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Abstract— We investigate whether uncoded schemes are opti-
mal for Gaussian sources on multiuser Gaussian channels. Par-
ticularly, we consider two problems: the first is to send correlated
Gaussian sources on a Gaussian broadcast channel where each
receiver is interested in reconstructing only one source component
(or one specific linear function of the sources) under the mean
squared error distortion measure; the second is to send correlated
Gaussian sources on a Gaussian multiple-access channel, where
each transmitter observes a noisy combination of the sources,
and the receiver wishes to reconstruct the individual source
components (or individual linear functions) under the mean
squared error distortion measure. It is shown that when the chan-
nel parameters satisfy certain general conditions, the induced
distortion tuples are on the boundary of the achievable distortion
region, and thus optimal. Instead of following the conventional
approach of attempting to characterize the achievable distortion
region, we ask the question whether and how a match can be
effectively determined. This decision problem formulation helps
to circumvent the difficult optimization problem often embedded
in region characterization problems, and it also leads us to focus
on the critical conditions in the outer bounds that make the
inequalities become equalities, which effectively decouple the
overall problem into several simpler sub-problems. Optimality
results previously unknown in the literature are obtained using
this novel approach. Explicit and novel outer bounds are derived
for the two problems as the byproducts of our investigation.

Index Terms— Broadcast, multiple access, combined source-
channel coding.
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I. INTRODUCTION

ALTHOUGH the source channel separation architecture is
asymptotically optimal in the point-to-point communica-

tion setting [1] as well as several classes of multiuser commu-
nication settings (see e.g., [2] and references therein), uncoded
schemes have several particularly attractive properties. Firstly,
they have very simple encoders and decoders; secondly, they
belong to the so-called zero-delay codes, which can avoid the
long delay required to approach the asymptotic performance in
the separation-based schemes; lastly, they are in fact optimal in
some settings where the separation-based schemes are known
to be suboptimal (see e.g., [3]).

It was shown in [4] that uncoded schemes are optimal when
certain matching conditions involving the source probability
distribution, the channel transition probability distribution, the
channel cost function and the distortion measure function are
satisfied. Though the focus in [4] was mainly on the point-to-
point setting, recent results [5]–[8] suggest that the concept of
matching indeed carries over to multiuser settings. In fact,
in multiuser settings, matching may occur naturally when
the distortion measure, the channel cost function and source
distribution are all fixed, and the channel parameters, which
represent physically meaningful quantities, satisfy certain con-
ditions. In this work, we consider such matching, particularly,
when the sources and the channels are Gaussian, the channel
constraints are on the expected average signal powers, the
distortion measure is the mean squared error (MSE), and
only the channel parameters, such as the channel amplification
factors and the additive noise powers, are allowed to vary.

In this context, of interest is whether for a fixed source and
fixed coding parameters, the distortion vector such induced is
on the boundary of the achievable distortion region and thus
optimal. More specifically, we seek to answer the following
two questions:

1) Is there a set of (explicitly) computable conditions that
can be used to certify a fixed uncoded scheme to be
optimal for a given source and channel pair?

2) If so, is there a non-trivial set of channels that satisfy
such conditions for a given source and scheme pair?

We shall refer to this kind of channels as “matched chan-
nels”; a dual question is to ask for “matched sources”, however
in the context of the problems considered here, the dual
question is notationally more involved, and thus we choose to
take the perspective of “matched channels”. One can also ask
for “matched distortion measures”, similarly as the approach
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taken in [4], however in the Gaussian setting, the MSE
distortion is a practically important and well-motivated choice.
The set of matched channels should be distinguished from the
complete set of channels for which the given uncoded scheme
is optimal. The former may be a strict subset of the latter, since
these sufficient conditions for optimality in fact depend on
the specific outer bounds that can be derived. Characterizing
the latter region is naturally more difficult than answering the
questions we posed above.

The two questions given above are in essence the two facets
of the same question. Since we only provide conditions for
matching, or in other words, sufficient conditions for a scheme
to be optimal, the set of matched channels may in fact be
empty. A trivial answer to the first question is simply an
impossible condition such that we would never be able to
certify a channel to be matched. Thus the second question
is equally if not more important, and we show indeed for
the two Gaussian communication problems considered in this
work, there are non-trivial channels that match the source and
the uncoded scheme.

Traditionally, research in information theory asks for com-
putable characterizations of a certain achievable region, for
which we first derive an expression for an outer bound,
and then derive one for an inner bound, and finally make
comparison of them. This approach can be challenging because
it usually involves optimization over a set of parameters, and
solving such an optimization problem explicitly can be diffi-
cult. It is not clear whether the obstacle mainly stems from the
intractable nature of the underlying communication problem,
or it is caused by the embedded optimization problem.

The aforementioned difficulty motivates the formulation of
the first question posed earlier, which is a decision problem
instead of an optimization problem. An analogy of this sit-
uation can be found in computer science algorithm research,
where instead of asking whether an optimization problem can
be solved in polynomial time, an alternative question is asked
whether a decision (e.g., regarding a solution is above a thresh-
old) can be made in polynomial time. Our problem formulation
naturally leads to a different investigation approach. Instead
of focusing on the comparison of the inner bounds and outer
bounds, we focus on the necessary conditions that the outer
bounds become tight, i.e., the conditions when the information
inequalities hold with strict equality. With fixed source and
fixed coding parameters, the coding vector can be substituted
into the conditions, and the necessary and sufficient conditions
for such equality can be derived. The outer bounds naturally
provide certain “decoupled” conditions, which significantly
simplify the overall task. Though this approach may have
inherently been used by many researchers in the past, its
effectiveness becomes particularly evident in our investigation
in the joint source channel communication setting.

In the rest of the paper, we focus specifically on two joint
source channel coding problems using the approach outlined
above. The first problem is to send correlated Gaussian sources
on a Gaussian broadcast channel where each receiver is
interested in reconstructing only one source component (or
equivalently, one specific linear function of the source) under
the MSE distortion measure. The second problem is to send

correlated Gaussian sources on a Gaussian multiple-access
channel, where each transmitter observes a noisy combination
of the sources, i.e., a case of the vector CEO problem, and
the receiver wishes to reconstruct the source components (or
equivalently, linear functions of the source components) under
the MSE distortion measure. General conditions for matching
are derived, which provide new optimality results previously
unknown in the literature. These results either include or
generalize well-known existing results on the optimality of
uncoded schemes in the multiuser setting. Particularly notable
are the following cases:

1) The first problem generalizes the two-user case consid-
ered in [7] and [8] to the M-user case, for which we
show that an uncoded scheme is optimal for a large
set of sources and channels; our results reveal that
uncoded scheme can still be optimal when some source
components are negatively correlated.

2) The second problem we consider includes as special
cases the symmetric scalar Gaussian CEO problem on
a Gaussian multiple access channel [6], the problem
of sending bivariate Gaussian sources on a Gaussian
multiple-access channel [5], and sending remote (noisy)
bivariate Gaussians on a Gaussian multiple-access chan-
nel [9]. Our results reveal that in addition to the sym-
metric case considered in [6], uncoded schemes are
also optimal when the sensor observation qualities are
proportional to the channel qualities. These results also
allow the sensor observations to be noisy and have more
general correlation structure, thus extending the results
in [5] and [9]. When viewed from the perspective of
computation, our result also provides new insights on
the problem of computing linear functions of Gaussian
random variables on the Gaussian multiple-access chan-
nels considered in [10] and [11].

Although we have placed an emphasis on the less conven-
tional approach used to obtain the general matching conditions,
during the process of this investigation, novel outer bounds are
in fact derived for both problems beyond what are available in
the literature. These new bounds rely on a technique developed
in a series of our previous works [12]–[15], the origin of which
can be further traced back to Ozarow [16].

Notationally, we write for a source S at time n as
S[n], and a length-N vector as SN . For a set of quantities
(α1, α2, . . . , αM ), we write it in a (column) vector form as ᾱ
when its dimension is clear from the context; however when
it is necessary to be more specific, we shall write it as α[1:M].
For a real matrix �, we write its transpose as �t . The positive
semidefinite order is denoted as �.

II. CORRELATED GAUSSIAN SOURCES ON

A GAUSSIAN BROADCAST CHANNEL

In this section we consider the problem of sending cor-
related Gaussian sources on a Gaussian broadcast chan-
nel, which can be described as follows; see also Fig. 1
for an illustration. Let the zero-mean Gaussian source be
(S1[n], S2[n], . . . , SM [n]) with covariance matrix �S1,S2,...,SM

(or simply �S[1:M]), which is assumed to be full rank.
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Fig. 1. Sending correlated Gaussian sources on a Gaussian broadcast channel.

The channel is given by

Ym [n] = X[n] + Zm[n],
m = 1, 2, . . . ,M, n = 1, 2, . . . , N, (1)

where (Z1, Z2, . . . , Z M ) are zero-mean additive noises which
are mutually independent, with variances σ 2

Z1
≥ σ 2

Z2
≥ . . . ≥

σ 2
ZM

, respectively. Both the sources and the channels noises
are independent and identically distributed (i.i.d.) over time.
The channel input must satisfy an average power constraint
1
N

∑N
n=1 E(X[n]2) ≤ P . The transmitter encodes the length-

N source vector (SN
1 , SN

2 , . . . , SN
M ) into a length-N channel

vector X N , and the m-th receiver reconstructs from the channel
output vector Y N

m the source vector SN
m as ŜN

m , resulting in
a distortion Dm = 1

N

∑N
n=1 E(Sm [n] − Ŝm[n])2. We omit a

formal problem definition using generic encoding and decod-
ing functions here, which is standard and can be obtained by
extending that in, for example, [8].

The uncoded scheme of interest has the form

X[n] =
M∑

m=1

αm Sm [n], n = 1, 2, . . . , N, (2)

such that

E(X2[n]) = P, n = 1, 2, . . . , N. (3)

In other words, at each time instance, the channel input is
simply a linear combination of the source components with
the coefficients (α1, α2, . . . , αM ), such that the resulting signal
has a variance that is equal to the power constraint P . We
shall assume αm �= 0 for m = 1, 2, . . . ,M . The decoders
simply estimate Sm [n] as Ŝm [n] = E(Sm [n]|Ym[n]), at each
time instance n = 1, 2, . . . , N at decoder m = 1, 2, . . . ,M .
Notice that the problem can be equivalently formulated as
computation of linear functions of the Gaussian sources on
the broadcast channel, however this alternative formulation is
notationally more involved.

Define

β̄ = (β1, β2, . . . , βM )
t � 1

P
�S1,S2,...,SM ᾱ. (4)

The main result on this problem is summarized in the follow-
ing theorem, which gives a matching condition in a positive
semidefinite form.

Theorem 1: A Gaussian broadcast channel is said to be
matched to a given source and the uncoded scheme with non-
zero parameters ᾱ, and the distortion vector induced by the
given scheme is on the boundary of the achievable distortion
region and thus optimal, if

�(0) � �V[1:M] − �S[1:M] + Pβ̄β̄ t � 0, (5)

where the entries of the symmetric matrix �V[1:M] are

γ j,m = −βmβ j
Pσ 2

Zm

P + σ 2
Zm

, 1 ≤ j < m, m = 2, 3, . . . ,M,

(6)

γm,m = α−1
m

⎡

⎣βm(

m−1∑

j=1

α jβ j )
Pσ 2

Zm

P + σ 2
Zm

+βm

M∑

j=m+1

α jβ j

Pσ 2
Z j

P + σ 2
Z j

⎤

⎦,

m = 1, 2, . . . ,M. (7)

This theorem establishes a condition that is sufficient to
guarantee a distortion vector induced by the uncoded scheme
to be on the boundary of the achievable distortion region,
and thus an optimal solution. The matrix �V[1:M] may seem
mysterious at the first sight, however, it will become clear in
the proof that it represents the covariance matrix of certain
extracted random vectors, whose existence essentially guaran-
tees the optimality of the given uncoded transmission.

This theorem clearly answers our first question regarding
conditions that can be used to certify whether a given uncoded
scheme is optimal. In fact, it also provides clues on the second
question regarding whether there exist non-trivial channels
where such a matching is possible. Indeed, in Section II-C
and Section II-D we establish several properties of matched
channels, through which an answer to the second question is
given.
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Before providing the answer to the second question, the
proof of Theorem 1 is presented next in two parts: the
critical conditions in a novel outer bound are first outlined
in Section II-A, and then these conditions for the bound
to hold with equality in the uncoded scheme are analyzed
in Section II-B. The proof details for the outer bound are
relegated to the Appendix.

A. Extracting the Critical Conditions From the Outer Bound

In order to obtain the matching condition, we first derive
a novel outer bound for this problem. An important tech-
nique in the derivation of this outer bound is the introduc-
tion of certain appropriate random variables outside of the
original problem. This approach is partly motivated by our
previous work [12]–[15], which can further be traced back
to Ozarow [16]. Consider M zero-mean Gaussian random
variables (W1,W2, . . . ,WM ), independent of everything else,
with covariance matrix �W[1:M] , and write

Um [n] = Sm [n] + Wm [n],
m = 1, 2, . . . ,M, n = 1, 2, . . . , N. (8)

The outer bound will be written as a necessary condition
that any achievable distortion vector has to satisfy. For this
purpose, we bound the following quantity (a summation of
entropy powers) for any encoding and decoding functions:

E(�W[1:M])

�
M∑

m=1

(σ 2
Zm

− σ 2
Zm+1

) exp

⎡

⎣
2

N

m∑

j=1

I (U N
j ; Y N

j |U N
[1: j−1])

⎤

⎦

(9)

where we have used σ 2
ZM+1

� 0 for notational simplicity.
An almost identical quantity was used in [12] to obtain
an approximate characterization for the distortion region of
the Gaussian broadcast problem with bandwidth mismatch.
We shall upper-bound this quantity using the channel prop-
erties and lower-bound it using the source reconstruction
requirements, then combine them to obtain an eventual outer
bound.

This quantity can be upper-bounded as in Appendix A

E(�W[1:M]) ≤ P + σ 2
Z1
, (10)

where equality holds if and only if

h(Y N
M |SN

1 , SN
2 , . . . , SN

M ) = h(Y N
M |U N

1 ,U
N
2 , . . . ,U

N
M ), (11)

h(Y N
1 ) = N

2
log 2πe(P + σ 2

Z1
), (12)

and the following condition stemming from the entropy power
inequality [17] holds with equality

exp

[
2

N
h(Y N

m |U N
m ,U

N
m−1, . . . ,U

N
1 )

]

= exp

[
2

N
h(Y N

m+1|U N
m ,U

N
m−1, . . . ,U

N
1 )

]

+ 2πe(σ 2
Zm

− σ 2
Zm+1

), m = 1, 2, . . . ,M. (13)

The conditions in (13) are standard, as Bergmans [18] also
used the entropy power inequality to establish the Gaussian
broadcast channel capacity, and in general a Gaussian code-
book suffices to make them equalities. The condition (12)
intuitively requires that the power is fully utilized. The condi-
tion (11) is however rather peculiar, which essentially requires
the noisy source (U N

1 ,U
N
2 , . . . ,U

N
M ) to be as useful as the real

source (SN
1 , SN

2 , . . . , SN
M ) in determining the channel output

vector Y N
M .

The quantity E(�W[1:M]) can also be lower-bounded as given
in Appendix A, where its individual summands are bounded
as

exp

⎡

⎣ 2

N

m∑

j=1

I (U N
j ; Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j−1)

⎤

⎦

≥ |�S[1:m] +�W[1:m] |
�m

j=1(D j + σ 2
W j
)
, (14)

where equality holds if and only if

h(U N
m |Y N

m ) = N

2
log[2πe(Dm + σ 2

Wm
)],

m = 1, 2 . . . ,M, (15)

h(U N
m |Y N

m ,U
N
1 ,U

N
2 , . . . ,U

N
m−1) = h(U N

m |Y N
m ),

m = 2, 3, . . . ,M. (16)

The conditions in (15) are standard which can be viewed as
requiring the codes to achieve the given distortions with equal-
ity, however the conditions in (16) are peculiar which essen-
tially require all the information (Y N

m ,U
N
1 ,U

N
2 , . . . ,U

N
m−1)

on U N
m to be from Y N

m .
Combining (10) and (14), we obtain the following result.
Proposition 1: Any achievable distortion vector

(D1, D2, . . . , Dm) must satisfy

M∑

m=1

(σ 2
Zm

− σ 2
Zm+1

)
|�S[1:m] +�W[1:m] |
�m

j=1(D j + σ 2
W j
)

≤ P + σ 2
Z1

(17)

for any positive semidefinite �W[1:m] . Moreover, a distortion
vector that satisfies (11), (12), (13), (15) and (16) for some
positive semidefinite �W[1:M] is Pareto-optimal.

We emphasize that in the approach we shall take, the precise
form of this outer bound is less important than the extracted
matching conditions (11), (12), (13), (15) and (16). In fact,
the conditions (12), (13) and (15) can be satisfied simply
by choosing a jointly Gaussian codebook adjusted linearly
to utilize full power, and thus the conditions (11) and (16)
are the only effectual non-trivial conditions. Note that from
the problem setting and taking into consideration the fact that
physical degradedness is equivalent to stochastic degradedness
in the broadcast setting, we have the Markov string

Y N
1 ↔ Y N

2 ↔ . . . ↔ Y N
M ↔ X N ↔ (SN

1 , SN
2 , . . . , SN

M )

↔ (U N
1 ,U

N
2 , . . . ,U

N
M ) ↔ (U N

1 ,U
N
2 ↔ . . . ↔ U N

M−1)

↔ . . . ↔ U N
1 . (18)

This Markov string is however not sufficient to guarantee (11)
and (16), and thus they require special attention.



TIAN et al.: MATCHED MULTIUSER GAUSSIAN SOURCE CHANNEL COMMUNICATIONS VIA UNCODED SCHEMES 4159

B. The Forward Matching Condition

We first introduce some additional notation and make a
few observations. Notice that due to the power constraint, the
coefficient vector ᾱ � (α1, α2, . . . , αM )

t should satisfy

ᾱt�S[1:M] ᾱ = P, (19)

and it follows that
M∑

m=1

αmβm = 1. (20)

Due to the jointly Gaussian distribution in the uncoded
scheme, we can write

Um = βm X + (Sm − βm X)+ Wm , m = 1, 2, . . . ,M, (21)

where the three components are mutually independent, since
βm X = E[Sm |X]; we have also omitted the time index [n] to
simplify the notation. It follows that the covariance matrix of
(U1,U2, . . . ,UM ) given Ym can be decomposed as follows

�U[1:M]|Ym = σ 2
X |Ym

β̄β̄ t +�S[1:M]|X +�W[1:M] , (22)

where

σ 2
X |Ym

= Pσ 2
Zm

P + σ 2
Zm

, m = 1, 2, . . . ,M. (23)

Let Vm � (Sm − βm X) + Wm for m = 1, 2, . . . ,M , and as
a consequence the covariance of the vector V[1:M] is in fact
�S[1:M]|X +�W[1:M] .

With the above observations, we now return to the derivation
of the forward matching condition. As mentioned earlier,
we need to substitute the random vectors specified by the
uncoded scheme, i.e., assigning X[n] =∑M

m=1 αm Sm [n], into
the critical conditions (11), (12), (13), (15) and (16) in order to
identify the matching condition. It is straightforward to see that
(12), (13) and (15) indeed hold with equality due to the jointly
Gaussian distribution of the uncoded scheme, and the chosen
coefficients. Thus we only need to focus on (11) and (16),
which in the context of the uncoded scheme are equivalent to
the following conditions in a single-letter form

h(Z M ) = h(YM |U1,U2, . . . ,UM ),

(24)

h(Um |Ym,U1,U2, . . . ,Um−1) = h(Um |Ym),

m = 2, 3, . . . ,M. (25)

To satisfy the condition (25) with the jointly Gaussian
uncoded scheme, for any m = 2, 3, . . . ,M , we must have
E[Vm Vj ] + βmβ jσ

2
X |Ym

= 0 for j = 1, 2, . . . ,m − 1. This
specifies all the off-diagonal terms of �V[1:M] , as

E[Vm Vj ] = γm, j = −βmβ jσ
2
X |Ym

,

1 ≤ j < m, m = 2, 3, . . . ,M. (26)

It remains to determine the diagonal entries of �V[1:M] .
Notice

M∑

m=1

αm Sm = X =
M∑

m=1

αmβm X (27)

implies that

M∑

m=1

αmUm = X +
M∑

m=1

αm Wm . (28)

Due to the joint Gaussian distribution and the Markov string
YM ↔ X ↔ (U1,U2, . . . ,UM ), in order to satisfy the
condition (24) with equality, we must be able to write X as a
linear combination of (U1,U2, . . . ,UM ), denoted as ᾱ′. This
implies that

M∑

m=1

α′
m(Sm + Wm) = X =

M∑

m=1

αm Sm , (29)

but this further implies that ᾱ′ = ᾱ, because of the assumption
that �S[1:M] is full rank, and S[1:M] and W[1:M] are independent.
It follows that

M∑

m=1

αm Vm =
M∑

m=1

αm Wm = 0. (30)

Thus for any m = 1, 2, . . . ,M ,

M∑

j=1

α j E[Vm Vj ] = E[Vm

M∑

j=1

α j V j ] = 0. (31)

It follows that γm,m = σ 2
Vm

can be determined from

αmσ
2
Vm

= −
m−1∑

j=1

α j E[Vm Vj ] −
M∑

j=m+1

α j E[Vm Vj ]

= βmσ
2
X |Ym

m−1∑

j=1

α jβ j + βm

M∑

j=m+1

α jβ jσ
2
X |Y j

, (32)

since αm �= 0.
Thus the conditions (24) and (25) being equalities uniquely

specify the matrix �V[1:M] . Conversely, as long as the matrix
�(0) is positive semidefinite, the conditions (24) and (25) hold
with equality and the corresponding auxiliary random variables
(W1,W2, . . . ,WM ) can be found, and the outer bound derived
previously is thus tight. This is exactly the matching condition
given in Theorem 1.

Remark: The outer bound conditions (11) and (16) in
the context of the uncoded scheme provide two constraints
on the matrix �V[1:M] . Their effects on the matrix �V[1:M]
are largely decoupled: the condition required by (16) being
equal determines the off-diagonal entries of �V1:M] , while the
condition (11) determines its diagonal entries. This decoupling
effect is particularly helpful in deriving the matching condi-
tion. In the second problem we consider in the next section,
i.e., the multiple access channel problem, this decoupling
effect is even more pronounced.

C. Cholesky Factorization and a Necessary Condition

The condition given in Theorem 1 is in a positive semidef-
inite form, however, due to the specific problem structure, it
can also be represented as a set of recursive conditions, which
is discussed in this section. This alternative representation
also leads to a necessary condition for matching to hold,
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which plays an instrumental role for several results given in
Section II-D, where we answer the second question regarding
the existence of a non-trivial set of matched channels.

Determining whether a matrix is positive semidefinite is
equivalent to computing the LDL decomposition, and checking
whether the entries of the resultant diagonal matrix in the
decomposition are all non-negative; i.e., the matrix�(0) is pos-
itive semidefinite if and only if the diagonal matrix in the LDL
decomposition has only non-negative entries. Computationally
this can be accomplished with the Cholesky factorization [19]
on the matrix �(0). Here we provide an intuitive description of
the Cholesky factorization in the context of the problem being
considered, and its conceptual interpretation as the recursive
thresholding determination for the channel to yield a matching.
Readers more interested in the precise mathematical derivation
can skip to the proof of Lemma 1 directly.

In the first step of the Cholesky factorization, we use
symmetric column and row Gaussian elimination to elimi-
nate all the entries of the M-th column and the M-th row,
except the diagonal entry.1 Denote the resulting upper-left
(M − 1) × (M − 1) matrix after this first step as �(1).
A necessary condition for the matrix �(0) to be positive
definite is that the lower right entry of the matrix �(0) is
strictly positive, or all the entries on the last column are zero.
Notice that the condition only involves σ 2

X |YM
, or equivalently

only the channel noise power σ 2
ZM

, which yields a necessary
condition on σ 2

ZM
in the form of σ 2

ZM
≥ f (0)(P, ᾱ).

Continuing the Cholesky factorization on �(1), a similar
necessary condition is thus its lower right entry is strictly
positive, or the entries on the (M − 1)-th row of �(1) are
zero. Similarly as the previous step, the condition on σ 2

ZM−1

is found to be in the form that σ 2
ZM−1

≥ f (1)(P, ᾱ, σ 2
ZM
).

Continuing this process will yield a set of conditions in the
form of

σ 2
Zm

≥ f (M−m)(P, ᾱ, σ 2
ZM
, σ 2

ZM−1
, . . . , σ 2

Zm+1
),

m = M,M − 1, . . . , 1. (33)

The matrix �(0) is positive semidefinite if and only if all such
threshold conditions are satisfied.

Notice that the threshold function f (M−m)(·) for σ 2
Zm

depends on the channel noise power values (σ 2
ZM
, σ 2

ZM−1
, . . . ,

σ 2
Zm+1

), but not on (σ 2
Z1
, σ 2

Z2
, . . . , σ 2

Zm−1
). Thus these functions

f (m)(·), m = M,M − 1, . . . , 1 can be viewed as a recur-
sive threshold checking (or determination) procedure, and the
channel noise power σ 2

Zm
needs to be chosen to be larger

than the threshold determined by (σ 2
ZM
, σ 2

ZM−1
, . . . , σ 2

Zm+1
) in

every step to yield a matching. Given the above observation,
it is natural to speculate that if a channel is matched, then any
more noisy channel also induces a match. This intuition is in
fact correct, and the statement is made more rigorous in the
next section as Corollary 1. This behavior is reminiscent of the
optimality of broadcasting a single Gaussian source, and has
also been previously observed in the problem of broadcasting
bivariate Gaussian sources [7].

1Strictly speaking, this yields a decomposition with an upper triangular
matrix instead of a lower triangular one.

We can apply the Cholesky factorization on the matrix
�V[1:M] to obtain a necessary condition for matching to exist.

Lemma 1: For the matrix �V[1:M] constructed previously to

be positive semidefinite (with σ 2
ZM

> 0), it must be true that
αiβi ≥ 0, i = 1, 2, . . . ,M .

Note that this condition is essentially independent of the
channel, as long as the channel is not perfect. This lemma is
proved in Appendix B.

D. Properties and Existence of Matched Channels

With Lemma 1, we can establish several properties of
the set of matched channels, given next as corollaries to
Theorem 1. Their proofs are provided in Appendices C-E.
These properties essentially provide an answer to the second
question posed earlier, and we shall further illustrate such
sources and channels using an example.

Corollary 1: If the uncoded scheme is matched on a broad-
cast channel with noise powers given as (σ 2

Z1
, σ 2

Z2
, . . . , σ 2

ZM
),

then it is matched and thus optimal on any channel with
noise powers σ 2

Z+
1

≥ σ 2
Z+

2
≥ . . . ≥ σ 2

Z+
M

where σ 2
Z+

m
≥ σ 2

Zm
,

m = 1, 2, . . . ,M .
The corollary reveals a property of matched channels: once

a channel is matched, any channel with more noise is also a
matched channel and thus the uncoded scheme is optimal. The
next corollary states, from the perspective of only the source
and the uncoded scheme parameters, a necessary and sufficient
condition for matching to exist.

Corollary 2: Matching (on some broadcast channels with
finite noise powers) exists, if and only if αiβi > 0 and
the matrix ��S[1:M]� has its largest eigenvalue being 1 with
multiplicity 1, where � is a diagonal matrix with diagonal
entries being

⎛

⎝ α1
√
α1
∑M

i=1 ρ1,iαi

,
α2

√
α2
∑M

i=1 ρ2,iαi

,

. . . ,
αM

√
αM
∑M

i=1 ρM,iαi

⎞

⎠, (34)

where ρi, j is used to denote the entries of �S[1:M] . More-
over, if the above condition holds, then any channel with
σ 2

Z1
≥ σ 2

Z2
. . . σ 2

ZM
≥ σ 2

Z is a matched channel, where

σ 2
Z = λ2 P

1−λ2
, and λ2 is the second largest eigenvalue of the

matrix ��S[1:M]�.
Remark: It should be noted that the condition in the first

part of the corollary is the most general condition that can be
derived using Theorem 1 regarding the existence of matched
channels, but it not does necessarily capture all the cases that
an analog scheme can be optimal, which stems from the fact
that the outer bound we derived may not be tight in general.

Remark: If the entries of diag(ᾱ)�S[1:M]diag(ᾱ) are strictly
positive, then matching is always possible. This follows from
the fact that the matrix ��S[1:M]� has positive entries, and

v̄ t
1 = (

√
α1β1,

√
α2β2, . . . ,

√
αMβM ) is its positive eigenvec-

tor, such that 1 is its largest eigenvalue with multiplicity 1 (by
Perron-Frobenius Theorem [20]).
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Different from the case discussed in the previous remark, the
next corollary gives another sufficient condition for matching
to occur when the sources and the coding parameters satisfy
the same positive correlation condition.

Corollary 3: Let the entries of the matrix
diag(ᾱ)�S[1:M]diag(ᾱ) be strictly positive. Define

σ 2
Z∗

m
� max

j<m

β jβm

ρ j,m
P2 − P, m = 2, 3, . . . ,M. (35)

Any channel with σ 2
Z1

≥ σ 2
Z2

≥ . . . ≥ σ 2
ZM

such that σ 2
Zm

≥
σ 2

Z∗
m

for m = 2, 3, . . . ,M is a matched channel.

Remark: σ 2
Z∗

m
as defined above may in fact be negative for

some m. However this does not cause any discrepancy, because
of the existence of the additional requirement σ 2

Z1
≥ σ 2

Z2
≥

. . . ≥ σ 2
ZM

. As a sanity check, notice that

M∑

i=1

(αi )(βiβm P) = Pβm =
M∑

i=1

(αi )(ρi,m ), (36)

but β2
M P < ρM,M = σ 2

SM
unless α1 = α2 = . . . =

αM−1 = 0, which however would contradict our assumption.
It thus follows

max
j<M

β jβm P

ρ j,M
> 1, (37)

and thus σ 2
Z∗

M
> 0 always holds under the condition in the

corollary.
Remark: For the symmetric case where σ 2

Si
= σ 2

S , σ 2
Si S j

=
ρσ 2

S , αi = α and E[Si |X] = βX , for i = 1, 2, . . . ,M .
A necessary and sufficient condition for matching is simply

σ 2
ZM

P + σ 2
ZM

≥ 1 − ρ

1 + (M − 1)ρ
. (38)

To see this, notice that

P = α2 Mσ 2
S [1 + (M − 1)ρ]. (39)

and β can be computed as

β = 1

αM
. (40)

Checking the first condition in the Cholesky factorization, it is
easily verified that (38) is a necessary condition for matching.
However, from Corollary 3, it is seen that it is sufficient to
choose any σ 2

Zm
≥ σ 2

Z∗
m

, where σ 2
Z∗

m
= β2

ρσ 2
S

P2 − P , m =
2, 3, . . . ,M . This is exactly condition (38).

E. An Example: A Source With Three Components

Let us consider a source with three components whose
covariance matrix is either

�S1,S2,S3 =
⎛

⎝
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

⎞

⎠ , (41)

or

�S1,S2,S3 =
⎛

⎝
1 ρ2 ρ1
ρ2 1 ρ1
ρ1 ρ1 1

⎞

⎠ , (42)

Fig. 2. The (ρ1, ρ2) pairs for which matching is possible, given in shade.

and further assume that the coefficients are chosen as α1 =
α2 = α3 = 1 in the uncoded scheme. In addition to the
constraint that the matrix �S1,S2,S3 must be positive definite,
for a matching to exist, the condition in Corollary 2 must be
satisfied. It can be shown that the eigenvalues of ��S1,S2,S3�
are

λ1 = 1, λ2 = −2ρ2
1 + ρ2 + 1

2ρ2
1 + 2ρ1ρ2 + 3ρ1 + ρ2 + 1

,

λ3 = 1 − ρ2

ρ1 + ρ2 + 1
, (43)

and we must have λ2 < 1 and λ3 < 1. In Appendix F, we show
that the valid choices for matching to exist are the (ρ1, ρ2)
pairs such that

ρ2 < 1, 0 < ρ1 < 1, ρ1 + 2ρ2 > 0, ρ2 > 2ρ2
1 − 1. (44)

The corresponding region is plotted in Fig 2. Notice that the
two matrices are equivalent for the purpose of determining
whether matching is possible, thus the region in Fig 2 is valid
for both cases.

Next let us fix a (ρ1, ρ2) pair, and consider the region of

(
Pσ 2

Z2
P+σ 2

Z2

,
Pσ 2

Z3
P+σ 2

Z3

) pairs such that matching occurs. The tradeoffs

can be computed explicitly, and are illustrated in Fig. 3 for
(ρ1, ρ2) = ( 1

2 ,
1
6 ). The circles in the plots give the channels

specified by Corollary 2. The channels given by Corollary 3
can be computed directly (given as the dots), which is loose
in the first case, but on the lower boundary (and it is an
extreme point) for the second case. Since σ 2

Z3
≥ σ 2

Z2
, we

also include this boundary in the plot. For the first case, the

boundary
Pσ 2

Z3
P+σ 2

Z3

< P is also shown, while for the second,

the lower bound y ≥ 16
15 required by the function f (0)(P, ᾱ)

in the first step of the Cholesky factorization is shown. The
corresponding channels that matching occurs are those inside
the “fan” regions. Note that there is a tension between the
noise powers σ 2

Z2
and σ 2

Z3
for matching to occur with the

fixed source and uncoded scheme parameters.

III. VECTOR GAUSSIAN CEO ON A GAUSSIAN

MULTIPLE-ACCESS CHANNEL

In this section we consider the problem of sending corre-
lated Gaussian sources on a Gaussian multiple-access channel,
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Fig. 3. Illustration of the regions of matched channel parameters when
(ρ1, ρ2) = ( 1

2 ,
1
6 ) for the two covariance matrices (41) and (42), respectively.

where the transmitters observe noise linear combinations of the
source components; see also Fig. 4 for an illustration.

A zero-mean vector Gaussian source
(S1[n], S2[n], . . . , SM [n]) has a covariance matrix �S1,S2,...,SM

(or simply �S[1:M]). There are a total of L sensors, whose
observations are (T1[n], T2[n], . . . , TL [n]), respectively, with
covariance matrix �T1,T2,...,TL (or simply �T[1:L] ). The source
and observations are jointly Gaussian. Each sensor observes
T N
� , and encodes it under an average transmission power

constraint P�, � = 1, 2, . . . , L. The channel output is given as

Y [n] = Z [n] +
L∑

�=1

δ�X�[n], n = 1, 2, . . . , N, (45)

where the channel amplification factors δ� > 0,
� = 1, 2, . . . , L. The receiver wishes to reconstruct
(SN

1 , SN
2 , . . . , SN

M ) using channel output Y N to minimize the
individual MSE measure, which achieves MSE distortion Dm

for Sm , i.e., Dm = 1
N

∑N
n=1 E(Sm [n] − Ŝm [n])2.

Notice that due to the jointly Gaussian distribution, we can
write

S̃m � E[Sm |T1, T2, . . . , TL ] =
L∑

�=1

γm,�T�,

m = 1, 2, . . . ,M. (46)

The parameters γm,� can be conveniently written as a matrix 
,
and computed as


 = �S[1:M],T[1:L]�
−1
T[1:L], (47)

where �S[1:M],T[1:L] is the cross-covariance matrix between the
random vectors (S1, S2, . . . , SM ) and (T1, T2, . . . , TL).

The problem can be equivalently formulated as computation
of linear functions of Gaussian sources on the multiple-access
channel. In this alternative setting, the functions to be com-
puted are (S1, S2, . . . , SM ), which can be represented as noisy
linear functions of the sensor observations (T1, T2, . . . , TL).
This alternative formulation is notationally more involved
in the current problem setting, but we shall explore this
connection in a separate work.

We assume M ≤ L since the other case can be reduced
to this case without loss of generality. We will consider the
case that the matrices �S[1:M,] , �T[1:L] , �S̃[1:M] and �S[1:M],T[1:L]
all have full (row) rank, which hold in general except certain

degenerate cases. Denote the entries of �T[1:L] as ψi, j . The
uncoded scheme we consider is

X�[n] = η�

√
P�
ψ�,�

T�[n],
� = 1, 2, . . . , L, n = 1, 2, . . . , N, (48)

where η� is either +1 or −1 to be specified next. In other
words, each sensor sends its noisy observations directly
using the full power, but it can choose whether to negate
its observations. The m-th receiver estimates Sm [n] as
Ŝm [n] = E[Sm [n]|Y [n]].

Define

ᾱ �
[
�S[1:M],T[1:L]�

t
S[1:M],T[1:L]

]−1

·�S[1:M],T[1:L]�T[1:L]

·
(

δ1η1

√
P1

ψ1,1
, δ2η2

√
P2

ψ2,2
, . . . , δLηL

√
PL

ψL ,L

)t

,

(49)

and we assume αm �= 0, m = 1, 2, . . . ,M , which is true in
general except certain degenerate cases. Our main result on
this problem is summarized in the following theorem.

Theorem 2: A Gaussian multiple-access channel is said to
be matched to a given Gaussian source and the uncoded
scheme with parameters η̄, and the distortion vector induced
by the given scheme is on the boundary of the achievable
distortion region and thus optimal, if

1) η�η�′ψ�,�′ ≥ 0, 1 ≤ � < �′ ≤ L;
2) The vector

(

δ1η1

√
P1

ψ1,1
, δ2η2

√
P2

ψ2,2
, . . . , δLηL

√
PL

ψL ,L

)

�T[1:L]

is in the row space of the matrix �S[1:M],T[1:L] ;
3) σ 2

Z ≥ λ2 P
1−λ2

, where λ2 is the second largest eigenvalue
of the matrix ��S̃[1:M]�,

P �
L∑

�=1

δ2
� P� + 2

L∑

�=1

L∑

�′=�+1

ρ∗
�,�′δ�δ�′

√
P�P�′, (50)

� is a diagonal matrix with diagonal entries
⎛

⎝ α1
√
α1
∑M

i=1 ρ1,iαi

,
α2

√
α2
∑M

i=1 ρ2,iαi

,

. . . ,
αM

√
αM
∑M

i=1 ρM,iαi

⎞

⎠, (51)

and ρm, j ’s are the entries of the matrix

�S̃[1:M] = �S[1:M],T[1:L]�
−1
T[1:L]�

t
S[1:M],T[1:L] . (52)

These conditions can be intuitively explained as follows:
condition one guarantees that the channel inputs from all
transmitters coherently add up; condition two stems from the
requirement that the noisy observations should serve the same
role as the underlying sources for the chosen power constraints
and amplification factors, i.e., as if the observation noise does
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Fig. 4. Sending correlated Gaussian sources on a Gaussian multiple-access channel with noisy observations.

not exist; condition three is similar to the effect in the previous
problem where once a channel is matched, a more noisy
channel will also induce a match.

When all ψ�,�′ ≥ 0, we can simply choose η� = +1 (or −1)
for all � to satisfy the first condition. However, when some of
the terms ψ�,�′ are negative, a simple algorithmic approach can
be used to determine whether there exists a valid assignment
of {η�, � = 1, 2, . . . , L}. In fact this condition depends only on
the source, and the choice of {η�, � = 1, 2, . . . , L} is unique up
to a negation (assuming any component T� is not completely
independent of the others), and thus can be considered fixed
for a given source observation covariance matrix.

The proof of this theorem also has two parts given in
Section III-A and Section III-B. This theorem answers the
first question regarding the conditions to certify whether the
uncoded scheme is optimal in this coding problem. The answer
to the second question for this problem turns out to be simpler
than that in the broadcast case, and we discuss in Section III-C
as special cases several problems previously considered in the
literature.

A. Extracting the Critical Conditions From the Outer Bound

Define

�m � E(Sm − S̃m)
2, m = 1, 2, . . . ,M, (53)

and thus

ES̃2
m = σ 2

Sm
−�m, m = 1, 2, . . . ,M. (54)

In this remote coding setting, in essence S̃m ’s as defined in (46)
are the observable portion of the underlying sources. The over-
all distortion can thus be decomposed into two independent
parts: the first part is due to encoding the observable portion
of the underlying sources S̃m ’s, and the second is due to the
inherent noisy nature of the observations which induces a fixed
distortion �m . Thus encoding the source Sm to distortion Dm

is equivalent to encoding the source S̃m to distortion Dm −�m .
We can now derive an outer bound by combining the

approach used in the broadcast problem with a technique
based on Witsenhausen’s bound [21]. Again consider M auxil-
iary zero-mean Gaussian random variables (W1,W2, . . . ,WM )
with covariance matrix �W[1:M] , which are independent of
everything else, and write

Um [n] = S̃m [n] + Wm [n],
m = 1, 2, . . . ,M, n = 1, 2, . . . , N. (55)

Notice the Markov string

(U N
1 ,U

N
2 , . . . ,U

N
M ) ↔ (S̃N

1 , S̃N
2 , . . . , S̃N

M )

↔ (T N
1 , T N

2 , . . . , T N
L )

↔ (X N
1 , X N

2 , . . . , X N
L ) ↔ Y, (56)

and we can write using the data processing inequality [17] that

I (X N
1 , X N

2 , . . . , X N
L ; Y N ) ≥ I (U N

1 ,U
N
2 , . . . ,U

N
M ; Y N ), (57)

where equality holds if and only if

h(Y N |X N
1 , X N

2 , . . . , X N
L ) = h(Y N |U N

1 ,U
N
2 , . . . ,U

N
M ). (58)

Following the exact steps as in [6] (see also [5]) and
applying Witsenhausen’s bound [21], we can obtain

I (X N
1 , X N

2 , . . . , X N
L ; Y N ) ≤ N

2
log

(

1 + P

σ 2
Z

)

(59)

where ρ∗
�,�′ = |ψ�,�′(ψ�,�ψ�′,�′)− 1

2 |. This inequality intuitively
says that the mutual information between the channel inputs
and the output is upper-bounded by the capacity of a point-
to-point channel, whose power constraint is equal to the
resultant signal power when all the inputs on the multiple-
access channel are coherently added. We will not attempt to
further simplify this condition at this point, since in the context
of the uncoded scheme, it has a particularly simple form.

The right hand side of (57) can be bounded similarly
as in the broadcast problem. Here the equivalent source is
(S̃1, S̃2, . . . , S̃M ), and the distortion vectors are (D1−�1, D2−
�2, . . . , DM − �M ), and moreover, σ 2

Zm
= σ 2

Z for m =
1, 2, . . . ,M . We thus arrive at

I (U N
1 ,U

N
2 , . . . ,U

N
M ; Y N )≥ N

2
log

|�S̃[1:M] +�W[1:M] |
�M

m=1(Dm −�m +σ 2
Wm
)
,

(60)

where equality holds if and only if

h(U N
m |Y N ) = N

2
log[2πe(Dm −�m + σ 2

Wm
)],

m = 1, 2, . . . ,M, (61)

h(U N
m |Y N ,U N

1 ,U
N
2 , . . . ,U

N
m−1) = h(U N

m |Y N ),

m = 2, 3, . . . ,M. (62)

An outer bound on the achievable distortion is then obtained
by combining (57), (59) and (60), which we summarize below.
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Proposition 2: Any achievable distortion vector
(D1, D2, . . . , DM ) must satisfy the inequality

|�S̃[1:M] +�W[1:M] |
�M

m=1(Dm −�m + σ 2
Wm
)

≤
(

1 + P

σ 2
Z

)

, (63)

for any positive semidefinite �W[1:M] . Moreover, a distor-
tion vector that makes (58), (61) and (62) hold, and (59)
hold with equality for some positive semidefinite �W[1:M] is
Pareto-optimal.

We emphasize that for the purpose of this work, the precise
form of this outer bound is less important than the extracted
matching conditions (58), (61) and (62), and (59) being
equality. The condition (59) being equality and the condition
(61) can be satisfied simply by choosing a jointly Gaussian
coding scheme adjusted linearly to utilize the full power,
and the conditions (58) and (62) are almost identical to (11)
and (16) in the broadcast case.

B. The Forward Matching Conditions

Since the uncoded scheme takes single letter encoding
function, (59) being equality is equivalent to

I (X1, X2, . . . , X L ; Y ) = 1

2
log

(

1 + P

σ 2
Z

)

. (64)

Because in the uncoded scheme the channel input X is given
in (48), the equality holds as long as

η�η�′ψ�,�′ ≥ 0, 1 ≤ � < �′ ≤ L . (65)

This yields the first condition stated in Theorem 2.
The conditions (58) and (62) in the context of uncoded

scheme are equivalent to

h(Z) = h(Y |U1,U2, . . . ,UM ), (66)

h(Um |Y,U1,U2, . . . ,Um−1) = h(Um |Y ),
m = 2, 3, . . . ,M. (67)

Denote

X̃ =
L∑

�=1

δ�X�. (68)

For (66) to hold with equality, two conditions must hold

E[X̃ |S̃1, S̃2, . . . , S̃M ] = X̃ , (69)

and

E[X̃ |U1,U2, . . . ,UM ] = X̃ . (70)

Let us consider the first condition (69). Due to the
jointly Gaussian distribution, there exists a set of coefficients
(α1, α2, . . . , αM ) such that

E[X̃ |S̃1, S̃2, . . . , S̃M ] =
M∑

m=1

αm S̃m =
M∑

m=1

αm

L∑

�=1

γm,�T�. (71)

However notice that

X̃ =
L∑

�=1

δ�η�

√
P�
ψ�,�

T�, (72)

thus the condition (69) is equivalent to the fact that the
vector

(

δ1η1

√
P1

ψ1,1
, δ2η2

√
P2

ψ2,2
, . . . , δLηL

√
PL

ψL ,L

)

(73)

is in the row space of the matrix 
. Equivalently, the
vector
(

δ1η1

√
P1

ψ1,1
, δ2η2

√
P2

ψ2,2
, . . . , δLηL

√
PL

ψL ,L

)

�T[1:L]

needs to be in the row space of the matrix �S[1:M],T[1:L] . This
leads to the second condition stated in Theorem 2. When this
condition is satisfied, the coefficients ᾱ can be determined
exactly as in (49).

The conditions (67) and (70) are now identical to the broad-
cast case with S̃1, S̃2, . . . , S̃M being the sources and X̃ being
the channel input, and all the receivers in a broadcast channel
having the same channel noise variance. By Corollary 2, such
a channel is matched when the second largest eigenvalue of

the matrix ��S̃[1:M]� is less than
σ 2

Z
P+σ 2

Z
, or in other words,

the noise power must be above or equal to the given threshold
stated in Theorem 2.

Remark: The first condition in Theorem 2 generally has
a unique solution if it can be satisfied, up to a negation
of all the signs of the channel input signals. The second
condition can almost always be satisfied by choosing an
appropriate (δ1, δ2, . . . , δL) vector, except for the cases where
an all positive solution does not exist (recall we have assumed
δ� > 0, and thus only all positive solutions are valid). If the
third condition is satisfied for certain source-channel-code
triple, then it is satisfied for any more noisy channels. It is
seen that the critical conditions in the outer bound derivation
essentially decouple the matching problem into several simpler
ones, leading to the three largely independent conditions given
in Theorem 2.

C. Matched Channels in Special Case Scenarios

In the multiple-access setting, the conditions for matching
in Theorem 2 are already rather simple, and there is no need
to further investigate the properties of matched channels as
in the broadcast case. Next we consider two special cases in
the general problem setting which extend those considered
in [5] and [6], respectively.

1) The Scalar CEO Problem: Consider a zero-mean scalar
Gaussian source S[n] with covariance σ 2

S . There are a total of
L sensors, whose observations are

T�[n] = d�S[n] + Z ′
�[n],

� = 1, 2, . . . , L, n = 1, 2, . . . , N, (74)

where d� ≥ 0 (without loss of generality) and Z ′
�[n]’s

are the zero-mean independent additive Gaussian noises with
covariance σ 2

Z ′ . This special case is depicted in Fig. 5.
It is clear that the first condition in Theorem 2 is satisfied

by η� = 1 for all � = 1, 2, . . . , L. The second condition for
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Fig. 5. The scalar Gaussian CEO problem on a Gaussian multiple-access channel.

Fig. 6. Sending correlated Gaussians on a Gaussian multiple-access channel.

this case is equivalent to
(

δ1

√
P1

ψ1,1
, δ2

√
P2

ψ2,2
, . . . , δL

√
PL

ψL ,L

)

�T[1:L]

∝ (d1, d2, . . . , dL), (75)

where ∝ here means a component-wise proportional relation.
In other words, the uncoded scheme is optimal if

δ�

√
P�(d2

� σ
2
S + σ 2

Z ′)+
∑

�′ �=�
δ�′

√
P�′

d2
�′σ

2
S + σ 2

Z ′
d�d�′σ

2
S ∝ d�.

(76)

However, the LHS of the above condition can be simplified to

δ�σ
2
Z ′

√
P�

d2
� σ

2
S + σ 2

Z ′
+ d�

L∑

�′=1

δ�′d�′

√
P�′

d2
�′σ

2
S + σ 2

Z ′
σ 2

S , (77)

where the second term is proportional to d�, and the first term
is proportional to d� if and only if

P�δ2
�

(d2
� σ

2
S + σ 2

Z ′)d2
�

= const, � = 1, 2, . . . , L . (78)

It remains to check the third condition, however in this case
M = 1, and the second eigenvalue of the matrix ��S̃[1:M]�

can be viewed as zero, thus any noise power σ 2
Z will allow

a matching. Summarizing the above analysis, it is seen that
for the scalar CEO problem on a Gaussian multiple-access
channel, as long as the condition (78) holds, the uncoded

scheme is optimal. Conversely, for any noisy observation
qualities, there always exists a matched channel by choosing
the values of δ� properly.

The condition (78) corresponds to a proportional quality
requirement: the quality of the observations need to match
the transmission powers and the transmission amplification
factors. Gastpar [6] showed that when all the sensors have
the same observation quality, the same power and the same
amplification factor, the uncoded scheme is optimal. Our result
thus generalizes it to the proportional case.

2) Correlated Gaussian Sources on a Gaussian Multiple-
Access Channel: Consider the case when M = L, and we
shall assume that the first condition in Theorem 2 can be
satisfied. The second condition is also satisfied trivially since
the matrix �S[1:M],T[1:L] is full rank in our problem setting.
Thus only the last condition needs to be checked in this case.
Equivalently, when λ2 is strictly less than 1, there always exists
a noise power σ 2

Z such that the channel is matched and thus
the uncoded scheme is optimal.

Lapidoth and Tinguely [5] previously considered the special
case when in addition to M = L, the observations are in
fact noiseless and furthermore Tm = Sm , m = 1, 2, . . . ,M;
see Fig. 6. It was shown that for covariance matrix �S[1:M]
with strictly positive entries, there always exists a noise power
σ 2

Z such that the uncoded scheme is optimal. Our result
generalizes theirs to the case that the observations can be noisy
linear combinations, and the covariance matrix�S[1:M] does not
necessarily have strictly positive entries.
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IV. CONCLUSION

We considered the problem of determining whether a given
uncoded scheme is optimal for multiuser joint source channel
coding. It was shown that for both broadcast and multiple-
access in the Gaussian setting, matching occurs naturally under
certain general conditions. Our approach differs from the more
conventional approach in that instead of attempting to find
explicit outer bound and inner bound then compare them, our
focus is on the critical conditions that make the outer bound
hold with equality. This approach has a decoupling effect
which significantly simplifies the overall task. As future work,
we plan to extend and generalize this approach to explore
matching in other channel networks, and also for more general
hybrid digital-analog schemes, for example, in the simple
setting considered in [22] and [23].

APPENDIX A
PROOF OF THE OUTER BOUND IN THEOREM 1

Proof:
To upper-bound E(�W[1:M]), first recall the Markov string

Y N
1 ↔ Y N

2 ↔ . . . ↔ Y N
M ↔ X N ↔ (SN

1 , SN
2 , . . . , SN

M )

↔ (U N
1 ,U

N
2 , . . . ,U

N
M ) ↔ (U N

1 ,U
N
2 , . . . ,U

N
M−1)

↔ . . . ↔ U N
1 . (79)

We start by writing the following:
m∑

j=1

I (U N
j ; Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j−1)

=
m∑

j=1

[
I (U N

1 ,U
N
2 , . . . ,U

N
j ; Y n

j )

−I (U N
1 ,U

N
2 , . . . ,U

N
j−1; Y N

j )
]

=
m∑

j=1

[
h(Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j−1)

−h(Y N
j |U N

1 ,U
N
2 , . . . ,U

N
j )
]

=
m∑

j=1

h(Y N
j |U N

1 ,U
N
2 , . . . ,U

N
j−1)

−
m∑

j=1

h(Y N
j |U N

1 ,U
N
2 , . . . ,U

N
j ). (80)

Since physical degradedness is equivalent to stochastic degrad-
edness in the broadcast setting, i.e., Z j can be assumed
to be decomposable into two independent components as
Z j+1 +�Z j , we can apply the entropy power inequality [17]
for j = 1, 2, . . . ,M − 1,

exp

[
2

N
h(Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j )

]

≥ exp

[
2

N
h(Y N

j+1|U N
1 ,U

N
2 , . . . ,U

N
j )

]

+ exp
[
log(2πe(σ 2

Z j
− σ 2

Z j+1
))
]

= exp

[
2

n
h(Y N

j+1|U N
1 ,U

N
2 , . . . ,U

N
j )

]

+2πe(σ 2
Z j

− σ 2
Z j+1

). (81)

For j = M , it is clear that

exp

[
2

N
h(Y N

M |U N
1 ,U

N
2 , . . . ,U

N
M )

]

≥ exp

[
2

N
h(Y N

M |SN
1 , SN

2 , . . . , SN
M )

]

= 2πeσ 2
ZM
, (82)

where equality holds

h(Y N
M |U N

1 ,U
N
2 , . . . ,U

N
M ) = h(Y N

M |SN
1 , SN

2 , . . . , SN
M ). (83)

It now follows that

E(�W[1:M])

=
M∑

m=1

(σ 2
Zm

− σ 2
Zm+1

) exp

⎡

⎣ 2

N

m∑

j=1

I (U N
j ; Y N

j |U N[1: j−1])

⎤

⎦

≤
M∑

m=1

(σ 2
Zm

− σ 2
Zm+1

) exp
[

2
N

∑m
j=1 h(Y N

j |U N
[1: j−1])

]

∏m
j=1

[
exp
(

2
N h(Y N

j+1|U N[1: j ])
)

+ 2πe(σ 2
Z j

− σ 2
Z j+1

)
]

(84)

where for convenience we have defined
exp
[ 2

N h(Y N
M+1|U N

1 ,U
N
2 , . . . ,U

N
M )
]
� 0.

We upper-bound this summation by considering the sum-
mands in the reversed order, i.e., m = M,M − 1, . . . , 1.
Starting with the summands when m = M − 1 and m = M ,
we have (85) as given at the top of the next page. Continuing
this line of reduction, we finally arrive at when m = 1

E(�W[1:M])

≤ (σ 2
Z1

− σ 2
Z2
)

exp
[ 2

N h(Y N
1 )
]

exp
( 2

N h(Y N
2 |U N

1 )
)+ 2πe(σ 2

Z1
− σ 2

Z2
)

+ 1

2πe

exp
[

2
N

∑2
j=1 h(Y N

j |U N
1 , . . . ,U

N
j−1)

]

exp
( 2

N h(Y N
2 |U N

1 )
)+ 2πe(σ 2

Z2
− σ 2

Z1
)

= exp
[ 2

N h(Y N
1 )
]

2πe
≤ P + σ 2

Z1
, (86)

where the last inequality is by the concavity of the log(·) func-
tion and the given power constraint. The chain of inequalities
in (86) hold with equality if and only if

h(Y N
1 ) = N

2
log 2πe(P + σ 2

Z1
), (87)

as well as (83) and the entropy power inequalities hold with
equality.

We next lower-bound E(�W[1:M]). By the rate-distortion
theorem [17]

I (U N
1 ; Y N

1 ) ≥ N

2
log

σ 2
S1

+ σ 2
W1

D + σ 2
W1

, (88)

where equality holds if and only if

h(U N
1 |Y N

1 ) = N

2
log[2πe(D1 + σ 2

W1
)]. (89)
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(σ 2
ZM−1

− σ 2
ZM
)

exp
[

2
N

∑M−1
j=1 h(Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j−1)

]

∏M−1
j=1
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j+1|U N
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N
2 , . . . ,U

N
j )
)

+ 2πe(σ 2
Z j
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)
]
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ZM
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j=1 h(Y N
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2 , . . . ,U

N
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]
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[
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(
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N
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N
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)
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]
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N
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]

∏M−1
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(

2
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j+1|U N
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N
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N
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+ 2πe(σ 2
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− σ 2
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)
]

·
[
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ZM−1

− σ 2
ZM
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ZM

exp
[ 2

N h(Y N
M |U N

1 ,U
N
2 , . . . ,U

N
M−1)

]

2πeσ 2
ZM

]

= 1

2πe

exp
[

2
N

∑M−1
j=1 h(Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j−1)

]

�M−2
j=1

[
exp

(
2
N h(Y N

j+1|U N
1 ,U

N
2 , . . . ,U

N
j )
)

+ 2πe(σ 2
ZM−1

− σ 2
ZM
)
]. (85)

Furthermore,

I (U N
j ; Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j−1)

= h(U N
j |U N

1 ,U
N
2 , . . . ,U

N
j−1)

− h(U N
j |Y N

j ,U
N
1 ,U

N
2 , . . . ,U

N
j−1)

= N

2
log

|2πe(�S[1: j ] +�W[1: j ])|
|2πe(�S[1: j ] +�W[1: j ])|

− h(U N
j |Y N

j ,U
N
1 ,U

N
2 , . . . ,U

N
j−1)

≥ N

2
log

|2πe(�S[1: j ] +�W[1: j ])|
|2πe(�S[1: j−1] +�W[1: j−1])|

− h(U N
j |Y N

j )

(90)

≥ N

2
log

|2πe(�S[1: j ] +�W[1: j ])|
|2πe(�S[1: j−1] +�W[1: j−1])|

− N

2
log[2πe(D j + σ 2

W j
)] (91)

= N

2
log

|�S[1: j ] +�W[1: j ] |
|(�S[1: j−1] + �W[1: j−1])|[Dm + σ 2

W j
] ,

where (90) is because conditioning reduces entropy, and (91)
is because Gaussian distribution maximizes the differential
entropy for random variables with the same variance [17],
together with the concavity of the log(·) function. For (90)
to hold with equality, we must have

h(U N
j |Y N

j ,U
N
1 ,U

N
2 , . . . ,U

N
j−1) = h(U N

j |Y N
j ),

j = 2, 3, . . . ,M, (92)

and for (91) to hold with equality it requires

h(U N
j |Y N

j ) = N

2
log[2πe(D j + σ 2

W j
)], j = 2, 3, . . . ,M.

(93)

It follows that

exp

⎡

⎣
2

N

m∑

j=1

I (U N
j ; Y N

j |U N
1 ,U

N
2 , . . . ,U

N
j−1)

⎤

⎦

≥ |�S[1:m] +�W[1:m] |
�m

j=1(D j + σ 2
W j
)
. (94)

Combining (86) and (94), we reach an outer bound

M∑

m=1

(σ 2
Zm

− σ 2
Zm+1

)
|�S[1:m] +�W[1:m] |
�m

j=1(D j + σ 2
W j
)

≤ P + σ 2
Z1
. (95)

APPENDIX B
PROOF OF LEMMA 1

Proof:
For simplicity, let us define B(0)m � σ 2

X |Ym
for m =

1, 2, . . . ,M . It is clear that

B(0)1 ≥ B(0)2 ≥ . . . ≥ B(0)M > 0. (96)

Recall αm �= 0. In the k-th step of the Cholesky decompo-
sition k = 0, 1, . . . ,M −1, we claim that αM−kβM−k ≥ 0 and∑M−k−1

i=1 αiβi ≥ 0. Moreover, we claim the matrix partially
diagonalized, denoted as �(k)V[1:M] , has entries in the following
form:

• γ
(k)
i, j = 0, j > M − k and i �= j ; by symmetry, γi, j = 0,

i > M − k and i �= j ;
• γ

(k)
m,m = βm

αm
B(k)m

∑m−1
j=1 α jβ j , m > M − k;

• γ
(k)
i, j = −βiβ j B(k)j , j ≤ M − k and i < j ; by symmetry

γ
(k)
i, j = −βiβ j B(k)i , i ≤ M − k and i > j ;

• γ
(k)
m,m = βm

αm

[
B(k)m

∑m−1
j=1 α jβ j +∑M−k

j=m+1 α jβ j B(k)j

]
,

m ≤ M − k;
where the terms (B(k)1 , B(k)2 , . . . , B(k)M ) are determined recur-
sively as

B(k)m = B(k−1)
m , m > M − k, (97)

and

B(k+1)
m

=
{

B(k)m + αM−kβM−k∑M−k−1
i=1 αiβi

B(k)M−k, βm
∑M−k−1

i=1 αiβi �= 0

B(k)m , otherwise

for m ≤ M − k, (98)
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for which

B(k)1 ≥ B(k)2 ≥ . . . ≥ B(k)M . (99)

Readers can verify γ
(k+1)
i, j ’s are precisely the expression

when using Cholesky factorization on the matrix with entries
γ
(k)
i, j ’s. First consider the case k = 0. Setting m = M in (7)

gives

γM,M = α−1
M βM (

M−1∑

m=1

αmβm)
Pσ 2

ZM

P + σ 2
ZM

. (100)

Recall the assumption that αM �= 0. The matrix �
(0)
V[1:M]

being positive semi-definite implies that γM,M ≥ 0, and since∑M
m=1 αmβm = 1, it follows that αMβM (1 −αMβM ) ≥ 0, and

thus αMβM ∈ [0, 1], from which we have
∑M−1

m=1 αmβm ≥ 0.
Thus the claim is true when k = 0. Next suppose it is
also true for k = k∗, and we wish to prove the claim for
k = k∗ + 1.

It is clear that due to the positive semidefinite requirement
for the degenerate case when

βM−k∗

αM−k∗

M−k∗−1∑

j=1

α jβ j = 0, (101)

we must have for i < M − k∗

γ
(k∗)
i,M−k∗ = B(k)M−k∗βiβM−k∗ = 0, (102)

and this Cholesky step can essentially be skipped, and

(B(k)1 , B(k)2 , . . . , B(k)M ) does not need to be updated. It is easy
to check the recursive formula γ (k

∗+1)
m,m for m ≤ M − k∗ − 1

is indeed valid for this case.
If γ (k

∗)
M−k∗,M−k∗ �= 0, then due to the assumption in the

induction we have

αM−k∗βM−k∗ > 0,
M−k∗−1∑

j=1

α jβ j > 0. (103)

First observe that due to the assumption in the induction, we
have

B(k
∗+1)

1 ≥ B(k
∗+1)

2 ≥ . . . ≥ B(k
∗+1)

M > 0. (104)

Using the Cholesky factorization, we have for any j ≤ M −
k∗ − 1 and i < j

γ
(k∗+1)
i, j = γ
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i, j − βiβM−k∗ B(k

∗)
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= −βiβ j B(k
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B(k
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]

= −βiβ j B(k
∗+1)

j . (105)

Similarly for m ≤ M − k∗ − 1

γ (k
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m,m

= γ (k
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⎡
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+ βm
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[

B(k
∗)
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t=1 αtβt
B(k

∗)
M−k∗

]

= βm

αm

⎡

⎣B(k
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m

m−1∑
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α jβ j +
M−k∗−1∑
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α jβ j B(k
∗+1)

j

⎤

⎦.

(106)

Now suppose αM−k∗−1βM−k∗−1 < 0, which implies that

M−k∗−2∑

j=1

α jβ j =
M−k∗−1∑

j=1

α jβ j − αM−k∗−1βM−k∗−1 > 0.

(107)

This however contradicts with the positive semidefinite
requirement that

βM−k∗−1

αM−k∗−1

M−k∗−2∑

j=1

α jβ j ≥ 0. (108)

Thus the supposition αM−k∗−1βM−k∗−1 < 0 cannot be true. If
αM−k∗−1βM−k∗−1 = 0, then from the assumption in the induc-
tion, we have

∑M−k∗−2
j=1 α jβ j =∑M−k∗−1

j=1 α jβ j ≥ 0 thus this

case does not cause any problem. If αM−k∗−1βM−k∗−1 ≥ 0,
then it also follows that

∑M−k∗−2
j=1 α jβ j ≥ 0. The lemma is

proved.

APPENDIX C
PROOF OF COROLLARY 1

Proof: It suffices to consider the case that σ 2
Z+

m
=

σ 2
Zm

, m = 1, 2, . . . ,m∗ − 1,m∗ + 1, . . . ,M , and σ 2
Z+

m∗
=

σ 2
Zm∗ + σ 2

�Z . Denote �P =
Pσ 2

Z+
m∗

P+σ 2
Z+

m∗
− Pσ 2

Zm∗
P+σ 2

Zm∗
, and matrices

constructed for the two channels as �V[1:M] and �∗
V[1:M] ,

respectively. It is clear that we have (109) as given at the
top of next page. However, it is easily seen that this matrix is
positive semidefinite since the first m∗ − 1 diagonal terms are
non-negative, and we can remove all the other terms through
symmetric elimination, i.e., the Cholesky factorization step.
It follows that

�∗
V[1:M] −�S[1:M] + Pβ̄ β̄ t

= [�∗
V[1:M] −�V[1:M] ] + [�V[1:M] −�S[1:M] + Pβ̄β̄ t]

(110)
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�∗
V[1:M] −�V[1:M] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1
α1
αm∗βm∗�P 0 . . . −β1βm∗�P 0 . . . 0

0 β2
α2
αm∗βm∗�P . . . −β2βm∗�P 0 . . . 0

. . .

−β1βm∗�P −β2βm∗�P . . .
βm∗
αm∗�P

∑m∗−1
i=1 αiβi 0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (109)

is positive semidefinite since it is a summation of two positive
semidefinite matrices.

APPENDIX D
PROOF OF COROLLARY 2

Proof: First note that the entries in matrix �,
M∑

i=1

ρ j,iαi = Pβ j , j = 1, 2, . . . ,M. (111)

For the “if” direction, we choose a σ 2
Z such that (115) holds,

which is always possible when σ 2
Z is sufficiently large. This

implies that for the channel σ 2
Z1

= σ 2
Z2

= . . . = σ 2
ZM

= σ 2
Z ,

condition (112) holds, and thus it is a matched channel.
For the “only if” direction, it follows from Corollary 1 that

matching must hold for the degraded channel with noise power
σ 2

Z ′
1

= σ 2
Z ′

2
= . . . = σ 2

Z ′
M

� σ 2
Z = σ 2

Z1
. The requirement (5)

implies

Pσ 2
Z

P + σ 2
Z

diag

(
β1

α1
,
β2

α2
, . . . ,

βM

αM

)

+
(

P − Pσ 2
Z

P + σ 2
Z

)

β̄β̄ t � �S1,S2,...,SM . (112)

This, together with Lemma 1, implies that αiβi > 0, since
otherwise the left hand side is rank deficient. Multiplying both
sides of (112) from left and from right by � gives

P

P + σ 2
Z

⎛

⎜
⎜
⎝

√
α1β1√
α2β2
. . .√
αMβM

⎞

⎟
⎟
⎠
(√
α1β1

√
α2β2 . . .

√
αMβM

)

+ σ 2
Z

P + σ 2
Z

IM � ��S[1:M]�. (113)

Notice that v̄ t
1 = (

√
α1β1,

√
α2β2, . . . ,

√
αMβM ) is in fact an

eigenvector corresponding to the eigenvalue 1 for the matrix
��S[1:M]�, easily verified using (4). We can write the eigen-
decomposition of the matrix ��S[1:M]� as

��S1,S2,...,SM� = v̄1v̄
t
1 +

M∑

i=2

λi v̄i v̄
t
i , (114)

where λ2, λ3, . . . , λM are the other eigenvalues of
��S1,S2,...,SM�, and v̄2, v̄3, . . . , v̄M are the corresponding
eigenvectors. It follows that

σ 2
Z

P + σ 2
Z

IM � σ 2
Z

P + σ 2
Z

v̄1v̄
t
1 +

M∑

i=2

λi v̄i v̄
t
i , (115)

which implies λi ≤ σ 2
Z

P+σ 2
Z

, i = 2, 3, . . . ,M .

APPENDIX E
PROOF OF COROLLARY 3

Proof: Consider the entries of the matrix
diag(ᾱ)�W1,W2,...,WM diag(ᾱ), denoted as φi, j , which is
given as (by symmetry, only the upper-triangle entries need
to be specified)

φ j,m = α jβ jαmβm
P2

P + σ 2
Zm

− α jαmρ j,m , j < m, (116)

and

φm,m = αmβm

m−1∑

j=1

α jβ j
Pσ 2

Zm

P + σ 2
Zm

+ αmβm

M∑

j=m+1

α jβ j

Pσ 2
Z j

P + σ 2
Z j

− α2
mρm,m + α2

mβ
2
m P.

(117)

A necessary and sufficient condition for matching is that the
matrix diag(ᾱ)�W[1:M]diag(ᾱ) is positive semidefinite, since
this implies the existence of the required (W1,W2, . . . ,WM )
random vector, or equivalently the required random vector
(V1, V2, . . . , VM ) as in the proof of Theorem 1.

Observe that
M∑

j=1

φ j,m = αmβm P
M∑

i=1

α jβ j − αmβm P = 0. (118)

If all the off-diagonal entries of diag(ᾱ)�W[1:M]diag(ᾱ) are
non-positive, then the matrix is diagonally dominant, and the
diagonal entries are all positive by (118), which implies that
it is a positive semidefinite matrix [20]. Thus as long as

α jβ jαmβm
P2

P + σ 2
Zm

≤ α jαmρ j,m, j < m (119)

and

α jβ jαmβm
P2

P + σ 2
Z j

≤ α jαmρ j,m, j > m (120)

the positive semidefinite condition is satisfied. Note here that
since diag(ᾱ)�S[1:M]diag(ᾱ) has positive entries, αiβi > 0, and
both sides of the above conditions are positive, which makes
it possible for them to hold by choosing σ 2

Z j
’s properly. It is

thus sufficient to have

σ 2
Zm

≥ max
j<m

β j

ρ j,m
βm P2 − P, m = 2, 3 . . . ,M. (121)
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Together with Corollary 1, this implies the statement given in
the corollary is indeed true.

APPENDIX F
PROOF OF (44)

Proof: Since the matrix �S1,S2,S3 is positive definite, we
have −1 < ρ1 < 1 and −1 < ρ2 < 1. Since αm = 1, we must
also have βm > 0, 0 < λ2 < 1 and 0 < λ3 < 1 for matching
to occur. The first condition gives that

ρ1 + ρ2 + 1 > 0 and 2ρ1 + 1 > 0, (122)

but the latter two require a few more steps to simplify. Notice
that the condition 0 < λ3 < 1 implies that

ρ1 + 2ρ2 > 0. (123)

If ρ2 > 2ρ2
1 − 1, then 0 < λ2 < 1 implies

2ρ1ρ2 > −4ρ2
1 − 3ρ1. (124)

If ρ1 > 0, this yields a condition already implied by ρ1+2ρ2 >
0; on the other hand, ρ1 ≤ 0 is an impossible case. It can be
verified that ρ2 < 2ρ2

1 − 1 is also an impossible case. Thus
we must have ρ2 > 2ρ2

1 − 1 and ρ1 > 0 simultaneously,
from which we obtained the set of conditions given in (44).
Conversely, it is straightforward to verify that the conditions
in (44) indeed imply βm > 0, 0 < λ2 < 1 and 0 < λ3 < 1.
This completes the proof.
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