiliary random variable is
constructed in exactly the same manner as the one in Ozarow’s
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celebrated work on the Gaussian multiple description
problem [7]. However, this resemblance is, in a certain sense,
rather superficial. Indeed, on a more technical level, the
auxiliary random variable introduced by Ozarow (as eluci-
dated in [8]–[11]) plays the role of exploiting an implicit
conditional independence structure whereas the role of the
auxiliary random variable in [3] is apparently different and still
largely elusive. Recent years have seen several new converse
results [12]–[14] for the source broadcast problem. These
results are based on arguments similar to the original one by
Reznic et al., especially in terms of the way the auxiliary
random variables are constructed and exploited. It is worth
noting that such arguments can only handle a restricted class
of auxiliary random variables (essentially those that can be
generated by the source via certain additive noise channels);
this restriction typically leads to certain constraints on the
set of sources, channels, or distortion measures that can be
analyzed.

The present paper is, to a certain extent, an outcome of our
effort in seeking a conceptual understanding of the converse
argument by Reznic et al. in general and the role of the asso-
ciated auxiliary random variable in particular. We shall show
that one can establish a source-channel separation theorem
for a variant of the source broadcast problem and leverage
it to derive a necessary condition for the original problem.
This necessary condition, when specialized to the case of
sending a scalar Gaussian source over a Gaussian broadcast
channel, recovers the corresponding result by Reznic et al. [3];
moreover, in this way, the converse argument in [3] finds
a simple interpretation, and the associated auxiliary random
variable acquires an operational meaning. It should be pointed
out that, in our approach, the auxiliary random variable can
be generated by the source in an arbitrary manner. Therefore,
the restriction imposed in the existing arguments [12]–[14]
is in fact unnecessary. On the other hand, the problem of
identifying the optimal auxiliary random variable naturally
arises due to this additional freedom. It will be seen that the
analytical solutions for this problem can be found in some
special cases; interestingly, these solutions indicate that the
specific choices of auxiliary random variables in [3] and [13]
are actually optimal in their respective contexts.

Our work is also partly motivated by the problem of sending
a bivariate Gaussian source over a Gaussian broadcast channel
first studied by Bross et al. [15]. For this problem, it is
known that the achievable distortion region of a certain hybrid
digital-analog coding scheme [16] matches the outer bound
in [15] whereas separate source-channel coding is in general
suboptimal [16], [17]. An alternative proof of the outer bound
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Fig. 1. System �.

in [15] was recently obtained by Song et al. [18]. This new
proof [18] bears some similarity to the aforementioned con-
verse argument by Reznic et al. [3]. We will clarify their con-
nection by giving a unified proof for the vector Gaussian case,
which implies, among other things, that the outer bound in [15]
can be deduced from the general necessary condition for the
source broadcast problem found in the present paper. There-
fore, our converse method, albeit based on the source-channel
separation theorem, can be used to prove the optimality of
non-separation based schemes and determine the performance
limits in certain scenarios where the separation architecture is
suboptimal.

The rest of this paper is organized as follows. We present
the problem setup in Section II and the relevant capacity
results for broadcast channels with receiver side information in
Section III. We establish a source-channel separation theorem
for a variant of the source broadcast problem in Section IV.
It is shown in Section V that this separation theorem can be
used in conjunction with a simple reduction argument to derive
a necessary condition for the original source broadcast prob-
lem; moreover, this necessary condition is evaluated for the
special case of the binary uniform source with the Hamming
distortion measure. The quadratic Gaussian case is treated in
Section VI. We conclude the paper in Section VII.

Throughout this paper, the binary entropy function and its
inverse are denoted by Hb(·) and H −1

b (·), respectively. For
any a, b ∈ [0, 1], we define a ∗ b = a(1 − b)+ (1 − a)b. The
logarithm function is assumed to be base 2 unless specified
otherwise.

II. PROBLEM SETUP

The source broadcast system (System �) consists of the
following components (see Fig. 1):

• an i.i.d source {S(t)}∞t=1 with marginal distribution pS

over alphabet S,
• a discrete memoryless broadcast channel pY1,Y2|X with

input alphabet X and output alphabets Yi , i = 1, 2,
• a transmitter, which is equipped with an encoding func-

tion f (m,n) : Sm → X n that maps a block of source
samples Sm � (S(1), · · · , S(m)) of length m to a channel
input block Xn � (X (1), · · · , X (n)) of length n (the
number of channel uses per source sample, i.e., n

m , is
referred to as the bandwidth expansion ratio),

• two receivers, where receiver i is equipped with a decod-
ing function g(n,m)i : Yn

i → Ŝm
i that maps the channel

output block Y n
i � (Yi (1), · · · ,Yi (n)) generated by Xn to

a source reconstruction block Ŝm
i � (Ŝi (1), · · · , Ŝi (m)),

i = 1, 2.

Unless stated otherwise, we assume that S, Ŝ1, Ŝ2, X , Y1,
and Y2 are finite sets.

Let PS×Ŝi
(pS) denote the set of joint distributions over

S × Ŝi with the marginal distribution on S fixed to be pS ,
i = 1, 2.

Definition 1: Let κ be a non-negative number and Qi be a
non-empty compact subset of PS×Ŝi

(pS), i = 1, 2. We say
(κ,Q1,Q2) is achievable for System � if, for every ε > 0,
there exist encoding function f (m,n) : Sm → X n and decoding
functions g(n,m)i : Yn

i → Ŝm
i , i = 1, 2, such that

n

m
≤ κ + ε, (1)

min
qi∈Qi

∥
∥
∥
∥
∥

1

m

m
∑

t=1

pS(t),Ŝi(t)
− qi

∥
∥
∥
∥
∥

≤ ε, i = 1, 2, (2)

where ‖·‖ is the 1-norm. The set of all achievable (κ,Q1,Q2)
for System � is denoted by �.

Remark: It is easy to verify that

1

m

m
∑

t=1

pS(t),Ŝi(t)
∈ PS×Ŝi

(pS), i = 1, 2.

Now consider the following more conventional definition.
Definition 2: Let wi : S × Ŝi → [0,∞) be two distortion

measures. For non-negative numbers κ , d1, and d2, we say
(κ, d1, d2) is achievable for System � under distortion mea-
sures w1 and w2 if, for every ε > 0, there exist encoding
function f (m,n) : Sm → X n and decoding functions g(n,m)i :
Yn

i → Ŝm
i , i = 1, 2, such that

n

m
≤ κ + ε,

1

m

m
∑

t=1

E[wi (S(t), Ŝi (t))] ≤ di + ε, i = 1, 2. (3)

The following result shows that Definition 1 is more general
than Definition 2.

Proposition 1: (κ, d1, d2) is achievable for System �
under distortion measures w1 and w2 if and only if
(κ,Q(w1, d1),Q(w2, d2)) ∈ �, where Q(wi , di ) = {pS,Ŝi

∈
PS×Ŝi

(pS) : E[wi (S, Ŝi )] ≤ di }, i = 1, 2.
Proof: Let T be a random variable independent of

(Sm , Ŝm
1 , Ŝm

2 ) and uniformly distributed over {1, · · · ,m}. It is
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Fig. 2. System �̃.

easy to verify that (2) can be written equivalently as

min
qi∈Qi

∥
∥
∥pS(T),Ŝi (T )

− qi

∥
∥
∥ ≤ ε, i = 1, 2,

and (3) can be written equivalently as

E[wi (S(T ), Ŝi (T ))] ≤ di + ε, i = 1, 2.

Note that

E[wi (S(T ), Ŝi (T ))]
=

∑

s∈S,ŝi∈Ŝi

pS(T ),Ŝi (T )
(s, ŝi )wi (s, ŝi )

≤
∑

s∈S,ŝi∈Ŝi

qi (s, ŝi )wi (s, ŝi )

+
∑

s∈S,ŝi∈Ŝi

|pS(T),Ŝi (T )
(s, ŝi )− qi (s, ŝi )|wi (s, ŝi )

≤ di + ‖pS(T),Ŝi (T )
− qi‖ max

s∈S,ŝi∈Ŝi

wi (s, ŝi )

for any qi ∈ Qi (wi , di ), i = 1, 2. Therefore, we have

E[wi (S(T ), Ŝi (T ))]
≤ di + min

qi∈Qi (wi ,di )
‖pS(T ),Ŝi (T )

− qi‖ max
s∈S,ŝi∈Ŝi

wi (s, ŝi ),

i = 1, 2,

from which the “if” part follows immediately.
Now we proceed to prove the “only if” part. Assume that

(κ, d1, d2) is achievable for System � under distortion mea-
sures w1 and w2. For every ε > 0, according to Definition 2,
we can find encoding function f (m,n) : Sm → X n and

decoding functions g(n,m)i : Yn
i → Ŝm

i , i = 1, 2, satisfying
n
m ≤ κ+ε and E[wi (S(T ), Ŝi (T ))] ≤ di +ε, i = 1, 2. We shall
denote S(T ) simply by S since the distribution of S(T ) is pS ,
and denote Ŝ1(T ) and Ŝ2(T ) by Ŝ(ε)1 and Ŝ(ε)2 , respectively, to
stress their dependence on ε. Note that {p

S,Ŝ(ε)1 ,Ŝ(ε)2
: ε > 0}

is contained in a compact set and E[wi (S, Ŝ(ε)i )] ≤ di + ε for
every ε > 0, i = 1, 2. Therefore, one can find a sequence
ε1, ε2, · · · converging to zero such that

lim
k→∞ p

S,Ŝ
(εk)
1 ,Ŝ

(εk)
2

= pS,Ŝ1,Ŝ2

for some pS,Ŝ1,Ŝ2
with pS,Ŝi

∈ Qi (wi , di ), i = 1, 2. This
completes the proof of the “only if” part.

Source-channel separation is known to incur a performance
loss for System� in general. However, it turns out that, for the
following variant of System � (see Fig. 2), separate source-
channel coding is in fact optimal. This system (System �̃) is
the same as System � except for two differences.

1) The source is an i.i.d. vector process {(S̃1(t), S̃2(t))}∞t=1
with marginal distribution pS̃1,S̃2

over finite alphabet

S̃1 × S̃2.
2) S̃m

2 is available at receiver 1 and can be used together
with Y n

1 to construct Ŝm
1 .

Let PS̃1×S̃2×Ŝ1
(pS̃1,S̃2

) denote the set of joint distributions

over S̃1 × S̃2 × Ŝ1 with the marginal distribution on S̃1 × S̃2
fixed to be pS̃1,S̃2

. Moreover, let PS̃2×Ŝ2
(pS̃2

) denote the set of

joint distributions over S̃2 × Ŝ2 with the marginal distribution
on S̃2 fixed to be pS̃2

.

Definition 3: Let κ̃ be a non-negative number, Q̃1 be a
non-empty compact subset of PS̃1×S̃2×Ŝ1

(pS̃1,S̃2
), and Q̃2

be a non-empty compact subset of PS̃2×Ŝ2
(pS̃2

). We say

(κ̃, Q̃1, Q̃2) is achievable for System �̃ if, for every ε > 0,
there exist encoding function f (m,n) : S̃m

1 × S̃m
2 → X n as

well as decoding functions g(n,m)1 : Yn
1 × S̃m

2 → Ŝm
1 and

g(n,m)2 : Yn
2 → Ŝm

2 such that

n

m
≤ κ̃ + ε, (4)

min
q̃1∈Q̃1

∥
∥
∥
∥
∥

1

m

m
∑

t=1

pS̃1(t),S̃2(t),Ŝ1(t)
− q̃1

∥
∥
∥
∥
∥

≤ ε, (5)

min
q̃2∈Q̃2

∥
∥
∥
∥
∥

1

m

m
∑

t=1

pS̃2(t),Ŝ2(t)
− q̃2

∥
∥
∥
∥
∥

≤ ε. (6)

The set of all achievable (κ̃, Q̃1, Q̃2) for System �̃ is denoted
by �̃.

Remark: For the ease of subsequent applications, here
we allow f (m,n), g(n,m)1 , and g(n,m)2 to be non-deterministic
functions as long as the Markov chains (S̃m

1 , S̃m
2 ) ↔ Xn ↔

(Y n
1 ,Y n

2 ), S̃m
1 ↔ (Y n

1 , S̃m
2 ) ↔ Ŝm

1 , and S̃m
2 ↔ Y n

2 ↔ Ŝm
2

are preserved. It will be clear that such a relaxation does not
affect �̃.



KHEZELI AND CHEN: SOURCE-CHANNEL SEPARATION THEOREM WITH APPLICATION TO THE SOURCE BROADCAST PROBLEM 1767

Fig. 3. Broadcast channel with two private messages.

Fig. 4. Broadcast channel with receiver side information.

To discuss source-channel separation for System �̃, we
need to specify the source coding component and the channel
coding component. It will be seen that the source coding part
is the conventional lossy source coding scheme. The channel
coding part is more involved and is described in the next
section.

III. BROADCAST CHANNELS WITH

RECEIVER SIDE INFORMATION

A. Definitions

Let pY1,Y2|X be a discrete memoryless broadcast channel
with input alphabet X and output alphabets Yi , i = 1, 2.
A length-n coding scheme (see Fig. 3) for pY1,Y2|X
consists of

• two private messages M1 and M2, where (M1,M2) is
uniformly distributed over M1 × M2,

• an encoding function f (n) : M1 ×M2 → X n that maps
(M1,M2) to a channel input block Xn ,

• two decoding functions g(n)i : Yn
i → Mi , i = 1, 2, where

g(n)i maps the channel output block at receiver i , i.e., Y n
i ,

to M̂i , i = 1, 2.

Definition 4: A rate pair (R1, R2) ∈ R
2+ is said to be

achievable for broadcast channel pY1,Y2|X if there exists a
sequence of encoding functions f (n) : M1 × M2 → X n

with 1
n log |Mi | ≥ Ri , i = 1, 2, and decoding functions

g(n)i : Yn
i → Mi , i = 1, 2, such that

lim
n→∞ Pr{(M̂1, M̂2) 
= (M1,M2)} = 0.

The private-message capacity region C(pY1,Y2|X ) is the closure
of the set of all achievable (R1, R2) for broadcast channel
pY1,Y2|X .

A computable characterization of C(pY1,Y2|X ) is still largely
unknown. Interestingly, the problem becomes significantly
simpler if message M2 is available at receiver 1 or message M1
is available at receiver 2; in fact, this is the setting that is most
relevant to the present work. Specifically, consider the scenario
where two private messages M1 and M2 need to be sent
over broadcast channel pY1,Y2|X to receiver 1 and receiver 2,
respectively, and M2 is available at receiver 1. In this case,
a length-n coding scheme (see Fig. 4) consists of

• two private messages Mi , i = 1, 2, where (M1,M2) is
uniformly distributed over M1 × M2,

• an encoding function f (n) : M1 ×M2 → X n that maps
(M1,M2) to a channel input block Xn ,

• two decoding functions g(n)1 : Yn
1 × M2 → M1 and

g(n)2 : Yn
2 → M2, where g(n)1 maps (Y n

1 ,M2) to M̂1, and

g(n)2 maps Y n
2 to M̂2.

Definition 5: A rate pair (R1, R2) is said to be achievable
for broadcast channel pY1,Y2|X with message M2 available at
receiver 1 if there exists a sequence of encoding functions
f (n) : M1 × M2 → X n with 1

n log |Mi | ≥ Ri , i = 1, 2,

as well as decoding functions g(n)1 : Yn
1 × M2 → M1

and g(n)2 : Yn
2 → M2 such that

lim
n→∞ Pr{(M̂1, M̂2) 
= (M1,M2)} = 0.

The capacity region C1(pY1,Y2|X ) is the closure of the set of
all such achievable (R1, R2). The capacity region C2(pY1,Y2|X )
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for broadcast channel pY1,Y2|X with message M1 available at
receiver 2 can be defined in an analogous manner.

B. Capacity Results

It is known [19, Th. 3] that C1(pY1,Y2|X ) is given by the set
of (R1, R2) ∈ R

2+ satisfying

R1 ≤ I (X; Y1), (7)

R2 ≤ I (V ; Y2), (8)

R1 + R2 ≤ I (X; Y1|V )+ I (V ; Y2) (9)

for some pV ,X,Y1,Y2 = pV ,X pY1,Y2|X ; moreover, it suffices to
assume that |V| ≤ |X |+1. By symmetry, C2(pY1,Y2|X ) is given
by the set of (R1, R2) ∈ R

2+ satisfying

R1 ≤ I (V ; Y1), (10)

R2 ≤ I (X; Y2), (11)

R1 + R2 ≤ I (V ; Y1)+ I (X; Y2|V ) (12)

for some pV ,X,Y1,Y2 = pV ,X pY1,Y2|X ; again, it suffices to
assume that |V| ≤ |X | + 1.

A class of distributions P on the input alphabet
X is said to be a sufficient class of distributions
[20, Definition 1] for broadcast channel pY1,Y2|X if, for any
pV1,V2,X,Y1,Y2 = pV1,V2,X pY1,Y2|X , there exists pṼ1,Ṽ2,X̃ ,Ỹ1,Ỹ2

=
pṼ1,Ṽ2,X̃

pỸ1,Ỹ2|X̃ with pX̃ ∈ P and pỸ1,Ỹ2|X̃ = pY1,Y2|X
such that1

I (V1; Y1) ≤ I (Ṽ1; Ỹ1),

I (V2; Y2) ≤ I (Ṽ2; Ỹ2),

I (V1; Y1)+ I (X; Y2|V1) ≤ I (Ṽ1; Ỹ1)+ I (X̃ ; Ỹ2|Ṽ1),

I (X; Y1|V2)+ I (V2; Y2) ≤ I (X̃ ; Ỹ1|Ṽ2)+ I (Ṽ2; Ỹ2).

For broadcast channel pY1,Y2|X , we say that pY1|X is essen-
tially less noisy than pY2|X if there exists a sufficient class
of distributions P such that I (V ; Y1) ≥ I (V ; Y2) for any
pV ,X,Y1,Y2 = pV ,X pY1,Y2|X with pX ∈ P [20, Definition 2],
and simply say that pY1|X is less noisy than pY2|X if P can
be chosen to be the set of all distributions on X ; similarly,
we say that pY1|X is essentially more capable than pY2|X
if there exists a sufficient class of distributions P such that
I (X; Y1|V ) ≥ I (X; Y2|V ) for any pV ,X,Y1,Y2 = pV ,X pY1,Y2|X
with pX ∈ P [20, Definition 3], and simply say that pY1|X is
more capable than pY2|X if P can be chosen to be the set of
all distributions on X . It is known that “less noisy” (“more
capable”) implies “essentially less noisy” (“essentially more
capable”), and “less noisy” implies “more capable”, but the
converses are not true in general.

Proposition 2: If pY1|X is essentially less noisy than pY2|X ,
then C1(pY1,Y2|X ) = C(pY1,Y2|X ).

Proof: To compute C1(pY1,Y2|X ) defined by (7)-(9), it
suffices to consider those pX in a sufficient class P . It is easy
to see that

I (X; Y1|V )+ I (V ; Y2) ≤ I (X; Y1|V )+ I (V ; Y1) (13)

= I (X; Y1)

1Setting V1 = X , one can readily verify that I (X; Y1) = I (V1; Y1) ≤
I (Ṽ1; Ỹ1) ≤ I (X̃ ; Ỹ1). Similarly, one can obtain I (X; Y2) ≤ I (X̃ ; Ỹ2) by
setting V2 = X .

for any pV ,X,Y1,Y2 = pV ,X pY1,Y2|X with pX ∈ P , where (13)
is due to the fact that pY1|X is essentially less noisy than
pY2|X . Therefore, (7) is redundant if pX is restricted to P . Note
that the rate region defined by (8) and (9) for pV ,X,Y1,Y2 =
pV ,X pY1,Y2|X with pX ∈ P is exactly C(pY1,Y2|X ) [20, Th. 1].
This completes the proof of Proposition 2.

Proposition 3: If pY1|X is essentially more capable than
pY2|X , then C2(pY1,Y2|X ) is given by the set of (R1, R2) ∈ R

2+
satisfying

R2 ≤ I (X; Y2),

R1 + R2 ≤ I (X; Y1)

for some pX,Y1,Y2 = pX pY1,Y2|X .
Proof: To compute C2(pY1,Y2|X ) defined by (10)-(12), it

suffices to consider those pX in a sufficiently class P . Note
that

I (V ; Y1)+ I (X; Y2|V ) ≤ I (V ; Y1)+ I (X; Y1|V ) (14)

= I (X; Y1)

for any pV ,X,Y1,Y2 = pV ,X pY1,Y2|X with pX ∈ P , where (14)
is due to the fact that pY1|X is essentially more capable
than pY2|X . Therefore, given pX ∈ P , the right-hand side
of inequality (12) attains its maximum value I (X; Y1) when
V = X . Clearly, given pX , the right-hand side of inequal-
ity (10) also attains its maximum value I (X; Y1) when V = X .
As a consequence, C2(pY1,Y2|X ) can be expressed as the set of
(R1, R2) ∈ R

2+ satisfying

R2 ≤ I (X; Y2),

R1 + R2 ≤ I (X; Y1)

for some pX,Y1,Y2 = pX pY1,Y2|X with pX ∈ P . Removing
the redundant constraint pX ∈ P completes the proof
of Proposition 3.

C. Examples

Consider a broadcast channel pY1,Y2|X with X = Y1 =
Y2 = {0, 1}, where pYi |X is a binary symmetric channel with
crossover probability pi , i = 1, 2; such a channel will be
denoted by BS-BC(p1, p2). Without loss of generality, we
shall assume 0 ≤ p1 ≤ p2 ≤ 1

2 . It is well known that
C(BS(p1, p2)) is given by the set of (R1, R2) ∈ R

2+ satisfying

R1 ≤ Hb(α ∗ p1)− Hb(p1),

R2 ≤ 1 − Hb(α ∗ p2)

for some α ∈ [0, 1
2 ]. Next consider a broadcast channel

pY1,Y2|X with X = {0, 1} and Yi = {0, 1, e}, i = 1, 2, where
pYi |X is a binary erasure channel with erasure probability εi ,
i = 1, 2; such a channel will be denoted by BE-BC(ε1, ε2).
Without loss of generality, we shall assume 0 ≤ ε1 ≤ ε2 ≤ 1.
It is well known that C(BE-BC(ε1, ε2)) is given by the set of
(R1, R2) ∈ R

2+ satisfying

R1 ≤ β(1 − ε1), (15)

R2 ≤ (1 − β)(1 − ε2) (16)

for some β ∈ [0, 1].
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The following results are simple consequences of Proposi-
tion 2 and Proposition 3.

Proposition 4: For BS-BC(p1, p2) with 0 ≤ p1 ≤ p2 ≤ 1
2 ,

C1(BS-BC(p1, p2)) = C(BS-BC(p1, p2)),

C2(BS-BC(p1, p2)) = {(R1, R2) ∈ R
2+ : R2 ≤ 1 − Hb(p2),

R1 + R2 ≤ 1 − Hb(p1)}.
Proposition 5: For BE-BC(ε1, ε2) with 0 ≤ ε1 ≤ ε2 ≤ 1,

C1(BE-BC(ε1, ε2)) = C(BE-BC(ε1, ε2)),

C2(BE-BC(ε1, ε2)) = {(R1, R2) ∈ R
2+ : R2 ≤ 1 − ε2,

R1 + R2 ≤ 1 − ε1}.
Now consider a broadcast channel pY1,Y2|X with X = Y1 =

{0, 1} and Y2 = {0, 1, e}, where pY1|X is a binary symmetric
channel with crossover probability p, and pY2|X is a binary
erasure channel with erasure probability ε; such a channel will
be denoted by BSC(p)&BEC(ε). Without loss of generality,
we shall assume p ∈ [0, 1

2 ] and ε ∈ [0, 1]. One can obtain
the following explicit characterization of C(BSC(p)&BEC(ε))
[20, Th. 4].

1) ε ∈ [0, 4 p(1− p)]: C(BSC(p)&BEC(ε)) is given by the
set of (R1, R2) ∈ R

2+ satisfying

R1 ≤ 1 − Hb(α ∗ p),

R2 ≤ (1 − ε)Hb(α)

for some α ∈ [0, 1
2 ].

2) ε ∈ (4 p(1 − p), Hb(p)): C(BSC(p)&BEC(ε)) is given
by the set of (R1, R2) ∈ R

2+ satisfying

R1 ≤ 1 − Hb(α ∗ p),

R2 ≤ (1 − ε)Hb(α)

for some α ∈ [0, α̂], or

R1 ≤ 1 − Hb(α ∗ p),

R2 ≤ Hb(α ∗ p)− ε

for some α ∈ (α̂, 1
2 ], where α̂ is the unique number in

(0, 1
2 ) satisfying

1 − Hb(α̂ ∗ p)+ (1 − ε)Hb(α̂) = 1 − ε.

3) ε ∈ [Hb(p), 1]: C(BSC(p)&BEC(ε)) is given by the set
of (R1, R2) ∈ R

2+ satisfying

R1 ≤ β[1 − Hb(p)],
R2 ≤ (1 − β)(1 − ε)

for some β ∈ [0, 1].
Proposition 6: C1(BSC(p)&BEC(ε)) has the following

explicit characterization.
1) ε ∈ [0, Hb(p)]:

C1(BSC(p)&BEC(ε)) = {(R1, R2) ∈ R
2+ :

R1 ≤ 1 − Hb(p), R1 + R2 ≤ 1 − ε}.
2) ε ∈ (Hb(p), 1]:

C1(BSC(p)&BEC(ε)) = C(BSC(p)&BEC(ε)).

Proof: According to [20, Th. 3], BEC(ε) is more capable
than BSC(p) when ε ∈ [0, Hb(p)]. Therefore, one can readily

prove Part 1) by invoking Proposition 3 as well as the fact that
I (X; Y1) and I (X; Y2) are simultaneously maximized when
pX (0) = pX (1) = 1

2 . Part 2) follows from Proposition 2 and
the fact that BSC(p) is essentially less noisy than BEC(ε)
when ε ∈ (Hb(p), 1] [20, Th. 3].

Proposition 7: C2(BSC(p)&BEC(ε)) has the following
explicit characterization.

1) ε ∈ [0, 4 p(1 − p)]:
C2(BSC(p)&BEC(ε)) = C(BSC(p)&BEC(ε)).

2) ε ∈ (4 p(1 − p), 1) and p 
= 0: C2(BSC(p)&BEC(ε)) is
given by the set of (R1, R2) ∈ R

2+ satisfying

R1 ≤ 1 − Hb(α ∗ p),

R2 ≤ (1 − ε)Hb(α)

for some α ∈ [0, α̃], or

R1 ≤ 1 − Hb(α̃ ∗ p),

R2 ≤ 1 − ε,

R1 + R2 ≤ 1 − Hb(α̃ ∗ p)+ (1 − ε)Hb(α̃)

for some α ∈ (α̃, 1
2 ], where α̃ is the unique number in

(0, 1
2 ) satisfying

(1 − 2 p) log
(1 − α̃ ∗ p

α̃ ∗ p

)

= (1 − ε) log
(1 − α̃

α̃

)

.

3) ε = 1 or p = 0:

C2(BSC(p)&BEC(ε)) = {(R1, R2) ∈ R
2+ :

R2 ≤ 1 − ε, R1 + R2 ≤ 1 − Hb(p)}.
Proof: Part 1) follows from Proposition 2 and the fact that

BEC(ε) is less noisy than BSC(p) when ε ∈ [0, 4 p(1 − p)]
[20, Th. 3]. Part 3) is trivial. For Part 2), one can readily show
that C2(BSC(p)&BEC(ε)) is given by the set of (R1, R2) ∈
R

2+ satisfying

R1 ≤ 1 − Hb(α ∗ p),

R2 ≤ 1 − ε,

R1 + R2 ≤ 1 − Hb(α ∗ p)+ (1 − ε)Hb(α)

for some α ∈ [0, 1
2 ] by following the proof of [20, Claims 2

and 3]. In light of [11, Lemma 6], when ε ∈ (4 p(1 − p), 1)
and p 
= 0, the following optimization problem

max
α∈[0, 1

2 ]
1 − Hb(α ∗ p)+ (1 − ε)Hb(α)

has a unique maximizer at α = α̃. This completes the proof
of Proposition 7.

Remark: It might be tempting to conjecture that
Proposition 2 continues to hold if “essentially less
noisy” is replaced by “essentially more capable”. How-
ever, this conjecture turns out to be false. Indeed, for
BSC(p)&BEC(ε), it is known [20, Th. 3] that BEC(ε)
is more capable (but not less noisy) than BSC(p) when
ε ∈ (4 p(1 − p), Hb(p)], yet Part 2) of Proposi-
tion 7 indicates that in this case C2(BSC(p)&BEC(ε))
is strictly larger than C(BSC(p)&BEC(ε)) (see Fig. 5).
Analogously, Proposition 3 is not true in general if “essentially
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Fig. 5. C2(BSC(p)&BEC(ε)) vs. C(BEC(ε)&BSC(p)) with p = 0.3
and ε = 0.87.

Fig. 6. C2(BSC(p)&BEC(ε)) vs. C̃2(BSC(p)&BEC(ε)) � {(R1, R2) ∈
R

2+ : R2 ≤ 1 − ε, R1 + R2 ≤ 1 − Hb(p)} with p = 0.3 and ε = 0.9.

more capable” is replaced by “essentially less noisy”. For
example, according to [20, Th. 3], BSC(p) is essentially
less noisy than BEC(ε) when ε ∈ [Hb(p), 1) and p 
= 0,
but Part 2) of Proposition 7 shows that in this case
C2(BSC(p)&BEC(ε)) is strictly larger than {(R1, R2) ∈ R

2+ :
R2 ≤ 1 − ε, R1 + R2 ≤ 1 − Hb(p)} (see Fig. 6).

Finally consider the case where pY1,Y2|X is a scalar Gaussian
broadcast channel with power constraint P and noise variances
N1 and N2 (0 < N1 ≤ N2); such a channel will be denoted by
G-BC(P, N1, N2). It is well known that C(G-BC(P, N1, N2))
is given by the set of (R1, R2) ∈ R

2+ satisfying

R1 ≤ 1

2
log

(βP + N1

N1

)

,

R2 ≤ 1

2
log

( P + N2

βP + N2

)

for some β ∈ [0, 1]. One can readily prove the following result
by adapting Proposition 2 and Proposition 3 to this channel
model.

Proposition 8: For G-BC(P, N1, N2) with 0 < N1 ≤ N2,

C1(G-BC(P, N1, N2)) = C(G-BC(P, N1, N2)),

C2(G-BC(P, N1, N2)) =
{

(R1, R2) ∈ R
2+ :

R2 ≤ 1

2
log

( P + N2

N2

)

, R1 + R2 ≤ 1

2
log

( P + N1

N1

)}

.

IV. OPTIMALITY OF SOURCE-CHANNEL

SEPARATION FOR SYSTEM �̃

Now we are in a position to state the following source-
channel separation theorem, which shows that a separation-
based scheme that consists of lossy source coding and
broadcast channel coding (see Fig. 4 and the associated
description) is optimal for System �̃. This result can be viewed
as an extension of [17, Lemma 3] from degraded broadcast
channels to general broadcast channels.

Theorem 1: (κ̃, Q̃1, Q̃2) ∈ �̃ if and only if
(RS̃1|S̃2

(Q̃1), RS̃2
(Q̃2)) ∈ κ̃C1(pY1,Y2|X ), where

RS̃1|S̃2
(Q̃1) = min

pS̃1,S̃2,Ŝ1
∈Q̃1

I (S̃1; Ŝ1|S̃2),

RS̃2
(Q̃2) = min

pS̃2,Ŝ2
∈Q̃2

I (S̃2; Ŝ2).

Proof: The proof of the “if” part hinges on a separation-
based scheme. We shall only give a sketch here since the
argument only involves standard techniques. Let Ŝ1 be jointly
distributed with (S̃1, S̃2) such that pS̃1,S̃2,Ŝ1

∈ Q̃1 and

I (S̃1; Ŝ1|S̃2) = RS̃1|S̃2
(Q̃1). Let Ŝ2 be jointly distributed

with S̃2 such that pS̃2,Ŝ2
∈ Q̃2 and I (S̃2; Ŝ2) = RS̃2

(Q̃2).
By the functional representation lemma [21, p. 626] (see also
[22, Lemma 1]), we can find a random variable W of cardi-

nality |W| ≤ |S̃2|(|Ŝ1| − 1)+ 1 with the following properties:

• W is independent of S̃2;
• Ŝ1 = ψ(S̃2,W ) for some deterministic function
ψ : S̃2 × W → Ŝ1;

• S̃1 ↔ (S̃2, Ŝ1) ↔ W form a Markov chain.

It is easy to see that

I (S̃1; Ŝ1|S̃2) = I (S̃1; W |S̃2)

= I (S̃1, S̃2; W ).

For any δ > 0, let R1 = (1 + δ)I (S̃1; Ŝ1|S̃2) and
R2 = (1 + δ)I (S̃2; Ŝ2). We independently generate 2m R1

codewords W m(m1), m1 = 1, · · · , 2m R1 , each according
to

∏m
t=1 pW , and independently generate 2m R2 codewords

Ŝm
2 (m2), m2 = 1, · · · , 2m R2 , each according to

∏m
t=1 pŜ2

.

Codebooks {W m(m1)}2m R1
m1=1 and {Ŝm

2 (m2)}2m R2
m2=1 are revealed to

the transmitter and the receivers. It can be shown that, given
(S̃m

1 , S̃m
2 ), with high probability one can find an index M1

such that (S̃m
1 , S̃m

2 ,W m (M1)) are jointly typical with respect
to pS̃1,S̃2,W

when m is large enough (see [21] for the definition
of typical sequences and the related properties). Similarly,
given S̃m

2 , with high probability one can find an index M2 such
that (S̃m

2 , Ŝm
2 (M2)) are jointly typical with respect to pS̃2,Ŝ2

.
If there is more than one such M1 (or M2), we choose the
smallest index among them; if no such M1 (or M2) exists,
we set M1 = 1 (or M2 = 1). Now a length-n coding scheme
is used to send messages M1 and M2 over broadcast channel
pY1,Y2|X to receiver 1 and receiver 2, respectively. Given S̃m

2 ,
receiver 1 can recover M2 and use it together with Y n

1 to
produce an estimate M̂1. Receiver 2 can use Y n

2 to produce
an estimate M̂2. We assume that this length-n coding scheme
is good in the sense that Mi = M̂i , i = 1, 2, with high
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probability. Note that the existence of such a good length-
n coding scheme is guaranteed by Definition 5 when n

m ≥
κ̃(1 + 2δ) and n is large enough. Receiver 1 then constructs
Ŝm

1 with

Ŝ1(t) = ψ(S̃2(t),W (M̂1, t)), t = 1, · · · ,m,

where W (M̂1, t) is the t-th entry of W m
1 (M̂1). Receiver 2

sets Ŝm
2 = Ŝm

2 (M̂2). It is easy to show that (S̃m
1 , S̃m

2 , Ŝm
1 ) are

jointly typical with respect to pS̃1,S̃2,Ŝ1
with high probability,

and (S̃m
2 , Ŝm

2 ) are jointly typical with respect to pS̃2,Ŝ2
with

high probability. This completes the proof of the “if” part.
Now we proceed to prove the “only if” part. Consider

an arbitrary tuple (κ̃, Q̃1, Q̃2) ∈ �̃. Given any ε > 0,
according to Definition 3, we can find encoding function

f (m,n) : S̃m
1 ×S̃m

2 → X n as well as decoding functions g(n,m)1 :
Yn

1 × S̃m
2 → Ŝm

1 and g(n,m)2 : Yn
2 → Ŝm

2 such that (4)-(6)
are satisfied. Let Q be a random variable independent
of (S̃m

1 , S̃m
2 , Xn,Y n

1 ,Y n
2 ) and uniformly distributed over

{1, · · · , n}. Define X = X (Q), Yi = Yi (Q), i = 1, 2, and
V = (V (Q), Q), where V (t) = (Y t−1

1 ,Y n
2,t+1, S̃m

2 ) for all t .
It is easy to verify that V ↔ X ↔ (Y1,Y2) form a Markov
chain. Note that

I (S̃m
1 ; Ŝm

1 |S̃m
2 ) ≤ I (S̃m

1 ; Y n
1 |S̃m

2 )

≤ I (S̃m
1 , S̃m

2 ; Y n
1 )

≤ I (Xn; Y n
1 )

=
n∑

t=1

I (Xn; Y1(t)|Y t−1
1 )

≤
n∑

t=1

I (Xn ,Y t−1
1 ; Y1(t))

=
n

∑

t=1

I (X (t); Y1(t))

= nI (X (Q); Y1(Q)|Q)
≤ n(Q, X (Q); Y1(Q))

= nI (X (Q); Y1(Q))

= nI (X; Y1) (17)

and

I (S̃m
2 ; Ŝm

2 ) ≤ I (S̃m
2 ; Y n

2 )

=
n∑

t=1

I (S̃m
2 ; Y2(t)|Y n

2,t+1)

≤
n

∑

t=1

I (Y t−1
1 ,Y n

2,t+1, S̃m
2 ; Y2(t))

=
n

∑

t=1

I (V (t); Y2(t))

= nI (V (Q); Y2(Q)|Q)
≤ nI (V (Q), Q; Y2(Q))

= nI (V ; Y2). (18)

Moreover,

I (S̃m
1 ; Ŝm

1 |S̃m
2 )+ I (S̃m

2 ; Ŝm
2 )

≤ I (S̃m
1 ; Y n

1 |S̃m
2 )+ I (S̃m

2 ; Y n
2 )

=
n

∑

t=1

[I (S̃m
1 ; Y1(t)|Y t−1

1 , S̃m
2 )+ I (S̃m

2 ; Y2(t)|Y n
2,t+1)]

≤
n

∑

t=1

[I (X (t); Y1(t)|Y t−1
1 , S̃m

2 )+ I (S̃m
2 ; Y2(t)|Y n

2,t+1)]

≤
n∑

t=1

[I (X (t),Y n
2,t+1; Y1(t)|Y t−1

1 , S̃m
2 )

+I (Y n
2,t+1, S̃m

2 ; Y2(t))]

=
n∑

t=1

[I (X (t); Y1(t)|Y t−1
1 ,Y n

2,t+1, S̃m
2 )

+I (Y n
2,t+1; Y1(t)|Y t−1

1 , S̃m
2 )+ I (Y n

2,t+1, S̃m
2 ; Y2(t))]

=
n∑

t=1

[I (X (t); Y1(t)|Y t−1
1 ,Y n

2,t+1, S̃m
2 )

+I (Y t−1
1 ; Y2(t)|Y n

2,t+1, S̃m
2 )+ I (Y n

2,t+1, S̃m
2 ; Y2(t))]

(19)

=
n

∑

t=1

[I (X (t); Y1(t)|Y t−1
1 ,Y n

2,t+1, S̃m
2 )

+I (Y t−1
1 ,Y n

2,t+1, S̃m
2 ; Y2(t))]

=
n

∑

t=1

[I (X (t); Y1(t)|V (t))+ I (V (t); Y2(t))]

= n[I (X (Q); Y1(Q)|V (Q), Q) + I (V (Q); Y2(Q)|Q)]
≤ n[I (X (Q); Y1(Q)|V (Q), Q) + I (V (Q), Q; Y2(Q))]
= nI (X; Y1|V )+ nI (V ; Y2), (20)

where (19) follows by the Csiszár sum identity [21, p. 25].

Let T be a random variable independent of (S̃m
1 , S̃m

2 , Ŝm
1 , Ŝm

2 )

and uniformly distributed over {1, · · · ,m}. Define S̃i = S̃i (T )
and Ŝ(ε)i = Ŝi (T ), i = 1, 2. Note that

p
S̃1,S̃2,Ŝ

(ε)
1 ,Ŝ(ε)2

= 1

m

m
∑

t=1

pS̃1(t),S̃2(t),Ŝ1(t),Ŝ2(t)
.

Moreover, we have

I (S̃m
1 ; Ŝm

1 |S̃m
2 ) =

m
∑

t=1

I (S̃1(t); Ŝm
1 |S̃t−1

1 , S̃m
2 )

=
m

∑

t=1

I (S̃1(t); Ŝm
1 , S̃t−1

1 , S̃t−1
2 , S̃n

2,t+1|S̃2(t))

≥
m

∑

t=1

I (S̃1(t); Ŝ1(t)|S̃2(t))

= m I (S̃1(T ); Ŝ1(T )|S̃2(T ), T )

= m I (S̃1(T ); Ŝ1(T ), T |S̃2(T ))

≥ m I (S̃1(T ); Ŝ1(T )|S̃2(T ))

= m I (S̃1; Ŝ(ε)1 |S̃2) (21)
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and

I (S̃m
2 ; Ŝm

2 ) =
m

∑

t=1

I (S̃2(t); Ŝm
2 |S̃t−1

2 )

=
m

∑

t=1

I (S̃2(t); Ŝm
2 , S̃t−1

2 )

≥
m

∑

t=1

I (S̃2(t); Ŝ2(t))

= m I (S̃2(T ); Ŝ2(T )|T )
= m I (S̃2(T ); Ŝ2(T ), T )

≥ m I (S̃2(T ); Ŝ2(T ))

= m I (S̃2; Ŝ(ε)2 ). (22)

It follows by (17), (18), (20), (21), and (22) that

(I (S̃1; Ŝ(ε)1 |S̃2), I (S̃2; Ŝ(ε)2 )) ∈ n

m
C1(pY1,Y2|X ).

Since {p
S̃1,S̃2,Ŝ

(ε)
1 ,Ŝ(ε)2

: ε > 0} is contained in a compact set
and

min
q̃1∈Q̃1

‖p
S̃1,S̃2,Ŝ

(ε)
1

− q̃1‖ ≤ ε,

min
q̃2∈Q̃2

‖p
S̃2,Ŝ

(ε)
2

− q̃2‖ ≤ ε

for every ε > 0, i = 1, 2, one can find a sequence ε1, ε2, · · ·
converging to zero such that

lim
k→∞ p

S̃1,S̃2,Ŝ
(εk)
1 ,Ŝ

(εk)
2

= pS̃1,S̃2,Ŝ1,Ŝ2

for some pS̃1,S̃2,Ŝ1,Ŝ2
with pS̃1,S̃2,Ŝ1

∈ Q̃1 and pS̃2,Ŝ2
∈ Q̃2.

It is clear that

I (S̃1; Ŝ1|S̃2) ≥ RS̃1|S̃2
(Q̃1),

I (S̃2; Ŝ2) ≥ RS̃2
(Q̃2).

Now the proof can be completed via a simple limiting
argument.

V. A NECESSARY CONDITION FOR THE

SOURCE BROADCAST PROBLEM

A. Necessary Condition

We shall show that the source-channel separation theorem
for System �̃ (i.e., Theorem 1) can be leveraged to establish
a necessary condition for System � via a simple reduction
argument. Let R1(pS,Ŝ1,Ŝ2

) denote the set of (R1, R2) ∈ R
2+

satisfying

R1 ≤ I (S; Ŝ1|U),
R2 ≤ I (U ; Ŝ2)

for some pU,S,Ŝ1,Ŝ2
= pU |S pS,Ŝ1,Ŝ2

. Similarly, let R2(pS,Ŝ1,Ŝ2
)

denote the set of (R1, R2) ∈ R
2+ satisfying

R1 ≤ I (U ; Ŝ1),

R2 ≤ I (S; Ŝ2|U)

for some pU,S,Ŝ1,Ŝ2
= pU |S pS,Ŝ1,Ŝ2

.

Theorem 2: For any (κ,Q1,Q2) ∈ �, there exists pS,Ŝ1,Ŝ2
with pS,Ŝi

∈ Qi , i = 1, 2, such that

Ri (pS,Ŝ1,Ŝ2
) ⊆ κCi (pY1,Y2|X ), i = 1, 2. (23)

Proof: By symmetry, it suffices to prove (23) for
i = 1. We augment the probability space by introducing a
remote source {(S̃1(t), S̃2(t))}∞t=1 such that (S̃1(t), S̃2(t), S(t)),
t = 1, 2, · · · , are independent and identically distributed over
finite alphabet S̃1 × S̃2 × S. Consider an arbitrary tuple
(κ,Q1,Q2) ∈ �. Given any ε > 0, according to Defini-
tion 1, we can find encoding function f (m,n) : Sm → X n

and decoding functions g(n,m)i : Yn
i → Ŝm

i , i = 1, 2,
satisfying (1) and (2). Let T be a random variable inde-
pendent of (S̃m

1 , S̃m
2 , Sm , Ŝm

1 , Ŝm
2 ) and uniformly distributed

over {1, · · · ,m}. Define S̃i = S̃i (T ), i = 1, 2, S = S(T ),

and Ŝ(ε)i = Ŝi (T ), i = 1, 2. It is clear that the distribution
of (S̃1, S̃2, S) is identical with that of (S̃1(t), S̃2(t), S(t)) for

every t , and (S̃1, S̃2) ↔ S ↔ (Ŝ(ε)1 , Ŝ(ε)2 ) form a Markov
chain. Moreover, we have

1

m

m
∑

t=1

pS̃1(t),S̃2(t),S(t),Ŝ1(t),Ŝ2(t)
= p

S̃1,S̃2,S,Ŝ
(ε)
1 ,Ŝ(ε)2

.

Since minqi∈Qi ‖p
S,Ŝ(ε)i

− qi‖ ≤ ε for every ε > 0, i = 1, 2,
one can find a sequence ε1, ε2, · · · converging to zero such
that

lim
k→∞ p

S̃1,S̃2,S,Ŝ
(εk)
1 ,Ŝ

(εk)
2

= pS̃1,S̃2,S,Ŝ1,Ŝ2
(24)

for some pS̃1,S̃2,S,Ŝ1,Ŝ2
with pS,Ŝi

∈ Qi , i = 1, 2. Note

that (24) implies (κ, {pS̃1,S̃2,Ŝ1
}, {pS̃2,Ŝ2

}) ∈ �̃. Therefore, it
follows from Theorem 1 that

(I (S̃1; Ŝ1|S̃2), I (S̃2; Ŝ2)) ∈ κC1(pY1,Y2|X ).

Here one can fix pS,Ŝ1,Ŝ2
and choose pS̃1,S̃2|S arbitrarily. Since

I (S̃1; Ŝ1|S̃2) ≤ I (S; Ŝ1|S̃2), there is no loss of generality in
setting S̃1 = S. Denoting S̃2 by U completes the proof of
Theorem 2.

Remark: Since C1(pY1,Y2|X ) and C2(pY1,Y2|X ) are convex
sets, it follows that (23) holds if and only if κCi(pY1,Y2|X )
contains all the extreme points of Ri (pS,Ŝ1,Ŝ2

), i = 1, 2.
One can show via a standard application of the support
lemma [21, p. 631] that, in contrast with the cardinality bound
|U | ≤ |S| + 1 for preserving Ri (pS,Ŝ1,Ŝ2

), i = 1, 2, it suffices

to have |U | ≤ |S| for the purpose of realizing all their extreme
points.

B. The Binary Uniform Source With the
Hamming Distortion Measure

In this subsection we set S = Ŝ1 = Ŝ2 = {0, 1},
pS(0) = pS(1) = 1

2 , and w1 = w2 = wH , where wH is
the Hamming distortion measure, i.e.,

wH (s, ŝ) =
{

0, s = ŝ,

1, otherwise.
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The problem is trivial2 when d1 = 1
2 or d2 = 1

2 . Therefore, we
shall focus on the non-degenerate case di ∈ [0, 1

2 ), i = 1, 2,
and assume

C(pYi |X ) � max
pX

I (X; Yi ) > 0, i = 1, 2,

correspondingly.
Proposition 9: If pS,Ŝ1,Ŝ2

is such that E[wH (S, Ŝi )] ≤ di ,
i = 1, 2, with d1 ≤ d2, then

R1(pS,Ŝ1,Ŝ2
) ⊇ C(BS-BC(d1, d2)), (25)

R2(pS,Ŝ1,Ŝ2
) ⊇ C̃(BS-BC(d1, d2)), (26)

where C(BS-BC(d1, d2)) (see Section III-C for its definition)
is given by the set of (R1, R2) ∈ R

+
2 satisfying

R1 ≤ Hb(α ∗ d1)− Hb(d1),

R2 ≤ 1 − Hb(α ∗ d2)

for some α ∈ [0, 1
2 ], and C̃(BS-BC(d1, d2)) is given by the set

of (R1, R2) ∈ R
+
2 satisfying

R1 ≤ β[1 − Hb(d1)],
R2 ≤ (1 − β)[1 − Hb(d2)]

for some β ∈ [0, 1]. Moreover,

R1(pS,Ŝ1,Ŝ2
) = C(BS-BC(d1, d2)), (27)

R2(pS,Ŝ1,Ŝ2
) = C̃(BS-BC(d1, d2)) (28)

when pŜ1,Ŝ2|S is a BS-BC(d1, d2) with d1 ≤ d2.

Proof: Let pU,S,Ŝ1,Ŝ2
= pU |S pS,Ŝ1,Ŝ2

, where pU |S is a
BSC(α) with α ∈ [0, 1

2 ]. We have

min
pŜ1|S :E[wH (S,Ŝ1)]≤d1

I (S; Ŝ1|U)

= min
pŜ1|S :E[wH (S,Ŝ1)]≤d1

I (S; Ŝ1)− I (U ; Ŝ1)

= min
pŜ1|S :E[wH (S,Ŝ1)]≤d1

H (U |Ŝ1)− H (S|Ŝ1) (29)

= min
d ′

1∈[0,d1]
Hb(α ∗ d ′

1)− Hb(d
′
1) (30)

= Hb(α ∗ d1)− Hb(d1), (31)

where (29) follows since H (S) = H (U) = 1, (30) fol-
lows from [11, Lemma 2], and (31) is due to the fact that
Hb(α ∗ d ′

1) − Hb(d ′
1) is a monotonically decreasing function

of d ′
1 for d ′

1 ∈ [0, 1
2 ]. Similarly, it can be shown that

min
pŜ2|S :E[wH (S,Ŝ2)]≤d2

I (U ; Ŝ2) = 1 − Hb(α ∗ d2). (32)

Combining (31) and (32) proves (25).
It is easy to see that (I (S; Ŝ1), 0) and (0, I (S; Ŝ2)) are

contained in R2(pS,Ŝ1,Ŝ2
). Note that

I (S; Ŝi ) ≥ 1 − Hb(di )

if E[wH (S, Ŝi )] ≤ di , i = 1, 2. Now one can read-
ily prove (26) by invoking the fact that R2(pS,Ŝ1,Ŝ2

) is a
convex set.

2In fact, it reduces to a point-to-point problem.

Since (27) is obviously true, only (28) remains to be proved.
If pŜ1,Ŝ2|S is a BS-BC(d1, d2) with d1 ≤ d2, then, for any
λ ∈ [0, 1],
λI (U ; Ŝ1)+ (1 − λ)I (S; Ŝ2|U)

= λ(1 − H (Ŝ1|U))+ (1 − λ)[H (Ŝ2|U)− Hb(d2)]
≤ max

u∈U
λ(1 − H (Ŝ1|U = u))

+ (1 − λ)[H (Ŝ2|U = u)− Hb(d2)]
≤ max

α∈[0, 1
2 ]
λ(1 − Hb(α ∗ d1))

+ (1 − λ)[Hb(α ∗ d2)− Hb(d2)].
Define v = Hb(α ∗ d1), which is a monotonically increasing
function of α. Note that

λ(1 − Hb(α ∗ d1))+ (1 − λ)[Hb(α ∗ d2)− Hb(d2)]
= λ(1 − v)+ (1 − λ)[Hb(H

−1
b (v) ∗ d)− Hb(d2)],

where d = d2−d1
1−2d1

. It follows by the convexity of

Hb(H
−1
b (v) ∗ d) in v [23, Lemma 2] that

max
α∈[0, 1

2 ]
λ(1 − Hb(α ∗ d1))+ (1 − λ)[Hb(α ∗ d2)− Hb(d2)]

= max
α∈{0, 1

2 }
λ(1 − Hb(α ∗ d1))

+ (1 − λ)[Hb(α ∗ d2)− Hb(d2)]. (33)

Therefore, we must have R2(pS,Ŝ1,Ŝ2
) ⊆ C̃(BS-BC(d1, d2)),

which together with (26), proves (28).
Remark: The proof of Proposition 9 indicates that, for the

binary uniform source with the Hamming distortion measure,
there is no loss of optimality (as far as Theorem 2 is con-
cerned) in restricting pU |S to be a binary symmetric channel,
which provides a certain justification for the choice of the
auxiliary random variable in [13].

Note that the rate pairs (C(pY1|X ), 0) and (0,C(pY2|X )) are
contained in both C1(pY1,Y2|X ) and C2(pY1,Y2|X ). It is easy to
see that C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X ) implies

1 − Hb(di ) ≤ κC(pYi |X ), i = 1, 2,

which further implies C̃(BS-BC(d1, d2)) ⊆ κC2(pY1,Y2|X )
when d1 ≤ d2. This observation, together with Proposition 9,
shows that, for the binary uniform source with the Hamming
distortion measure, Theorem 2 is equivalent to the following
more explicit result.

Theorem 3: For any (κ,Q(wH , d1),Q(wH , d2)) ∈ � with
d1 ≤ d2,

C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X ).

By symmetry, for any (κ,Q(wH , d1),Q(wH , d2)) ∈ � with
d1 ≥ d2,

C(BS-BC(d1, d2)) ⊆ κC2(pY1,Y2|X ).
Define κ� = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆

κC1(pY1,Y2|X )} if d1 ≤ d2, and κ� = min{κ ≥ 0 :
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C(BS-BC(d1, d2)) ⊆ κC2(pY1,Y2|X )} if d1 ≥ d2. It is obvious
that

κ� ≥ κ† � max
{1 − Hb(d1)

C(pY1|X )
,

1 − Hb(d2)

C(pY2|X )

}

, (34)

i.e., the necessary condition stated in Theorem 3 is at least
as strong as the one implied by the source-channel separation
theorem for point-to-point communication systems. We shall
show that in some cases it is possible to determine whether
κ� is equal to or strictly greater than κ† without an explicit
characterization of Ci (pY1,Y2|X ), i = 1, 2.

Recall that C(BS-BC(d1, d2)) with d1 ≤ d2 is given by the

the set of (R1, R2) ∈ R
2+ satisfying

R1 ≤ R1(α) � Hb(α ∗ d1)− Hb(d1), (35)

R2 ≤ R2(α) � 1 − Hb(α ∗ d2) (36)

for some α ∈ [0, 1
2 ]. It can be verified that3

dR2(α)

dR1(α)

∣
∣
∣
∣
α=0

= −
(1 − 2d2) log

(
1−d2

d2

)

(1 − 2d1) log
(

1−d1
d1

) , (37)

dR2(α)

dR1(α)

∣
∣
∣
∣
α= 1

2

= − (1 − 2d2)
2

(1 − 2d1)2
. (38)

In view of the fact that dR2(α)
dR1(α)

is a monotonically decreasing

function of α for α ∈ [0, 1
2 ], it is clear that

C(BS-BC(d1, d2))

⊆ κ
{

(R1, R2) ∈ R
2+ : R1

C(pY1|X )
+ R2

C(pY2|X )
≤ 1

}

if one of the following conditions are satisfied:

1) 1 − Hb(d1) ≤ κC(pY1|X ) and (1−2d1)
2

(1−2d2)2
≥ C(pY1|X )

C(pY2|X ) ,

2) 1 − Hb(d2) ≤ κC(pY2|X ) and
(1−2d1) log

(
1−d1

d1

)

(1−2d2) log

(
1−d2

d2

) ≤
C(pY1|X )
C(pY2|X ) .

This observation, together with (34) as well as the fact that

{

(R1, R2) ∈ R
2+ : R1

C(pY1|X )
+ R2

C(pY2|X )
≤ 1

}

⊆ C1(pY1,Y2|X ),

yields the following result.
Proposition 10: If d1 ≤ d2, then

κ� = κ† =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1−Hb(d1)
C(pY1|X ) ,

(1−2d1)
2

(1−2d2)2
≥ C(pY1|X )

C(pY2|X ) ,

1−Hb(d2)
C(pY2|X ) ,

(1−2d1) log

(
1−d1

d1

)

(1−2d2) log

(
1−d2

d2

) ≤ C(pY1|X )
C(pY2|X ) .

3We set
(1−2d2) log

(
1−d2

d2

)

(1−2d1) log
(

1−d1
d1

) = 1 when d1 = d2 = 0.

By symmetry, if d1 ≥ d2, then

κ� = κ† =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1−Hb(d2)
C(pY2|X ) ,

(1−2d2)
2

(1−2d1)2
≥ C(pY2|X )

C(pY1|X ) ,

1−Hb(d1)
C(pY1|X ) ,

(1−2d2) log

(
1−d2

d2

)

(1−2d1) log

(
1−d1

d1

) ≤ C(pY2|X )
C(pY1|X ) .

Remark: A simple sufficient condition for
(κ,Q(wH , d1),Q(wH , d2)) ∈ � is that

max{1 − Hb(d1), 1 − Hb(d2)} ≤ κC(pY1|X , pY2|X ),

where C(pY1|X , pY2|X ) � maxpX min{I (X; Y1), I (X; Y2)}
is the capacity of the compound channel {pY1|X , pY2|X }.
Proposition 10 indicates that this sufficient condition is also
necessary when C(pY1|X , pY2|X ) = C(pY1|X ) and d1 ≤ d2
(or C(pY1|X , pY2|X ) = C(pY2|X ) and d1 ≥ d2). For
the special case d1 = d2 = d , it can be shown that
(κ,Q(wH , d),Q(wH , d)) ∈ � if and only if

1 − Hb(d) ≤ κC(pY1|X , pY2|X ).

On the other hand, for this special case, Proposition 10 gives

κ� = κ† = max
{1 − Hb(d)

C(pY1|X )
,

1 − Hb(d)

C(pY2|X )

}

.

Since C(pY1|X , pY2|X ) can be strictly smaller than
min{C(pY1|X ),C(pY2|X )}, the necessary condition stated
in Theorem 3 is not sufficient in general.

For every R1 ∈ [0,C(pY1|X )], we set

φ(R1) = max{R2 : (R1, R2) ∈ C1(pY1,Y2|X )}.
Note that φ : [0,C(pY1|X )] → [0,C(pY2|X )] is monotonically
decreasing and concave. Define

φ′+(0) = lim
R1↓0

C(pY2|X )− φ(R1)

R1
,

φ′−(C(pY1|X )) = lim
R1↑C(pY1|X )

φ(R1)

C(pY1|X )− R1
.

Similarly, we set

ϕ(R2) = max{R1 : (R1, R2) ∈ C2(pY1,Y2|X )}
for every R2 ∈ [0,C(pY2|X )], and define

ϕ′+(0) = lim
R2↓0

C(pY1|X )− ϕ(R2)

R2
,

ϕ′−(C(pY2|X )) = lim
R2↑C(pY2|X )

ϕ(R2)

C(pY2|X )− R2
.

Now consider the case d1 ≤ d2. It is clear that we must have
1 − Hb(d1) < κ

�C(pY1|X ) if

(1 − 2d2)
2

(1 − 2d1)2
> φ′−(C(pY1|X )); (39)

similarly, we must have 1 − Hb(d2) < κ�C(pY2|X ) if

(1 − 2d2) log
(

1−d2
d2

)

(1 − 2d1) log
(

1−d1
d1

) < φ′+(0); (40)

moreover, since φ′+(0) ≤ φ′−(C(pY1|X )), it follows
that (39) and (40) cannot be satisfied simultaneously
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when d1 = d2. The following result is a simple consequence
of this observation.

Proposition 11: When d1 < d2, we have κ� > κ† if

(1 − 2d2) log
(

1−d2
d2

)

(1 − 2d1) log
(

1−d1
d1

) < φ′+(0),

(1 − 2d2)
2

(1 − 2d1)2
> φ′−(C(pY1|X )).

By symmetry, when d1 > d2, we have κ� > κ† if

(1 − 2d1) log
(

1−d1
d1

)

(1 − 2d2) log
(

1−d2
d2

) < ϕ′+(0),

(1 − 2d1)
2

(1 − 2d2)2
> ϕ′−(C(pY2|X )).

A channel pY |X : X → Y with X = {0, 1, · · · ,M − 1}
for some integer M ≥ 2 is said to be circularly symmetric
[24, Definition 1] (see also [20, Definition 4]) if there exists
a bijective function μ : Y → Y such that μM (y) = y and
pY |X (μx (y)|x) = pY |X (y|0) for all (x, y) ∈ X × Y , where
μk denotes the k-times self-composition of μ (with μ0 being
the identity function). Note that the binary symmetric channel
is circularly symmetric with μ : {0, 1} → {0, 1} given by

μ(y) =
{

1, y = 0,

0, y = 1;
the binary erasure channel is also circularly symmetric, and
the associated μ : {0, 1, e} → {0, 1, e} is given by

μ(y) =

⎧

⎪⎨

⎪⎩

1, y = 0,

0, y = 1,

e, y = e.

Proposition 12: If both pY1|X and pY2|X are circularly sym-
metric, then

κ� = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆ κC(pY1,Y2|X )}.
Proof: By symmetry, it suffices to consider the case

d1 ≤ d2. Let Csc(pY1,Y2|X ) denote the superposition coding
inner bound of C(pY1,Y2|X ), i.e., the set of (R1, R2) ∈ R

2+
satisfying

R2 ≤ I (V ; Y2),

R1 + R2 ≤ I (X; Y1|V )+ I (V ; Y2),

R1 + R2 ≤ I (X; Y1)

for some pV ,X,Y1,Y2 = pV ,X pY1,Y2|X . In light of
[20, Lemma 2], the uniform distribution on X forms a suf-
ficient class of distributions for broadcast channel pY1,Y2|X if
both pY1|X and pY2|X are circularly symmetric. As a conse-
quence, one can readily show that

Csc(pY1,Y2|X )
= C1(pY1,Y2|X ) ∩ {(R1, R2) : R1 + R2 ≤ C(pY1|X )}.

Note that, if C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X ), then we must
have

1 − Hb(d1) ≤ κC(pY1|X ),

which, together with the fact that dR2(α)
dR1(α)

∈ [−1, 0] for

α ∈ [0, 1
2 ], implies

C(BS-BC(d1, d2)) ⊆ κ{(R1, R2) : R1 + R2 ≤ C(pY1|X )}.
Therefore,

C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X )
⇒ C(BS-BC(d1, d2)) ⊆ κCsc(pY1,Y2|X ).

Since Csc(pY1,Y2|X ) ⊆ C(pY1,Y2|X ) ⊆ C1(pY1,Y2|X ), the proof
is complete.

Now we proceed to consider several concrete examples.
1) BS-BC(p1, p2): First consider the case where pY1,Y2|X

is a BS-BC(p1, p2) with 0 ≤ p1 ≤ p2 < 1
2 . Without

loss of generality, we shall assume d1 ≤ d2. By Theorem 3
and Proposition 4 (or by Theorem 3 and Proposition 12), if
(κ,Q(wH , d1),Q(wH , d2)) ∈ �, then

C(BS-BC(d1, d2)) ⊆ κC(BS-BC(p1, p2)). (41)

On the other hand, the necessary condition implied by the
source-channel separation theorem for point-to-point commu-
nication systems is

1 − Hb(di) ≤ κ[1 − Hb(pi)], i = 1, 2. (42)

For the special case κ = 1, both (41) and (42) reduce to

di ≥ pi , i = 1, 2,

which is achievable by the uncoded scheme.
In view of Proposition 4 as well as (37) and (38), we have

φ′+(0) =
(1 − 2 p2) log

(
1−p2

p2

)

(1 − 2 p1) log
(

1−p1
p1

) ,

φ′−(C(pY1|X )) = (1 − 2 p2)
2

(1 − 2 p1)2
.

Hence, it follows from Proposition 11 that κ� > κ† if

(1 − 2d2) log
(

1−d2
d2

)

(1 − 2d1) log
(

1−d1
d1

) <
(1 − 2 p2) log

(
1−p2

p2

)

(1 − 2 p1) log
(

1−p1
p1

) , (43)

(1 − 2d2)
2

(1 − 2d1)2
>
(1 − 2 p2)

2

(1 − 2 p1)2
. (44)

For example, (43) and (44) are satisfied when d1 = 0.035,
d2 = 0.095, p1 = 0.15, and p2 = 0.2.

2) BE-BC(ε1, ε2): Next consider the case where pY1,Y2|X
is a BE-BC(ε1, ε2) with 0 ≤ ε1 ≤ ε2 < 1. Without loss of
generality, we shall assume d1 ≤ d2. By Proposition 5 (or by
Proposition 12),

κ� = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆ κC(BE-BC(ε1, ε2))},
where the expressions of C(BS-BC(d1, d2)) and
C(BE-BC(ε1, ε2)) can be found in (35)-(36) and (15)-(16),
respectively. It is clear that, for any α ∈ [0, 1

2 ], there exists
β ∈ [0, 1] such that

Hb(α ∗ d1)− Hb(d1) ≤ κ�β(1 − ε1), (45)

1 − Hb(α ∗ d2) ≤ κ�(1 − β)(1 − ε2), (46)
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which implies

κ� ≥ Hb(α ∗ d1)− Hb(d1)

1 − ε1
+ 1 − Hb(α ∗ d2)

1 − ε2
(47)

for any α ∈ [0, 1
2 ]. Moreover, the equalities must hold

in (45) and (46) for some α ∈ [0, 1
2 ] and β ∈ [0, 1];

as a consequence, the equality must hold in (47) for some
α ∈ [0, 1

2 ]. Therefore, we have

κ� = max
α∈[0, 1

2 ]
Hb(α ∗ d1)− Hb(d1)

1 − ε1
+ 1 − Hb(α ∗ d2)

1 − ε2
, (48)

from which one can readily recover [13, Th. 1] by invoking
Theorem 3. In light of [11, Lemma 2], for the optimization
problem in (48), the maximum value is not attained at α = 0
or α = 1

2 if and only if

(1 − 2d2) log
(

1−d2
d2

)

(1 − 2d1) log
(

1−d1
d1

) <
1 − ε2

1 − ε1
<
(1 − 2d2)

2

(1 − 2d1)2
,

which gives the necessary and sufficient condition for
κ� > κ† to hold. The same condition can be obtained through
Proposition 10 and Proposition 11.

3) BSC(p)&BEC(ε): Finally consider the case where
pY1,Y2|X is a BSC(p)&BEC(ε) with p ∈ [0, 1

2 ) and ε ∈ [0, 1).
By Proposition 12,

κ� = min{κ ≥ 0 : C(BS-BC(d1, d2))

⊆ κC(BSC(p)&BEC(ε))}. (49)

Note that

κ� ≥ κ† = max
{1 − Hb(d1)

1 − Hb(p)
,

1 − Hb(d2)

1 − ε

}

.

For the case d1 ≤ d2, in view of the expression of
C(BSC(p)&BEC(ε)) (see Section III-C) and the fact that
dR2(α)
dR1(α)

∈ [−1, 0] for α ∈ [0, 1
2 ], one can readily verify that

C(BS-BC(d1, d2)) ⊆ κC(BSC(p)&BEC(ε))

⇔ C(BS-BC(d1, d2)) ⊆ κC(BE-BC(Hb(p), ε));
as a consequence,

κ� = max
α∈[0, 1

2 ]
Hb(α ∗ d1)− Hb(d1)

1 − Hb(p)
+ 1 − Hb(α ∗ d2)

1 − ε
,

and we have κ� > κ† if and only if

(1 − 2d2) log
(

1−d2
d2

)

(1 − 2d1) log
(

1−d1
d1

) <
1 − ε

1 − Hb(p)
<
(1 − 2d2)

2

(1 − 2d1)2
.

For the case d1 ≥ d2, we shall show that

C(BS-BC(d1, d2)) ⊆ κC(BSC(p)&BEC(ε))

⇔ C(BS-BC(d1, d2)) ⊆ κ C̃(BSC(p)&BEC(ε)), (50)

where C̃(BSC(p)&BEC(ε)) is given by the set4 of (R1, R2) ∈
R

2+ satisfying

R1 ≤ 1 − Hb(α ∗ p),

R2 ≤ (1 − ε)Hb(α)

4It follows from [23, Lemma 2] that C̃(BSC(p)&BEC(ε)) is a convex set.

for some ε ∈ [0, 1
2 ]. It is easy to see that (50) is true when

ε ∈ [Hb(p), 1); moreover,

C(BSC(p)&BEC(ε))

= C̃(BSC(p)&BEC(ε)) ∩ {(R1, R2) : R1 + R2 ≤ 1 − ε}
when ε ∈ [0, Hb(p)). Combining this observation with the
fact that

C(BS-BC(d1, d2)) ⊆ κ C̃(BSC(p)&BEC(ε))

⇒ 1 − Hb(d2) ≤ κ(1 − ε)
d1≥d2⇒ C(BS-BC(d1, d2)) ⊆ κ{(R1, R2) : R1 + R2 ≤ 1 − ε}

proves (50). Now we proceed to show that5 κ� = κ† if κ† ≥ 1.
In view of (49) and (50), it suffices to show that, if κ† ≥ 1,
then

1 − Hb(α ∗ d1) ≤ κ†[1 − Hb(α ∗ p)], (51)

Hb(α ∗ d2)− Hb(d2) ≤ κ†(1 − ε)Hb(α) (52)

for any α ∈ [0, 1
2 ]. Note that (51) and (52) hold when α = 0

or α = 1
2 . Moreover, κ† ≥ 1 implies p ≥ d1. Therefore, an

argument similar to that for (33) can be used here to finish
the proof.

VI. THE QUADRATIC GAUSSIAN CASE

Let {S(t)}∞t=1 in System � be an i.i.d. vector Gaussian
process, where each S(t) is an � × 1 zero-mean Gaussian
random vector with positive definite covariance matrix �S .
The following definition is the quadratic Gaussian counterpart
of Definition 1.

Definition 6: Let κ be a non-negative number and Di be a
non-empty compact set of �×� positive semi-definite matrices,
i = 1, 2. We say (κ,D1,D2) is achievable for System � if, for
every ε > 0, there exist encoding function f (m,n) : R

�×m →
X n and decoding functions g(n,m)i : Yn

i → R
�×m , i = 1, 2,

such that
n

m
≤ κ + ε,

min
Di∈Di

∥
∥
∥
∥
∥

1

m

m
∑

t=1

E[(S(t)− Ŝi (t))(S(t)− Ŝi (t))
T ]−Di

∥
∥
∥
∥
∥

≤ ε,

i = 1, 2.

The set of all achievable (κ,D1,D2) for System � is denoted
by �G .

Remark: It is clear that (κ,D1,D2) ∈ �G if and only if
(κ, D̄1, D̄2) ∈ �G , where

D̄i =
⋃

Di∈Di

{D′
i : 0 � D′

i � Di }, i = 1, 2.

Furthermore, to determine whether or not (κ, D̄1, D̄2) ∈ �G ,

there is no loss of generality in setting Ŝm
i = E[Sm |Y n

i ],
i = 1, 2, for which we have

1

m

m
∑

t=1

E[(S(t)− Ŝi (t))(S(t) − Ŝi (t))
T ] � �S, i = 1, 2.

5This result is not implied by Proposition 10.
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Therefore, it suffices to consider those D1 and D2 with the
property that

Di = D̄i ∩ {D : 0 � D � �S}, i = 1, 2. (53)

Henceforth we shall implicitly assume that (53) is satisfied.
Now we proceed to introduce the corresponding System �̃

in the quadratic Gaussian setting and establish its associated
source-channel separation theorem. Let S̃ � (S̃T

1 , S̃T
2 )

T be
an �̃ × 1 zero-mean Gaussian random vector with positive
definite covariance matrix �S̃ , where S̃i is an �̃i × 1 random
vector, and its covariance matrix is denoted by �S̃i

, i = 1, 2.

Let {(S̃1(t), S̃2(t))}∞t=1 be i.i.d. copies of (S̃1, S̃2), and define

S̃(t) = (S̃T
1 (t), S̃T

2 (t))
T , t = 1, 2, · · · .

Definition 7: Let κ̃ be a non-negative number, D̃1 be a non-
empty compact subset of {D̃1 : 0 � D̃1 � �S̃}, and D̃2 be a
non-empty compact subset of {D̃2 : 0 � D̃2 � �S̃2

}. We say

(κ̃, D̃1, D̃2) is achievable for System �̃ if, for every ε > 0,
there exist an encoding function f (m,n) : R

�̃1×m × R
�̃2×m →

X n as well as decoding functions g(n,m)1 : Yn
1 × R

�̃2×m →
R
�̃×m and g(n,m)2 : Yn

2 → R
�̃2×m such that

n

m
≤ κ̃ + ε,

min
D̃1∈D̃1

∥
∥
∥
∥
∥

m
∑

t=1

E[(S̃(t)− Ŝ1(t))(S̃(t)− Ŝ1(t))
T ] − D̃1

∥
∥
∥
∥
∥

≤ ε,

min
D̃2∈D̃2

∥
∥
∥
∥
∥

m
∑

t=1

E[(S̃2(t)− Ŝ2(t))(S̃2(t)− Ŝ2(t))
T ] − D̃2

∥
∥
∥
∥
∥

≤ ε.

The set of all achievable (κ̃, D̃1, D̃2) for System �̃ is denoted
by �̃G .

Remark: Here we allow f (m,n), g(n,m)1 , and g(n,m)2 to be
non-deterministic functions as long as the Markov chains
(S̃m

1 , S̃m
2 ) ↔ Xn ↔ (Y n

1 ,Y n
2 ), S̃m

1 ↔ (Y n
1 , S̃m

2 ) ↔ Ŝm
1 , and

S̃m
2 ↔ Y n

2 ↔ Ŝm
2 are preserved.

Note that

�S̃ =
(

�S̃1
�S̃1,S̃2

�S̃2,S̃1
�S̃2

)

,

where �S̃1,S̃2
= E[S̃1 S̃T

2 ] and �S̃2,S̃1
= E[S̃2 S̃T

1 ]. Moreover,
we write

D̃1 =
(

D̃1,1 D̃1,2
D̃2,1 D̃2,2

)

for any D̃1 ∈ D̃1, where D̃i,i is an �̃i × �̃i matrix, i = 1, 2.
The following source-channel separation theorem is a simple
translation of Theorem 1 to the quadratic Gaussian setting. Its
proof is omitted.

Theorem 4: (κ̃, D̃1, D̃2) ∈ �̃G if and only if
(RS̃1|S̃2

(D̃1), RS̃2
(D̃2)) ∈ κ̃C1(pY1,Y2|X ), where

RS̃1|S̃2
(D̃1) = min

D̃1∈D̃1

1

2
log

( |�S̃1
−�S̃1,S̃2

�−1
S̃2
�S̃2,S̃1

|
|D̃1,1 − K D̃2,1|

)

,

RS̃2
(D̃2) = min

D̃2∈D̃2

1

2
log

( |�S̃2
|

|D̃2|
)

with K being any solution6 of K D̃2,2 = D̃1,2.

6If D̃2,2 is invertible, then K = D̃1,2 D̃−1
2,2.

Remark: It can be verified that

RS̃1|S̃2
(D̃1) = min

pŜ1|S̃ :E[(S̃−Ŝ1)(S̃−Ŝ1)T ]∈D̃1

I (S̃1; Ŝ1|S̃2),

RS̃2
(D̃2) = min

pŜ2|S̃2
:E[(S̃2−Ŝ2)(S̃2−Ŝ2)T ]∈D̃2

I (S̃2; Ŝ2),

which highlights the similarity between Theorem 1 and
Theorem 4.

Again, in the quadratic Gaussian setting, the source-channel
separation theorem for System �̃ can be leveraged to derive a
necessary condition for System �. For any Di ∈ Di , i = 1, 2,
let R1(�S, D1, D2) denote the convex closure of the set of
(R1, R2) ∈ R

2+ satisfying

R1 ≤ 1

2
log

( |�S ||D1 +�Z |
|D1||�S +�Z |

)

,

R2 ≤ 1

2
log

( |�S +�Z |
|D2 +�Z |

)

for some �Z � 0, and let R2(�S, D1, D2) denote the convex
closure of the set of (R1, R2) ∈ R

2+ satisfying

R1 ≤ 1

2
log

( |�S +�Z |
|D1 +�Z |

)

,

R2 ≤ 1

2
log

( |�S||D2 +�Z |
|D2||�S +�Z |

)

for some �Z � 0. By setting �U = �S(�S + �Z )
−1�S , we

can write R1(�S, D1, D2) equivalently as the convex hull of
the set of (R1, R2) ∈ R

2+ such that

R1 ≤ 1

2
log

( |�U�
−1
S D1 +�S −�U |

|D1|
)

,

R2 ≤ 1

2
log

( |�S|
|�U�

−1
S D2 +�S −�U |

)

for some �U satisfying 0 � �U � �S ; similarly,
R2(�S, D1, D2) can be written equivalently as the convex hull
of the set of (R1, R2) ∈ R

2+ such that

R1 ≤ 1

2
log

( |�S|
|�U�

−1
S D1 +�S −�U |

)

,

R2 ≤ 1

2
log

( |�U�
−1
S D2 +�S −�U |

|D2|
)

for some �U satisfying 0 � �U � �S .
Let S be an �× 1 zero-mean Gaussian random vector with

positive definite covariance matrix �S . Recall the definition of
Ri (pS,Ŝ1,Ŝ2

), i = 1, 2 in Section V. The following result pro-
vides a connection between Ri (�S, D1, D2) and Ri (pS,Ŝ1,Ŝ2

),
i = 1, 2.

Proposition 13: If E[(S − Ŝi )(S − Ŝi )
T ] = Di ∈ Di ,

i = 1, 2, then

Ri (pS,Ŝ1,Ŝ2
) ⊇ Ri (�S, D1, D2), i = 1, 2. (54)

Moreover, if S−Ŝi and Ŝi are independent zero-mean Gaussian
random vectors with covariance matrices Di and �S − Di ,
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respectively, i = 1, 2, where 0 � D1 � D2 � �S , then

R1(pS,Ŝ1,Ŝ2
) = R1(�S, D1, D2), (55)

R2(pS,Ŝ1,Ŝ2
) ⊆

{

(R1, R2) ∈ R
2+ : R2 ≤ 1

2
log

( |�S |
|D2|

)

,

R1 + R2 ≤ 1

2
log

( |�S|
|D1|

)}

. (56)

Proof: By symmetry, it suffices to prove (54) for i = 1.
Given any �U satisfying 0 � �U � �S , we can find U jointly
distributed with S such that U and S − U are independent
zero-mean Gaussian random vectors with covariance matrices
�U and �S − �U , respectively. Note that for any (Ŝ1, Ŝ2)
jointly distributed with such (U, S) subject to the constraints
that E[(S − Ŝi )(S − Ŝi )

T ] = Di ∈ Di , i = 1, 2, and that
U ↔ S ↔ (Ŝ1, Ŝ2) form a Markov chain, we have

I (S; Ŝ1|U) ≥ 1

2
log

( |�U�
−1
S D1 + �S −�U |

|D1|
)

, (57)

I (U ; Ŝ2) ≥ 1

2
log

( |�S|
|�U�

−1
S D2 +�S − �U |

)

, (58)

where the equalities in (57) and (58) hold when S − Ŝi

and Ŝi are independent zero-mean Gaussian random vectors
with covariance matrices Di and �S − Di , respectively,
i = 1, 2. Now the desired result follows by the convexity
of R1(pS,Ŝ1,Ŝ2

).

To prove (55), it suffices to consider the non-degenerate case
0 ≺ D1 � D2 ≺ �S ; the general case 0 � D1 � D2 � �S

can be proved via a simple limiting argument. Let Oi be a
zero-mean Gaussian random vector, independent of (U, S),
with covariance matrix �Oi = (D−1

i −�−1
S )−1, i = 1, 2. It is

clear that

I (S; Ŝ1|U) = I (S; S + O1|U),
I (U ; Ŝ2) = I (U ; S + O2).

For any λ ∈ [0, 1],
max

(R1,R2)∈R1(pS,Ŝ1,Ŝ2
)
λR1 + (1 − λ)R2

= max
pU |S

λI (S; Ŝ1|U)+ (1 − λ)I (U ; Ŝ2)

= max
pU |S

λI (S; S + O1|U)+ (1 − λ)I (U ; S + O2)

= max
0��U ��S

λ

2
log

( |�S −�U +�O1 |
|�O1 |

)

+ 1 − λ

2
log

( |�S + �O2 |
|�S −�U +�O2 |

)

(59)

= max
0��U ��S

λ

2
log

( |�U�
−1
S D1 +�S − �U |

|D1|
)

+ 1 − λ

2
log

( |�S |
|�U�

−1
S D2 +�S −�U |

)

= max
(R1,R2)∈R1(�S,D1,D2)

λR1 + (1 − λ)R2,

where (59) is due to the conditional version of
[25, Corollary 4]. This together with the convexity of
R1(pS,Ŝ1,Ŝ2

) and R1(�S, D1, D2) proves (55). It can be

verified that

I (S; Ŝ2|U) ≤ I (S; Ŝ2)

= 1

2
log

( |�S |
|D2|

)

and

I (U ; Ŝ1)+ I (S; Ŝ2|U) ≤ I (U ; Ŝ1)+ I (S; Ŝ1|U)
= I (S; Ŝ1)

= 1

2
log

( |�S|
|D1|

)

,

from which (56) follows immediately.
Theorem 5: For any (κ,D1,D2) ∈ �G , there exist Di ∈ Di ,

i = 1, 2, such that

Ri (�S, D1, D2) ⊆ κCi(pY1,Y2|X ), i = 1, 2. (60)
Proof: By symmetry, it suffices to prove (60) for i = 1.

Let {Z(t)}∞t=1 be an i.i.d. vector Gaussian process, independent
of {S(t)}∞t=1, where each Z(t) is an �×1 zero-mean Gaussian
random vector with positive definite covariance matrix �Z .
Define S̃1(t) = S(t) and S̃2(t) = S(t)+ Z(t) for t = 1, 2, · · · .
Now consider an arbitrary tuple (κ,D1,D2) ∈ �G . Given
any ε > 0, according to Definition 6, there exist encoding
function f (m,n) : R

�×m → X n and decoding functions
g(n,m)i : Yn

i → R
�×m , i = 1, 2, satisfying7

n

m
≤ κ + ε,

min
Di∈Di

∥
∥
∥
∥
∥

1

m

m
∑

t=1

E[(S(t)− Ŝ(ε)i (t))(S(t)− Ŝ(ε)i (t))T ]−Di

∥
∥
∥
∥
∥

≤ ε,

i = 1, 2.

Therefore, one can find a sequence ε1, ε2, · · · converging to
zero such that

lim
k→∞

1

m

m
∑

t=1

E[(S(t)− Ŝ(εk)
i (t))(S(t) − Ŝ(εk)

i (t))T ] = Di

(61)

for some Di ∈ Di , i = 1, 2. Note that

lim
k→∞

1

m

m
∑

t=1

E[(S̃1(t)− Ŝ(εk)
1 (t))(S̃1(t)− Ŝ(εk)

1 (t))T ]

= lim
k→∞

1

m

m
∑

t=1

E[(S̃1(t)− Ŝ(εk)
1 (t))(S̃2(t)− Ŝ(εk)

1 (t))T ]

= lim
k→∞

1

m

m
∑

t=1

E[(S̃2(t)− Ŝ(εk)
1 (t))(S̃1(t)− Ŝ(εk)

1 (t))T ]

= D1,

lim
k→∞

1

m

m
∑

t=1

E[(S̃2(t)− Ŝ(εk)
1 (t))(S̃2(t)− Ŝ(εk)

1 (t))T ]

= D1 +�Z ,

lim
k→∞

1

m

m
∑

t=1

E[(S̃2(t)− Ŝ(εk)
2 (t))(S̃2(t)− Ŝ(εk)

2 (t))T ]

= D̃2 � D2 +�Z .

7We have denoted Ŝi (t) by Ŝ(ε)i (t) to stress its dependence on ε.
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As a consequence, we must have (κ, {D̃1}, {D̃2}) ∈ �̃G , where

D̃1 =
(

D1 D1
D1 D1 +�Z

)

.

It then follows from Theorem 4 that
(1

2
log

( |�S − �S(�S +�Z )
−1�S |

|D1 − D1(D1 +�Z )−1 D1|
)

,
1

2
log

( |�S +�Z |
|D2 +�Z |

))

∈ κC1(pY1,Y2|X ).

Here one can fix (D1, D2) and choose the positive definite
covariance matrix �Z arbitrarily; moreover, it can be verified
that

|�S −�S(�S + �Z )
−1�S |

|D1 − D1(D1 + �Z )−1 D1| = |D−1
1 +�−1

Z |
|�−1

S +�−1
Z |

= |�S ||D1 +�Z |
|D1||�S +�Z | .

This completes the proof of Theorem 5.
Note that R1(�S, D1, D2) coincides with the capacity

region of vector Gaussian broadcast channel with covariance
power constraint �S and noise covariances �i � (D−1

i −
�−1

S )−1, i = 1, 2, when 0 ≺ D1 � D2 ≺ �S . For
this reason, we shall denote R1(�S, D1, D2) alternatively
by C(G-BC(�S,�1,�2)) (even when �1 and �2 are not
well-defined). One can obtain the following refined necessary
condition for the case where pY1,Y2|X is a scalar Gaussian
broadcast channel.

Theorem 6: If pY1,Y2|X is a G-BC(P, N1, N2) with
0 < N1 ≤ N2, then, for any (κ,D1,D2) ∈ �G , there exist
Di ∈ Di , i = 1, 2, with D1 � D2 such that

C(G-BC(�S,�1,�2)) ⊆ κC(G-BC(P, N1, N2)).
Proof: According to the remark after Definition 6, there

is no loss of generality in setting Ŝm
i = E[Sm |Y n

i ], i = 1, 2.
As a consequence, in (61) we must have D1 � D2 if pY2|X
is degraded with respect to pY1|X . Now one can readily adapt
the proof of Theorem 5 to the current setting to show that,
for any (κ,D1,D2) ∈ �G , there exist Di ∈ Di , i = 1, 2, with
D1 � D2, such that

Ri (�S, D1, D2) ⊆ κCi (G-BC(P, N1, N2)), i = 1, 2.

(62)

It follows from Proposition 8 that C1(G-BC(P, N1, N2)) =
C(G-BC(P, N1, N2)), and C2(G-BC(P, N1, N2)) is given by
the set of (R1, R2) ∈ R

2+ satisfying

R2 ≤ 1

2
log

( P + N2

N2

)

,

R1 + R2 ≤ 1

2
log

( P + N1

N1

)

.

Note that R1(�S, D1, D2) ⊆ κC1(G-BC(P, N1, N2)) implies

1

2
log

( |�S|
|Di |

)

≤ κ

2
log

( P + Ni

Ni

)

, i = 1, 2.

Moreover, in view of (54) and (56) in Proposition 13, we have

R2(�S, D1, D2) ⊆
{

(R1, R2) ∈ R
2+ : R2 ≤ 1

2
log

( |�S |
|D2|

)

,

R1 + R2 ≤ 1

2
log

( |�S |
|D1|

)}

.

Therefore,

R1(�S, D1, D2) ⊆ κC1(G-BC(P, N1, N2))

⇒ R2(�S, D1, D2) ⊆ κC2(G-BC(P, N1, N2))

when 0 � D1 � D2 � �S . This completes the proof of
Theorem 6.

For the case 0 � D1 � D2 � �S , one can show
by leveraging Proposition 13 that (62) is equivalent to the
existence of (Ŝ1, Ŝ2) with E[(S − Ŝi )(S − Ŝi )

T ] = Di ∈ Di ,
i = 1, 2, such that

Ri (pS,Ŝ1,Ŝ2
) ⊆ κCi (G-BC(P, N1, N2)), i = 1, 2;

in fact, there is no loss of generality in assuming that S−Ŝi and
Ŝi are independent zero-mean Gaussian random vectors with
covariance matrices Di and �S − Di , respectively, i = 1, 2.
Note that U is not restricted to the form U = S + Z (or
equivalently U = E[S|S+Z ]) in the definition of Ri (pS,Ŝ1,Ŝ2

),
i = 1, 2, where Z is a zero-mean Gaussian random vector
independent of S. Therefore, removing this restriction does
not lead to a stronger necessary condition. This provides a
certain justification for the choice of the auxiliary random
variable in [3].

With no essential loss of generality, henceforth we focus on
the non-degenerate case κ > 0. Define

P� = min{P ≥ 0 : C(G-BC(�S,�1,�2))

⊆ κC(G-BC(P, N1, N2))}.

It is clear that, for any �Z � 0, there exists β ∈ [0, 1] such
that

1

2
log

( |�S ||D1 +�Z |
|D1||�S +�Z |

)

≤ κ

2
log

(βP� + N1

N1

)

,

1

2
log

( |�S +�Z |
|D2 +�Z |

)

≤ κ

2
log

( P� + N2

βP� + N2

)

,

which can be rewritten as

βP� ≥ N1

( |�S ||D1 +�Z |
|D1||�S +�Z |

) 1
κ − N1,

βP� ≤ (P� + N2)
( |D2 +�Z |
|�S +�Z |

) 1
κ − N2.

Hence, for any �Z � 0, we have

(P� + N2)
( |D2 + �Z |

|�S +�Z |
) 1
κ − N2

≥ N1

( |�S ||D1 +�Z |
|D1||�S +�Z |

) 1
κ − N1,

i.e.,

P� ≥ N1

( |�S ||D1 +�Z |
|D1||D2 +�Z |

) 1
κ

+ (N2 − N1)
( |�S +�Z |

|D2 + �Z |
) 1
κ − N2. (63)
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Moreover, there must exist some β ∈ [0, 1] and a sequence of
positive definite matrices �(k)Z , k = 1, 2, · · · , such that

lim
k→∞

1

2
log

( |�S ||D1 +�
(k)
Z |

|D1||�S +�
(k)
Z |

)

= κ

2
log

(βP� + N1

N1

)

,

lim
k→∞

1

2
log

( |�S + �
(k)
Z |

|D2 +�
(k)
Z |

))

= κ

2
log

( P� + N2

βP� + N2

)

,

which implies

P� = lim
k→∞ N1

( |�S ||D1 +�
(k)
Z |

|D1||D2 +�
(k)
Z |

) 1
κ

+ (N2 − N1)
( |�S +�

(k)
Z |

|D2 + �
(k)
Z |

) 1
κ − N2. (64)

Combining (63) and (64) gives

P� = sup
�Z �0

N1

( |�S ||D1 +�Z |
|D1||D2 +�Z |

) 1
κ

+ (N2 − N1)
( |�S +�Z |

|D2 +�Z |
) 1
κ − N2. (65)

Therefore, by Theorem 6, if (κ,D1,D2) ∈ �G , then

P ≥ inf
D1,D2

sup
�Z�0

N1

( |�S ||D1 +�Z |
|D1||D2 +�Z |

) 1
κ

+ (N2 − N1)
( |�S +�Z |

|D2 + �Z |
) 1
κ − N2, (66)

where the infimum is over D1 and D2 subject to the constraints
Di ∈ Di , i = 1, 2, and D1 � D2. For the case where
Di = {Di : 0 � Di � �i }, i = 1, 2, for some �1 and �2
satisfying 0 ≺ �1 � �2 � �S , we can simplify (66) to

P ≥ sup
�Z�0

N1

( |�S ||�1 +�Z |
|�1||�2 +�Z |

) 1
κ

+ (N2 − N1)
( |�S +�Z |

|�2 + �Z |
) 1
κ − N2,

from which one can readily recover [3, Th. 1] by setting � = 1.
Now partition S(t) to the form S(t) = (ST

1 (t), ST
2 (t))

T ,
t = 1, 2, · · · , where each Si (t) is an �i ×1 zero-mean Gaussian
random vector with positive definite covariance matrix �Si ,
i = 1, 2. We require that {Si (t)}∞t=1 be reconstructed at
receiver i subject to positive definite covariance distortion
constraint �i , i = 1, 2. This corresponds to the case where
Di = Di (�i ) � {Di : 0 � Di � �S, Di,i � �i } with Di

partitioned to the form

Di =
(

Di,1 #
# Di,2

)

, i = 1, 2.

Therefore, the lower bound in (66) is also applicable here. By
restricting �Z to a special block diagonal form8

�Z =
(

λI 0
0 �Z2

)

,

8Here I is an �1 × �1 identity matrix.

one can deduce from (66)

P ≥ inf
D1,D2

sup
�Z2�0

lim
λ→∞ N1

( |�S ||D1 +�Z |
|D1||D2 + �Z |

) 1
κ

+ (N2 − N1)
( |�S +�Z |

|D2 +�Z |
) 1
κ − N2

= inf
D1,D2

sup
�Z2�0

N1

( |�S||D1,2 +�Z2 |
|D1||D2,2 +�Z2 |

) 1
κ

+ (N2 − N1)
( |�S2 +�Z2 |
|D2,2 +�Z2 |

) 1
κ − N2, (67)

where the infimum is over D1 and D2 subject to the constraints
Di ∈ Di (�i ), i = 1, 2, and D1 � D2. This potentially
weakened lower bound, when specialized to the case κ = 1, is
at least as tight as [18, Th. 1]. Note that, for any Di ∈ Di (�i ),
i = 1, 2, and any positive definite matrix �Z partitioned to
the form

�Z =
(

�Z1 #
# �Z2

)

, (68)

we have

|�S ||D1,2 +�Z2 |
|D1||D2,2 +�Z2 |

≥ |�S +�Z ||D1,2 +�Z2 |
|D1 +�Z ||D2,2 +�Z2 |

≥ |�S +�Z |
|D1,1 + �Z1 ||D2,2 +�Z2 |

≥ |�S + �Z |
|�1 +�Z1 ||�2 +�Z2 |

(69)

and

|�S2 + �Z2 |
|D2,2 +�Z2 |

≥ |�S2 + �Z2 |
|�2 +�Z2 |

. (70)

Substituting (69) and (70) into (67) gives

P ≥ sup
�Z �0

N1

( |�S + �Z |
|�1 +�Z1 ||�2 +�Z2 |

) 1
κ

+ (N2 − N1)
( |�S2 +�Z2 |

|�2 +�Z2 |
) 1
κ − N2, (71)

where �Z is partitioned to the form in (68). Setting κ = 1
in (71) recovers [18, Corollary 1]. An equivalent form of the
lower bound in (71) was first obtained by Bross et al. [15] via
a different approach for the special case κ = �1 = �2 = 1.
It is worth mentioning that source-channel separation is known
to be suboptimal in general for this problem [16], [17]. Some-
what surprisingly, the lower bound in (71), derived with the
aid of a source-channel separation theorem (i.e., Theorem 4),
turns out to be tight when κ = �2 = 1 [18, Th. 2] and is
achievable by a class of hybrid digital-analog coding schemes9

[18, Sec. IV.B]. Therefore, the application of source-channel
separation theorems is not restricted to the relatively limited
scenarios where the separation architecture is optimal; they
can also be used to prove the optimality of non-separation
based schemes and determine the performance limits in certain
scenarios where the separation architecture is suboptimal.

9The hybrid scheme in [16] can be viewed as an extremal case of this class
of schemes.
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VII. CONCLUSION

We have established a source-channel separation theorem,
which is further leveraged to derive a general necessary con-
dition for the source broadcast problem. It is intriguing to note
that, in certain cases (see, e.g., Theorem 3 and Theorem 6),
this necessary condition takes the form of comparison of
two capacity regions. This is by no means a coincidence.
In fact, it suggests a new direction that can be explored to
establish stronger converse results for the source broadcast
problem [26].
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