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A Lower Bound on the Sum Rate of Multiple
Description Coding With Symmetric
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Abstract— We derive a single-letter lower bound on the min-
imum sum rate of multiple description coding with symmetric
distortion constraints. For the binary uniform source with the
erasure distortion measure or Hamming distortion measure,
this lower bound can be evaluated with the aid of certain
minimax theorems. A similar minimax theorem is established
in the quadratic Gaussian setting, which is further leveraged to
analyze the special case where the minimum sum rate subject
to two levels of distortion constraints (with the second level
imposed on the complete set of descriptions) is attained; in
particular, we determine the minimum achievable distortions at
the intermediate levels.

Index Terms— Erasure distortion, Hamming distortion, mean
squared error, minimax theorem, multiple description coding,
saddle point.

I. INTRODUCTION

IN MULTIPLE description coding a source is encoded into
several (say, L) descriptions such that every subset of these

descriptions can be used to reconstruct the source (though the
reconstruction distortion in general depends on which subset
of descriptions is used). Many coding schemes have been
proposed for this problem over the past three decades. Notable
examples include the classical El Gamal-Cover [1] and
Zhang-Berger [2] schemes for the two-description case
as well as their extension to the general L-description
case by Venkataramani, Kramer, and Goyal [3]. Special
attention [4]–[7] has been paid to the case where the distor-
tion constraints are symmetric, i.e., the distortion constraints
imposed on the reconstructions from different subsets of
descriptions of the same cardinality are identical (see Fig. 1 for
an illustration of the three-description case). In particular,
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Pradhan, Puri, and Ramchandran [4], [5] developed a sym-
metric multiple description coding scheme via an ingenious
application of the binning technique; further improvements
based on structured codes and the splitting method can be
found in [6].

In contrast, the converse results for the multiple description
problem are relatively limited. This is partly due to tech-
nical difficulties in handling dependencies among different
descriptions. In fact, it is already a highly sophisticated task to
obtain a tight single-letter bound even when the descriptions
are asymptotically independent, as evident from Ahlswede’s
remarkable work on the characterization of the rate-distortion
region of two-description coding with no excess sum rate [8].

We shall show that non-trivial converse results for the
multiple description problem can be obtained by augmenting
the probability space through the introduction of certain
auxiliary remote sources. It is worth emphasizing that the
use of auxiliary remote sources is by no means a new idea.
Indeed, this idea made its first appearance in the seminal work
of Ozarow on the solution of the Gaussian two-description
problem [9]; since then, remote sources have played an
essential role in the derivation of several conclusive results
on the information-theoretic limits of multiple description
coding [10]–[12]. However, although this idea has been
widely used with great success, to the best of the authors’
knowledge, in the context of multiple description coding1 only
a special class of remote sources (specifically, only those that
can be generated by the given source via additive Gaussian
noise channels) have been exploited. A possible reason for
this situation is as follows: if this special class of remote
sources are used, then one can derive explicit bounds on the
relevant multi-letter expressions by invoking certain extremal
inequalities (e.g., the worst additive noise lemma [19], [20]
and certain variants of the entropy power inequality) that hinge
upon the properties of the Gaussian distribution. However,
the use of such remote sources and the associated extremal
inequalities impose severe restrictions on the applicability of
this idea, rendering it essentially only useful for the quadratic
Gaussian case2. It will be seen that such extremal inequalities

1The idea of using auxiliary remote sources in the converse arguments has
also found applications in multiterminal source coding (see [13]–[16]), joint
source-channel coding (see [17], [18]), and other network information theory
problems.

2Strictly speaking, this special class of remote sources and the associated
extremal inequalities can be used in the non-Gaussian setting, particularly
when the mean squared error distortion measure is adopted (see [21 Th. 5.3);
however, they incur an intrinsic loss in the non-Gaussian setting and conse-
quently the resulting bound is in general strictly suboptimal.
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Fig. 1. System diagram for three-description coding with symmetric distortion constraints.

are in fact not needed for reducing multi-letter bounds to
single-letter bounds (though they can be useful for evaluating
single-letter bounds in the quadratic Gaussian case) and
there is greater flexibility in choosing remote sources. As a
consequence, this remote-source idea can be readily applied
in the non-Gaussian setting as well. It is worth mentioning
that the converse results in [22] and [23] also involve certain
auxiliary random objects. However, those objects do not
appear to have a remote-source interpretation3 and their
relationship with the remote-source construction initiated by
Ozarow remains elusive.

In this work we derive a single-letter lower bound on the
minimum sum rate of multiple description coding with sym-
metric distortion constraints by exploiting the aforementioned
remote-source idea. It will be seen that our bounding technique
is in fact applicable to the asymmetric case as well. We choose
to focus on the symmetric case mostly because the resulting
bound has a more compact expression; additionally, from a
practical perspective, it often suffices to consider symmetric
distortion constraints. Furthermore, we prove several minimax
theorems, which are of interest in their own right, and leverage
them to evaluate this lower bound in some special settings.
Interestingly, the minimax theorem established in the quadratic
Gaussian case also enables us to obtain a new conclusive
result on the information-theoretic limits of Gaussian multiple
description coding.

The rest of this paper is organized as follows. A single-letter
lower bound on the minimum sum rate of multiple description

3Actually they are better interpreted as duplicate copies of the source.

coding with symmetric distortion constraints is presented
in Section II. We show in Section III that, for the binary
uniform source with the erasure distortion measure or
the Hamming distortion measure, this lower bound can
be evaluated with the aid of certain minimax theorems.
Section IV contains a similar minimax theorem in the
quadratic Gaussian setting, which is used to analyze the
special case where the minimum sum rate subject to two
levels of distortion constraints (with the second level imposed
on the complete set of descriptions) is attained; in particular,
we determine the minimum achievable distortions at
the intermediate levels. We conclude the paper
in Section V.

For any nonempty set A, we define 2A+ = {B : B ⊆ A,
|B| > 0}, where |B| is the cardinality of B. We write
(X (1), . . . , X (n)) as Xn for any positive integer n and set
X0 = 0. Moreover, ⊕M and �M are used to denote modulo-M
addition and subtraction, respectively, for any integer M ≥ 2.
Let f (x, y) be an arbitrary real-valued function with x ∈ X
and y ∈ Y; we define

arg max
x∈X

f (x,y∗)= {x ∈X : f (x, y∗)≥ f (x̃, y∗) for all x̃ ∈X },
arg min

y∈Y
f (x∗,y)= {y ∈Y : f (x∗, y)≤ f (x∗, ỹ) for all ỹ ∈Y}

for any x∗ ∈ X and y∗ ∈ Y . Unless specified otherwise, we
adopt the following convention:

N∑

i=1

αi log ∞ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∞,
N∑

i=1
αi < 0

0,
N∑

i=1
αi = 0

∞,
N∑

i=1
αi > 0.

The logarithm function is to base e throughout this paper.
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II. A SINGLE-LETTER LOWER BOUND

Let {S(t)}∞t=1 be i.i.d. copies of a generic source random
variable S with distribution pS. Let m : S × Ŝ → [0,∞]
be a distortion measure, where S and Ŝ are, respectively, the
source alphabet and the reconstruction alphabet.

Definition 1: A sum rate R is said to be achievable subject
to distortion constraints [d] � (dA,A ∈ 2L+) if there exist
encoding functions f (n)i : Sn → Ci , i ∈ L, and decoding
functions g(n)A : ∏

i∈A Ci → Ŝn , A ∈ 2L+, such that

1

n

L∑

i=1

log |Ci | ≤ R,

1

n

n∑

t=1

E[m(S(t), ŜA(t))] ≤ dA, A ∈ 2L+, (1)

where L = {1, . . . , L} and Ŝn
A = g(n)A ( f (n)i (Sn), i ∈ A),

A ∈ 2L+. The infimum over all such achievable sum rates
is denoted by R([d]). When the distortion constraints are
symmetric, i.e., there exists d � (d1, . . . , dL) such that
dA = d|A| for all A ∈ 2L+, we shall denote R([d]) by R(d).

Note that R([d]) is the classical rate-distortion function
when L = 1. Therefore, we shall only consider the case L ≥ 2
in the rest of this paper.

The following result provides a single-letter lower bound
on R([d]). Let P denote the set of conditional distribu-
tions pZ |S with Z = (Z0, Z1, . . . , Z L) such that pZk−1|S is
physically degraded with respect to pZk |S , k = 1, . . . , L. Let
P([d]) denote the set of conditional distributions p[Ŝ]|S with

[Ŝ] = (ŜA,A ∈ 2L+) such that the induced joint distribution
pS,[Ŝ] � pS p[Ŝ]|S satisfies E[m(S, ŜA)] ≤ dA, A ∈ 2L+.
Define

r([d]) = inf
p[Ŝ]|S∈P([d])

sup
pZ |S∈P

L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk ; ŜB,B ∈ 2A+ |Zk−1),

(2)

where it is assumed that Z ↔ S ↔ [Ŝ] form a Markov
chain. For the purpose of evaluating r([d]), it suffices to
consider |Zk | ≤ |S|k , k = 0, 1, . . . , L − 1, and Z L = S
(see Appendix A).

Theorem 1: R([d]) ≥ r([d]).
Proof: Our proof is partly based on the bounding tech-

nique developed in [21], which is in turn inspired by the ideas
in Ozarow’s celebrated work [9] as well as [10] and [11].
To illustrate the key points in the argument (particularly the
role of remote sources), we shall first give a sketch of the
proof for the case L = 2. The detailed proof for the general
L-description case is relegated to Appendix B.

Note that

log |C1|+log |C2|
≥ H ( f (n)1 (Sn))+H ( f (n)2 (Sn))

= H ( f (n)1 (Sn), f (n)2 (Sn))+ I ( f (n)1 (Sn); f (n)2 (Sn))

= I (Sn; f (n)1 (Sn), f (n)2 (Sn))+ I ( f (n)1 (Sn); f (n)2 (Sn)). (3)

If the two terms in (3) are treated separately, then one will
encounter difficulties in obtaining a non-trivial single-letter
lower bound on the second term, i.e., I ( f (n)1 (Sn); f (n)2 (Sn)).
To address this issue, we introduce remote sources
(Z0, Z1, Z2) jointly distributed with the generic source ran-
dom variable S such that Z0 ↔ Z1 ↔ Z2 ↔ S form a Markov
chain, and define {Z0(t), Z1(t), Z2(t)}∞t=1 correspondingly.
It can be verified that

I ( f (n)1 (Sn); f (n)2 (Sn))

= I (Zn
1 ; f (n)1 (Sn))+ I (Zn

1 ; f (n)2 (Sn))

−I (Zn
1 ; f (n)1 (Sn), f (n)2 (Sn))+ I ( f (n)1 (Sn); f (n)2 (Sn)|Zn

1 ).

As a consequence, we have

log |C1| + log |C2|
≥ I (Sn; f (n)1 (Sn), f (n)2 (Sn))+ I (Zn

1 ; f (n)1 (Sn))

+I (Zn
1 ; f (n)2 (Sn))− I (Zn

1 ; f (n)1 (Sn), f (n)2 (Sn))

+I ( f (n)1 (Sn); f (n)2 (Sn)|Zn
1 ). (4)

Dropping the last term in (4) yields the following lower bound

log |C1| + log |C2|
≥ I (Sn; f (n)1 (Sn), f (n)2 (Sn))+ I (Zn

1 ; f (n)1 (Sn))

+I (Zn
1 ; f (n)2 (Sn))− I (Zn

1 ; f (n)1 (Sn), f (n)2 (Sn)). (5)

The rationale here is that I ( f (n)1 (Sn); f (n)2 (Sn)|Zn
1 ) might be

smaller than I ( f (n)1 (Sn); f (n)2 (Sn)) for certain choices of Zn
1 ,

and consequently the resulting bound is tighter than the one
obtained by simply dropping I ( f (n)1 (Sn); f (n)2 (Sn)). Let T
be uniformly distributed over {1, . . . , n} and independent of
(Sn, Zn

0 , Zn
1 , Zn

2 ). It can be readily shown that

I (Zn
1 ; f (n)i (Sn))

≥ I (Zn
1 ; Ŝn{i})

≥ nI (Z1(T ); Ŝ{i}(T ))
≥ nI (Z1(T ); Ŝ{i}(T )|Z0(T )), i = 1, 2. (6)

In contrast, it appears difficult to single-letterize
I (Sn; f (n)1 (Sn), f (n)2 (Sn)) and I (Zn

1 ; f (n)1 (Sn), f (n)2 (Sn))
in (5) simultaneously due to the opposite signs in front
of them. If Sn and Zn are jointly Gaussian, then one can
overcome this difficulty by invoking the entropy power
inequality or the worst additive noise lemma; however, such
specialized methods are not suitable in the general setting.
It will be seen that this difficulty is actually not intrinsic
and can be resolved through simple algebraic manipulations.
Indeed, we have

I (Sn; f (n)1 (Sn), f (n)2 (Sn))− I (Zn
1 ; f (n)1 (Sn), f (n)2 (Sn))

= I (Zn
1 , Sn; f (n)1 (Sn), f (n)2 (Sn))

−I (Zn
1 ; f (n)1 (Sn), f (n)2 (Sn)) (7)

= I (Sn; f (n)1 (Sn), f (n)2 (Sn)|Zn
1 )

≥ I (Sn; Ŝn{1}, Ŝn{2}, Ŝn{1,2}|Zn
1 )

=
n∑

t=1

I (S(t); Ŝn
{1}, Ŝn

{2}, Ŝn
{1,2}|Zn

1 , St−1)



7550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 12, DECEMBER 2014

=
n∑

t=1

I (S(t); Ŝn{1}, Ŝn{2}, Ŝn{1,2}, Zn
1 , St−1|Z1(t))

≥
n∑

t=1

I (S(t); Ŝ{1}(t), Ŝ{2}(t), Ŝ{1,2}(t)|Z1(t))

≥ nI (S(T ); Ŝ{1}(T ), Ŝ{2}(T ), Ŝ{1,2}(T )|Z1(T ))

≥ nI (Z2(T ); Ŝ{1}(T ), Ŝ{2}(T ), Ŝ{1,2}(T )|Z1(T )), (8)

where (7) is due to the fact that Zn
1 ↔ Sn ↔ ( f (n)1 (Sn),

f (n)2 (Sn)) form a Markov chain. One can readily obtain the
desired result by substituting (6) and (8) into (5).

When the distortion constraints are symmetric, we have
the following simplified (albeit potentially weakened) lower
bound on the minimum sum rate. Let P(d) denote the set of
conditional distributions pŜ|S with Ŝ = (Ŝ1, . . . , ŜL) such that

the induced joint distribution pS,Ŝ satisfies E[m(S, Ŝk)] ≤ dk ,
k = 1, . . . , L. Define

r(d) = inf
pŜ|S∈P(d)

sup
pZ |S∈P

L∑

k=1

L

k
I (Zk; Ŝk |Zk−1),

where it is assumed that Z ↔ S ↔ Ŝ form a Markov chain.
Corollary 1: R(d) ≥ r(d).

Proof: Let (S, Z , [Ŝ]) be jointly distributed according to
pS,Z,[Ŝ] � pS pZ |S p[Ŝ]|S with pZ|S ∈ P and p[Ŝ]|S ∈ P([d]),
where dA = d|A| for all A ∈ 2L+. Note that

L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk; ŜB,B ∈ 2A+ |Zk−1)

≥
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk; ŜA|Zk−1). (9)

Let Qk be uniformly distributed over {A : A ∈ 2L+, |A| = k},
k = 1, . . . , L; furthermore, it is assumed that (Q1, . . . , QL)
and (S, Z , [Ŝ]) are mutually independent. We have, for
any k ∈ L,

∑

A∈2L+ ,|A|=k

I (Zk; ŜA|Zk−1)

=
(

L

k

)
I (Zk; ŜQk |Zk−1, Qk)

=
(

L

k

)
I (Zk; ŜQk , Qk |Zk−1) (10)

≥
(

L

k

)
I (Zk; ŜQk |Zk−1), (11)

where (10) is due to the fact that Zk ↔ Zk−1 ↔ Qk form a
Markov chain. Substituting (11) into (9) gives

L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk; ŜB,B ∈ 2A+|Zk−1)

≥
L∑

k=1

L

k
I (Zk; Ŝk |Zk−1),

where Ŝk = ŜQk , k = 1, . . . , L. In view of the fact that Z ↔
S ↔ Ŝ form a Markov chain and the fact that E[m(S, Ŝk)] ≤
dk , k = 1, . . . , L, one can readily complete the proof by
invoking Theorem 1.

III. THE BINARY UNIFORM SOURCE

In this section we shall evaluate r(d) for the binary uniform
source (i.e., S = {0, 1} and pS(0) = pS(1) = 1

2 ) with two
different distortion measures:

• m = mE , where mE is the erasure distortion measure
with Ŝ = {0, 1, e} and

mE (s, ŝ) =
⎧
⎨

⎩

0, s = ŝ
1, ŝ = e
∞, (s, ŝ) = (0, 1) or (s, ŝ) = (1, 0);

• m = m H , where m H is the Hamming distortion measure
with Ŝ = {0, 1} and m H (s, ŝ) = s ⊕2 ŝ for (s, ŝ) ∈ S× Ŝ.

To this end, we need the following two technical lemmas.
Their proofs are relegated to Appendix C and Appendix D,
respectively.

Let X = {0, 1, . . . ,M − 1} for some integer M ≥ 2,
and let Y be an arbitrary (finite)4 set. A channel pY |X :
X → Y is said to be circularly symmetric [26] if there exists
a bijective function μ : Y → Y such that μM (y) = y
and pY |X (μx(y)|x) = pY |X (y|0) for all (x, y) ∈ X × Y ,
where μk denotes the k-times self-composition of μ (with μ0

being the identity function). Similarly, a distortion measure
m : X × Y → [0,∞] is said to circularly symmetric if
there exists a bijective function μ : Y → Y such that
μM (y) = y and m(x, μx (y)) = m(0, y) for all (x, y) ∈ X×Y .
Note that the binary erasure channel with erasure probability
δ (i.e., BEC(δ)) and the erasure distortion measure mE are
circularly symmetric with μ : {0, 1, e} → {0, 1, e} given
by μ(0) = 1, μ(1) = 0, and μ(e) = e; the binary
symmetric channel with crossover probability q (i.e., BSC(q))
and the Hamming distortion measure m H are also circularly
symmetric, and the associated μ : {0, 1} → {0, 1} is given by
μ(0) = 1 and μ(1) = 0.

Lemma 1: Let pY |X : X → Y and pỸ |X : X → Ỹ be

two circularly symmetric channels. Moreover, let Y and Ỹ be
the channel outputs induced by the uniform input X via pY |X
and pỸ |X , respectively. For any real numbers α and α̃, the
maximum value of the following optimization problem

max
pU |X

−αH (Y |U)+ α̃H (Ỹ |U) (12)

is attained by some circularly symmetric channel pU |X :X→U
with U = {0, 1, . . . ,M − 1} such that pU |X (u|x) depends on
(x, u) only through u �M x for all (x, u) ∈ X × U . Here it
is assumed that U ↔ X ↔ (Y, Ỹ ) form a Markov chain.

Lemma 2: Let m : X × Y → [0,∞] be a circularly
symmetric distortion measure associated with some bijective
function μ. Let pU |X : X → U and pŨ |X : X → Ũ be

two circularly symmetric channels with U = Ũ = {0, 1, . . . ,
M − 1} such that pU |X (u|x) and pŨ |X (ũ|x) depend on

4For simplicity, we implicitly assume Y is a finite set; however, it will be
clear that such an assumption is inessential.
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(x, u) and (x, ũ) only through u �M x and ũ �M x for all
(x, u) ∈ X × U and (x, ũ) ∈ X × Ũ ; moreover, pŨ |X is

stochastically degraded with respect to pU |X . Let U and Ũ be
the channel outputs induced by the uniform input X via pU |X
and pŨ |X , respectively. For any real numbers α and α̃ such
that α ≥ α̃ and α ≥ 0, the minimum value of the following
optimization problem5

min
pY |X :E[m(X,Y )]≤d

−αH (U |Y )+ α̃H (Ũ |Y ) (13)

is attained by some circularly symmetric channel pY |X :
X → Y with the property that pY |X (μx(y)|x) = pY |X (y|0)
for all (x, y) ∈ X × Y . Here it is assumed that
(U, Ũ) ↔ X ↔ Y form a Markov chain.

A. The Erasure Distortion Measure

This subsection is devoted to the evaluation of r(d) for the
binary uniform source with the erasure distortion measure.
Without loss of generality, we assume dk ∈ [0, 1],
k = 1, . . . , L. Let α = (α1, . . . , αL ), q = (q0, q1, . . . , qL),
and δ = (δ1, . . . , δL). Define

κ(α, q, δ) =
L∑

k=1

αk(1 − δk)[Hb(qk−1)− Hb(qk)],

where Hb(q) = −q log q−(1−q) log(1−q). Moreover, define

ϕ∗(α, d) = max
q∈[0, 1

2 ]L+1
min
δ∈D(d)

κ(α, q, δ),

ϕ∗(α, d) = min
δ∈D(d)

max
q∈[0, 1

2 ]L+1
κ(α, q, δ),

where D(d) = [0, d1] × . . .× [0, dL].
Theorem 2: There exists a saddle-point solution (q∗, δ∗) in

the sense that

q∗ ∈ arg max
q∈[0, 1

2 ]L+1
κ(α, q, δ∗), (14)

δ∗ ∈ arg min
δ∈D(d)

κ(α, q∗, δ), (15)

where q∗ = (q∗
0 , q∗

1 , . . . , q∗
L) and δ∗ = (δ∗1 , . . . , δ∗L).

If α1 ≥ . . . ≥ αL ≥ 0, then there exists a saddle-point solution
(q∗, δ∗) such that q∗

0 ≥ q∗
1 ≥ . . . ≥ q∗

L , δ∗1 ≥ . . . ≥ δ∗L , and
q∗

k−1 = q∗
k whenever dk = 1, k = 1, . . . , L. Furthermore, if

α1 > . . . > αL > 0, then every saddle-point solution (q∗, δ∗)
has the property that q∗

0 ≥ q∗
1 ≥ . . . ≥ q∗

L .
Proof: See Appendix E.

The following result is a direct consequence of Theorem 2.
Corollary 2: ϕ∗(α, d) = ϕ∗(α, d).
In view of Corollary 2, we shall simply denote ϕ∗(α, d) and

ϕ∗(α, d) by ϕ(α, d). Note that

ϕ(α, d) = κ(α, q∗, δ∗)

for any (q∗, δ∗) satisfying (14) and (15).
Corollary 3: If α1 ≥ . . . αL ≥ 0, then

ϕ(α, d) = max
k∈L

αk(1 − dk) log 2.

5Here we assume that the set of feasible solutions is non-empty.

Proof: In view of Theorem 2, we have

ϕ(α, d) = max
q: 1

2 ≥q0≥q1≥...qL≥0
min
δ∈D(d)

κ(α, q, δ)

= max
q: 1

2 ≥q0≥q1≥...qL≥0
κ(α, q, d).

Note that

κ(α, q, d) = α1(1 − d1)Hb(q0)− αL(1 − dL)Hb(qL)

+
L−1∑

k=1

[αk+1(1 − dk+1)− αk(1 − dk)]Hb(qk).

Therefore, to maximize κ(α, q, d) over q subject to the con-
straint 1

2 ≥ q0 ≥ q1 ≥ . . . qL ≥ 0, one can safely set q0 = 1
2

and qL = 0; furthermore, one can eliminate q1 by setting

q1 =
{ 1

2
, α1(1 − d1) < α2(1 − d2)

q2, otherwise.

Note that the resulting expression is a linear combination
of Hb(qk), k = 2, . . . , L − 1, plus a constant term. One can
further eliminate q2 by setting q2 = 1

2 if the coefficient in
front of H (q2) is positive and setting q2 = q3 otherwise.
By repeating this process, we will eventually obtain a vector q
with the property that

qk =
{ 1

2
, k < i

0, otherwise

for some i ∈ L. Maximizing κ(α, q, d) over all such q yields
the desired result.

Recall that P(d) is the set of conditional distributions pŜ|S
with Ŝ = (Ŝ1, . . . , ŜL ) such that the induced joint distribution
pS,Ŝ satisfies E[m(S, Ŝk)] ≤ dk , k = 1, . . . , L. Let Q denote
the set of all possible conditional distributions pZ|S , where
Z = (Z0, Z1, . . . , Z L). Define

�∗(α, d) = sup
pZ |S∈Q

inf
pŜ|S∈P(d)

γ (α, pZ |S, pŜ|S),

�∗(α, d) = inf
pŜ|S∈P(d)

sup
pZ |S∈Q

γ (α, pZ |S, pŜ|S),

where

γ (α, pZ |S, pŜ|S) =
L∑

k=1

αk[I (Zk; Ŝk)− I (Zk−1; Ŝk)]

and it is assumed that Z ↔ S ↔ Ŝ form a Markov chain.
Our main result in this subsection is the following minimax
theorem.

Theorem 3: For the binary uniform source with the erasure
distortion measure,

�∗(α, d) = �∗(α, d) = ϕ(α, d).

Furthermore, every (pZ∗|S, pŜ
∗|S) with the property that pZ∗

k |S
is a BSC(q∗

k ), k = 0, 1, . . . , L, and pŜ∗
k |S is a BEC(δ∗k ),

k = 1, . . . , L, for some (q∗, δ∗) satisfying (14) and (15) is
a saddle-point solution in the sense that

pZ∗|S ∈ arg max
pZ |S∈Q

γ (α, pZ |S, pŜ
∗|S),

pŜ
∗|S ∈ arg min

pŜ|S∈P(d)
γ (α, pZ∗|S, pŜ|S).
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Proof: Given any (pZ∗|S, pŜ
∗|S) with the property that

pZ∗
k |S is a BSC(q∗

k ), k = 0, 1, . . . , L, and pŜ∗
k |S is a BEC(δ∗k ),

k = 1, . . . , L, for some (q∗, δ∗) satisfying (14) and (15), let
us consider the following optimization problems

max
pZ |S∈Q

γ (α, pZ |S, pŜ
∗|S), (16)

min
pŜ|S∈P(d)

γ (α, pZ∗|S, pŜ|S). (17)

Note that γ (α, pZ |S, pŜ
∗|S) depends on pZ|S only through

pZk |S , k = 0, 1, . . . , L. As a consequence, (16) can be
decomposed into the following sub-problems

max
pZ0|S

−α1 I (Z0; Ŝ∗
1 ),

max
pZk |S

αk I (Zk; Ŝ∗
k )− αk+1 I (Zk; Ŝ∗

k+1), k = 1, . . . , L − 1,

max
pZ L |S

αL I (Z L ; Ŝ∗
L),

which, in light of the fact that H (Ŝ∗
k ), k = 1, . . . , L, do not

depend on pZ|S , are equivalent to

max
pZ0|S

α1 H (Ŝ∗
1 |Z0), (18)

max
pZk |S

−αk H (Ŝ∗
k |Zk)+ αk+1 H (Ŝ∗

k+1|Zk),

k = 1, . . . , L − 1, (19)

max
pZ L |S

−αL H (Ŝ∗
L|Z L). (20)

By Lemma 1, the maximum values of (18), (19), and (20)
are attained by pZk |S , k = 0, 1, . . . , L, with the property that
pZk |S is a BSC(qk) for some qk ∈ [0, 1

2 ], k = 0, 1, . . . , L. For
such pZk |S , k = 0, 1, . . . , L, it can be verified that

L∑

k=1

αk[I (Zk; Ŝ∗
k )− I (Zk−1; Ŝ∗

k )]

=
L∑

k=1

αk [H (Zk−1|Ŝ∗
k )− H (Zk|Ŝ∗

k )] (21)

=
L∑

k=1

αk

∑

ŝ∈{0,1,e}
pŜ∗

k
(ŝ)[H (Zk−1|Ŝ∗

k = ŝ)− H (Zk|Ŝ∗
k = ŝ)]

=
L∑

k=1

αk

∑

ŝ∈{0,1}
pŜ∗

k
(ŝ)[H (Zk−1|Ŝ∗

k = ŝ)− H (Zk|Ŝ∗
k = ŝ)]

(22)

=
L∑

k=1

αk

∑

ŝ∈{0,1}
pŜ∗

k
(ŝ)[H (Zk−1|S = ŝ)− H (Zk|S = ŝ)]

(23)

=
L∑

k=1

αk

∑

ŝ∈{0,1}
pŜ∗

k
(ŝ)[Hb(qk−1)− Hb(qk)]

=
L∑

k=1

αk(1 − δ∗k )[Hb(qk−1)− Hb(qk)],

where (21) is because H (Zk−1) = H (Zk) = log 2, (22) is
because H (Zk−1|Ŝ∗

k = e) = H (Zk|Ŝ∗
k = e) = log 2, and (23)

is due to the fact that (Zk−1, Zk) ↔ S ↔ Ŝ∗
k form a Markov

chain and pS|Ŝ∗
k
(0|0) = pS|Ŝ∗

k
(1|1) = 1, k = 1, . . . , L.

Therefore, we have

max
pZ |S∈Q

γ (α, pZ |S, pŜ
∗|S)

= max
q∈[0, 1

2 ]L+1
κ(α, q, δ∗)

= κ(α, q∗, δ∗)
= γ (α, pZ∗|S, pŜ

∗|S).

Similarly, since γ (α, pZ∗|S, pŜ|S) depends on pŜ|S only
through pŜk|S , k = 1, . . . , L., we can decompose (17) into

min
pŜk |S :E[mE (S,Ŝk)]≤dk

αk I (Z∗
k ; Ŝk)− αk I (Z∗

k−1; Ŝk)

for k = 1, . . . , L, which, in light of the fact that H (Z∗
k ),

k = 0, 1, . . . , L, do not depend on pŜ|S , are equivalent to

min
pŜk |S :E[mE (S,Ŝk)]≤dk

−αk H (Z∗
k |Ŝk)+ αk H (Z∗

k−1|Ŝk) (24)

for k = 1, . . . , L. We shall consider the following cases.
• q∗

k−1 ≥ q∗
k and αk ≥ 0: In this case pZ∗

k−1|S is
stochastically degraded with respect to pZ∗

k−1|S .
Therefore, it follows from Lemma 2 that the minimum
value of (24) is attained by pŜk|S with the property that
pŜk|S is a BEC(δk) for some δk ∈ [0, dk].

• q∗
k−1 < q∗

k and αk ≥ 0: Since the objective function
in (24) depends on pZ∗

k−1,Z
∗
k |S only through pZ∗

k−1|S and
pZ∗

k |S , there is no loss of generality in assuming that
pZ∗

k |S is physically degraded with respect to pZ∗
k−1|S . As

a consequence, we have

H (Z∗
k−1, Z∗

k |Ŝk) = H (Z∗
k−1|Ŝk)+ H (Z∗

k |Z∗
k−1),

which, together with the fact that H (Z∗
k−1, Z∗

k |Ŝk) =
H (Z∗

k |Ŝk)+ H (Z∗
k−1|Z∗

k , Ŝk), implies

−αk H (Z∗
k |Ŝk)+ αk H (Z∗

k−1|Ŝk)

= αk H (Z∗
k |Z∗

k−1, Ŝk)− αk H (Z∗
k−1|Z∗

k ).

Since H (Z∗
k−1|Z∗

k ) does not depend on pŜk|S , it follows
that (24) is equivalent to

min
pŜk |S :E[mE (S,Ŝk)]≤dk

αk H (Z∗
k |Z∗

k−1, Ŝk). (25)

It is obvious that the minimum value of (25) is
attained when pŜk|S is a BEC(δk) with δk = 0.

• αk < 0: This case can be converted to the case αk > 0
by switching the roles of Z∗

k−1 and Z∗
k .

In summary, the minimum values of (24) for k = 1, . . . , L
are attained by pŜk|S , k = 1, . . . , L, with the property that
pŜk|S is a BEC(δk) for some δk ∈ [0, dk], k = 1, . . . , L. For
such pŜk|S , k = 1, . . . , L, it can be verified that

L∑

k=1

αk [I (Z∗
k ; Ŝk)− I (Z∗

k−1; Ŝk)]

=
L∑

k=1

αk(1 − δk)[Hb(q
∗
k−1)− Hb(q

∗
k )].
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Therefore, we have

min
pŜ|S∈P(d)

γ (α, pZ∗|S, pŜ|S)

= max
δ∈D(d)

κ(α, q∗, δ)

= κ(α, q∗, δ∗)
= γ (α, pZ∗|S, pŜ

∗|S).

This completes the proof of Theorem 3.
Corollary 4: For the binary uniform source with the erasure

distortion measure,

r(d) = max
k∈L

L

k
(1 − dk) log 2.

Proof: It is easy to see that

L∑

k=1

L

k
I (Zk; Ŝk |Zk−1) = γ (α∗, pZ|S, pŜ|S)

for pZ|S ∈ P , where α∗ = (α∗
1 , . . . , α

∗
L ) with α∗

k = L
k ,

k = 1, . . . , L. Since P ⊆ Q, we must have r(d) ≤ �∗(α∗, d),
which, together with Theorem 3 and Corollary 3, implies

r(d) ≤ max
k∈L

L

k
(1 − dk) log 2. (26)

Let (q∗, δ∗) be an arbitrary saddle-point solution satisfy-
ing (14) and (15) with α = α∗. By Theorem 2, such a
saddle-point solution exists and has the property that q∗

0 ≥
q∗

1 ≥ . . . ≥ q∗
L . Now construct (pZ∗|S, pŜ

∗|S) with the
property that pZ∗

k |S is a BSC(q∗
k ), k = 0, 1, . . . , L, and pŜ∗

k |S
is a BEC(δ∗k ), k = 1, . . . , L; in particular, since q∗

0 ≥
q∗

1 ≥ . . . ≥ q∗
L , we can construct pZ∗|S such that pZ∗

k−1|S
is physically degraded with respect to pZ∗

k |S , k = 1, . . . , L.
Since pZ∗|S ∈ P , it follows that

r(d) ≥ min
pŜ|S∈P(d)

γ (α∗, pZ∗|S, pŜ|S).

By Theorem 3 and Corollary 3,

min
pŜ|S∈P(d)

γ (α∗, pZ∗|S, pŜ|S)

= γ (α∗, pZ∗|S, pŜ
∗|S)

= φ(α∗, d)

= max
k∈L

L

k
(1 − dk) log 2.

Therefore, we have

r(d) ≥ max
k∈L

L

k
(1 − dk) log 2. (27)

Combining (26) and (27) completes the proof of
Corollary 4.

Note that r(d) has the following simple interpretation. Since
the reconstruction distortion based every k descriptions is no
greater than dk , according to the rate-distortion function of the
binary uniform source with the erasure distortion measure, the
total rate of every k descriptions is at least (1−dk) log 2, which
implies R(d) ≥ L

k (1 − dk) log 2; maximizing L
k (1 − dk) log 2

over k ∈ L yields r(d).

Now consider the case R(d) = L
	 (1 − d	) log 2 for some 	.

Since R(d) ≥ r(d), it follows that L
k (1 − dk) ≤ L

	 (1 − d	),
i.e.,

dk ≥ k

	
d	 + 	− k

	

for all k �= 	. Particularly, in the no excess sum rate case
R(d) = (1 − dL) log 2, we have

dk ≥ k

L
dL + L − k

L
(28)

for k = 1, . . . , L − 1. Interestingly, the lower bounds in (28)
are in fact achievable via a simple time-sharing scheme.
Specifically, we partition nL source samples into L segments,
each of length n; a lossy source code of rate (1 − dL) log 2,
which is optimal for the binary uniform source with the
erasure distortion measure, is used to encode these segments
separately such that the resulting distortion for each segment
is dL (here optimal encoding is trivial in the sense that one
simply keeps n(1 − dL) source samples6 for each segment);
let description k contain the encoding output for segment k,
k = 1, . . . , L. Clearly, the sum rate of this scheme is
(1 − dL) log 2; moreover, this scheme has the property that
the reconstruction distortion based on every k descriptions is
k
L dL + L−k

L , k = 1, . . . , L. It is worth mentioning that, in the
current setting, this scheme is essentially equivalent to the one
described in [7, p. 1331].

We are now in a position to give a more conceptual
explanation of the ideas that lead to the proof of Corollary 4.
As pointed out earlier, the lower bound in Corollary 4, which
is derived through rather sophisticated analysis, is almost a
trivial one.7 In a certain sense, it is not the result but the
proof strategy that is important, and we basically use the binary
uniform source with the erasure distortion measure as a toy
example to illustrate this strategy, which will be used repeat-
edly in the subsequent part of this paper to obtain more non-
trivial results. Note that the definition of �∗(α∗, d) is almost
identical with that of r(d) except that no Markov ordering
is imposed on remote sources for �∗(α∗, d). This relaxation
is crucial since it decouples remote sources and enables us
to decompose the problem of maximization over pZ|S into
sub-problems of maximization over pZk |S , k = 0, 1, . . . , L.
Indeed, our results indicate that the relaxed version has the
advantage of being amenable to saddle-point analysis and
evaluation. Interestingly, it turns out that the Markov ordering
is automatically satisfied by the saddle-point solution of the
relaxed minimax problem and consequently �∗(α∗, d) = r(d).

B. The Hamming Distortion Measure

In this subsection we shall evaluate r(d) for the binary
uniform source with the Hamming distortion measure. Without
loss of generality, we assume dk ∈ [0, 1

2 ], k = 1, . . . , L.
Define

η(α, q, δ) =
L∑

k=1

αk [Hb(qk−1  δk)− Hb(qk  δk)],

6We assume that n(1 − dL ) is an integer.
7See [7, Sec. IV] for stronger converse results in certain special cases.
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where q  δ = q(1 − δ)+ (1 − q)δ. Moreover, define

φ∗(α, d) = max
q∈[0, 1

2 ]L+1
min
δ∈D(d)

η(α, q, δ),

φ∗(α, d) = min
δ∈D(d)

max
q∈[0, 1

2 ]L+1
η(α, q, δ).

We say that (q∗, δ∗) is a saddle-point solution if

q∗ ∈ arg max
q∈[0, 1

2 ]L+1
η(α, q, δ∗), (29)

δ∗ ∈ arg min
δ∈D(d)

η(α, q∗, δ). (30)

Theorem 4: If α1 ≥ . . . αL ≥ 0, then there exists a saddle-
point solution (q∗, δ∗) such that q∗

0 ≥ q∗
1 ≥ . . . ≥ q∗

L ,
δ∗1 ≥ . . . ≥ δ∗L , and q∗

k−1 = q∗
k whenever dk = 1

2 , k =
1, . . . , L. Furthermore, if α1 > . . . > αL > 0, then every
saddle-point solution (q∗, δ∗) has the property that q∗

0 ≥ q∗
1 ≥

. . . ≥ q∗
L .

Proof: See Appendix F.
The following result is a direct consequence of Theorem 4.
Corollary 5: φ∗(α, d) = φ∗(α, d) when α1 ≥ . . . αL ≥ 0.
In view of Corollary 5, we shall simply denote φ∗(α, d) and

φ∗(α, d) by φ(α, d) when α1 ≥ . . . αL ≥ 0. Note that

φ(α, d) = η(α, q∗, δ∗)

for any (q∗, δ∗) satisfying (29) and (30).
Corollary 6: If α1 ≥ . . . αL ≥ 0 and dk = 1

2 for all k �= i
and k �= j (with i < j ), then

φ(α, d)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αi [log 2 − Hb(di )],
αi (1 − 2di ) log

(
1−di

di

)
≥ α j (1 − 2d j ) log

(
1−d j

d j

)

α j [log 2 − Hb(d j )], αi (1 − 2di )
2 ≤ α j (1 − 2d j )

2

αi [log 2 − Hb(q†  di )]
+ α j [Hb(q†  d j )− Hb(d j )], otherwise,

where q† is the unique solution of

αi (1−2di) log
(1−q  di

q  di

)
= α j (1−2d j) log

(1−q  d j

q  d j

)

for q ∈ (0, 1
2 ).

Proof: It follows from Theorem 4 that

φ(α, d) = max min
δ∈D(d)

η(α, q, δ),

where the maximization is taken over those q such that 1
2 ≥

q0 = · · · = qi−1 ≥ qi = · · · = q j−1 ≥ q j = · · · = qL ≥ 0.
As a consequence, we have

φ(α, d)

= max
(q0,qi ,q j ): 1

2 ≥q0≥qi≥q j ≥0
min

(δi ,δ j )∈[0,di ]×[0,d j ]
αi [Hb(q0  δi )− Hb(qi  δi )]

+ α j [Hb(qi  δ j )− Hb(q j  δ j )]
= max

(q0,qi ,q j ): 1
2 ≥q0≥qi≥q j ≥0

αi [Hb(q0  δi )− Hb(qi  di )]
+ α j [Hb(qi  δ j )−Hb(q j  d j )]

= max
qi∈[0, 1

2 ]
αi [log 2−Hb(qi  di )]+α j [Hb(qi  δ j )−Hb(d j )].

Invoking Lemma 6 in Appendix F completes the proof of
Corollary 6.

Our main result in this subsection is the following minimax
theorem.

Theorem 5: For the binary uniform source with the
Hamming distortion measure,

�∗(α, d) = �∗(α, d) = φ(α, d)

when α1 ≥ · · ·αL ≥ 0. Furthermore, every (pZ∗|S, pŜ
∗|S)

with the property that pZ∗
k |S is a BSC(q∗

k ), k = 0, 1, . . . , L,
and pŜ∗

k |S is a BSC(δ∗k ), k = 1, . . . , L, for some (q∗, δ∗)
satisfying (29) and (30) is a saddle-point solution in the sense
that

pZ∗|S ∈ arg max
pZ |S∈Q

γ (α, pZ |S, pŜ
∗|S),

pŜ
∗|S ∈ arg min

pŜ|S∈P(d)
γ (α, pZ∗|S, pŜ|S).

Corollary 7: For the binary uniform source with the
Hamming distortion measure,

r(d) = φ(α∗, d),

where α∗ = (α∗
1 , . . . , α

∗
L ) with α∗

k = L
k , k = 1, . . . , L.

The proofs of Theorem 5 and Corollary 7 are omitted due
to their similarity to the proofs of Theorem 3 and Corollary 4.

Now consider the case R(d) = L
	 [log 2 − Hb(d	)] for

some 	 (note that 	 = 1 and 	 = L correspond to the no
excess marginal rate case and the no excess sum rate case,
respectively). By leveraging Corollary 7 and Corollary 6, one
can establish the following lower bounds on dk for k �= 	:

dk ≥ 1

2
− 1

2

√
k

	
+

√
k

	
d	, k < 	,

dk ≥ min
{

d ∈ [0, 1

2
] : L

k
(1 − 2d) log

(1 − d

d

)

≤ L

	
(1 − 2d	) log

(1 − d	
d	

)}
, k > 	.

In particular, we have

d1 ≥ 1

2
−

√
2

4
+

√
2

2
d2 (31)

when 	 = L = 2. For the two-description problem, it is
known [2] that R(d) = log 2 − Hb(d2) if and only if

d1 ≥
√

2 − 1

2
+ (2 − √

2)d2.

Note that, for d2 ∈ [0, 1
2 ],

√
2 − 1

2
+ (2 − √

2)d2 −
(1

2
−

√
2

4
+

√
2

2
d2

)

= 3
√

2 − 4

4
+ 4 − 3

√
2

2
d2 ≥ 0,

where the inequality is strict unless d2 = 1
2 . Therefore,

the lower bound in (31) is loose except for the degenerate
case d2 = 1

2 .



SONG et al.: LOWER BOUND ON THE SUM RATE OF MULTIPLE DESCRIPTION CODING 7555

IV. THE QUADRATIC GAUSSIAN CASE

In this section we shall consider the quadratic Gaussian
case, where pS is a Gaussian distribution (with mean zero
and variance λ) and m(s, ŝ) = (s − ŝ)2 for (s, ŝ) ∈ R × R,
and evaluate r(d) in this setting. Without loss of generality,
we assume dk ∈ (0, λ], k = 1, . . . , L.

First recall the definition of α, δ, D(d), γ (α, pZ |S, pŜ|S),
�∗(α, d), and �∗(α, d) in Section III-A. Let

ω(α, θ, δ) =
L∑

k=1

αk

2
log

(λθk−1 + λδk − θk−1δk

λθk + λδk − θkδk

)
,

where θ = (θ0, θ1, . . . , θL). Moreover, define

ψ∗(α, d) = max
θ∈[0,λ]L+1

min
δ∈D(d)

ω(α, θ, δ),

ψ∗(α, d) = min
δ∈D(d)

max
θ∈[0,λ]L+1

ω(α, θ, δ).

We say that (θ∗, δ∗) is a saddle-point solution if

θ∗ ∈ arg max
θ∈[0,λ]L+1

ω(α, θ, δ∗), (32)

δ∗ ∈ arg min
δ∈D(d)

ω(α, θ∗, δ). (33)

Theorem 6: If α1 ≥ · · ·αL ≥ 0, then there exists a
saddle-point solution (θ∗, δ∗) such that θ∗

0 ≥ θ∗
1 ≥ · · · ≥

θ∗
L , δ∗1 ≥ · · · ≥ δ∗L , and θ∗

k−1 = θ∗
k whenever dk = λ,

k = 1, . . . , L. Furthermore, if α1 ≥ . . . ≥ αL > 0, then
every saddle-point solution (θ∗, δ∗) has the property that θ∗

0 ≥
θ∗

1 ≥ · · · ≥ θ∗
L .

Proof: See Appendix G.
The following result is a direct consequence of Theorem 6.
Corollary 8: ψ∗(α, d) = ψ∗(α, d) when α1 ≥ . . . αL ≥ 0.
In view of Corollary 8, we shall simply denote ψ∗(α, d)

and ψ∗(α, d) by ψ(α, d) when α1 ≥ . . . αL ≥ 0. Note that

ψ(α, d) = ω(α, θ∗, δ∗)

for any (θ∗, δ∗) satisfying (32) and (33).
Corollary 9: If α1 ≥ · · ·αL ≥ 0 and dk = λ for all k �= i

and k �= j (with i < j ), then

ψ(α, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi

2
log

( λ
di

)
, αi (λ− di )d j ≥ α j (λ− d j )di

α j

2
log

( λ
d j

)
, αi (λ− di ) ≤ α j (λ− d j )

αi

2
log

[ (αi − α j )(λ− d j )

αi (di − d j )

]

+ α j

2
log

[ α jλ(di − d j )

(αi − α j )(λ− di )d j

]
, otherwise.

Proof: See Appendix H.
We say that pY |X : R → R is an additive Gaussian noise

channel with parameter θ (i.e., AGNC(θ )) if Y = λ−θ
λ X +√

θ(λ−θ)
λ N , where θ ∈ [0, λ] and N is a zero-mean unit-

variance Gaussian random variable independent of X . It can be
readily verified that, for any θ and θ̃ with λ ≥ θ ≥ θ̃ ≥ 0, there
exist additive Gaussian noise channels pY |X and pỸ |X with

parameters θ and θ̃ , respectively, such that pY |X is physically
degraded with respect to pỸ |X .

The following result is essentially the scalar version
of [30, Th. 8].

Lemma 3: Let X be a Gaussian random variable with mean
zero and variance λ. Moreover, let pY |X : R → R and
pỸ |X : R → R be two additive Gaussian noise channels with

parameters θ and θ̃ , respectively. For any real numbers α, α̃,
and d such that α ≥ α̃ ≥ 0 and d ∈ (0, λ], the maximum
value of the following optimization problem

max
pU |X :E[(X−E[X |U ])2]≤d

α I (U ; Y )− α̃ I (U ; Ỹ )

is attained by some additive Gaussian noise channel pU |X :
R → R with parameter δ ∈ [0, d]. Here it is assumed that
U ↔ X ↔ (Y, Ỹ ) form a Markov chain.

The following minimax theorem is the counterpart
of Theorem 3 in Section III-A and Theorem 5 in Section III-B.

Theorem 7: For the quadratic Gaussian case,

�∗(α, d) = �∗(α, d) = ψ(α, d)

when α1 ≥ · · ·αL ≥ 0. Furthermore, every (pZ∗|S, pŜ
∗|S) with

the property that pZ∗
k |S is an AGNC(θ∗

k ), k = 0, 1, . . . , L,
and pŜ∗

k |S is an AGNC(δ∗k ), k = 1, . . . , L, for some (θ∗, δ∗)
satisfying (32) and (33) is a saddle-point solution in the sense
that

pZ∗|S ∈ arg max
pZ |S∈Q

γ (α, pZ |S, pŜ
∗|S),

pŜ
∗|S ∈ arg min

pŜ|S∈P(d)
γ (α, pZ∗|S, pŜ|S).

Proof: The proof is similar to that of Theorem 3 with
Lemma 3 playing the roles of Lemma 1 and Lemma 2. The
details are left to the interested reader.

The following result is a simple consequence of Theorem 6
and Theorem 7. Its proof is similar to that of Corollary 4 and
thus is omitted.

Corollary 10: For the quadratic Gaussian case,

r(d) = ψ(α∗, d),

where α∗ = (α∗
1 , . . . , α

∗
L ) with α∗

k = L
k , k = 1, . . . , L.

In view of Corollary 9 and Corollary 10, one can obtain an
explicit expression of r(d) when only two levels of distortion
constraints are imposed.

Corollary 11: If dk = λ for all k �= i and k �= j
(with i < j ), then r(d) = Ri, j (di , d j ), where

Ri, j (di , d j ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

2i
log

( λ
di

)
, d j ≥

( j

i
d−1

i − j − i

i
λ−1

)−1

L

2 j
log

( λ
d j

)
, d j ≤ j

i
di − j − i

i
λ

L

2i
log

[ ( j − i)(λ− d j )

j (di − d j )

]

+ L

2 j
log

[ iλ(di − d j )

( j − i)(λ− di )d j

]
, otherwise.

The following theorem can be deduced from the results
in [4, Sec. IV].

Theorem 8: 1) If dk = λ for all k < 	 and dk ≥ ( k
	d−1
	 −

k−	
	 λ

−1)−1 for all k > 	 (with 	 < L), then

R(d) ≤ L

2	
log

( λ
d	

)
. (34)
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2) If dk ≥ k
L dL + L−k

L λ for all k < L, then

R(d) ≤ 1

2
log

( λ
dL

)
. (35)

3) If L
	 d	 − L−	

	 λ < dL <
(

L
	 d−1

	 − L−	
	 λ−1

)−1
for some

	 < L and

dk = λ, k < 	,

dk ≥ L(k − 	)(λ− d	)dL + 	(L − k)(λ− dL)d	
k(L − 	)λ− L(k − 	)d	 − 	(L − k)dL

,

	 < k < L,

then

R(d) ≤ L

2	
log

[ (L − 	)(λ− dL)

L(d	 − dL)

]

+ 1

2
log

[ 	λ(d	 − dL)

(L − 	)(λ− d	)dL

]
. (36)

Remark: One can write (34), (35), and (36) compactly as
R(d) ≤ R	,L(d	, dL).

Combining Corollary 10, Corollary 11, and Theorem 8
yields the scalar version of [11, Th. 4], which determines the
minimum sum rate of symmetric Gaussian multiple description
coding subject to two levels of distortion constraints (with the
second level imposed on the complete set of descriptions).

Corollary 12: If dk = λ for all k �= 	 and k �= L
(with 	 < L), then R(d) = R	,L(d	, dL).

The following result provides a partial converse for
Theorem 8. In particular, it is shown that, when R(d) =
R	,L(d	, dL), the achievable distortions dk , 	 < k < L,
indicated in Theorem 8 are in fact the best possible.

Theorem 9: 1) If R(d) = L
2	 log

(
λ
d	

)
for some 	 < L,

then

dk ≥
(k

	
d−1
	 − k − 	

	
λ−1

)−1
, k > 	.

2) If R(d) = 1
2 log

(
λ

dL

)
, then

dk ≥ k

L
dL + L − k

L
λ, k < L .

3) If R(d) = R	,L(d	, dL) for some 	 < L and
L
	 d	 − L−	

	 λ < dL <
(

L
	 d−1

	 − L−	
	 λ−1

)−1
, then

dk ≥ L(k − 	)(λ− d	)dL + 	(L − k)(λ− dL)d	
k(L − 	)λ− L(k − 	)d	 − 	(L − k)dL

,

	 < k < L .
Proof: See Appendix I.

Remark: Case 2) in Theorem 9 corresponds to [7, Th. 11].
Furthermore, in this case the lower bounds on dk , k < L,
are achievable via a time-sharing scheme similar to the one
described in Section III-A.

V. CONCLUSION

We have derived a single-letter lower bound on the sum rate
of multiple description coding subject to symmetric distortion
constraints. Furthermore, this lower bound is evaluated in
several special cases with the aid of certain minimax theorems.
It is worth noting that the minimax theorems established in

this paper depend critically on the properties of the binary
erasure channel, the binary symmetric channel, and the addi-
tive Gaussian noise channel. An important feature shared
by all these channels is that they can all be specified by a
single parameter (which induces a natural Markov ordering).
An interesting direction for future research is to investigate,
to what extent, the minimax theorems in the present work can
be extended to the scenarios where the relevant channels are
more complex.

APPENDIX A
CARDINALITY BOUNDS

Note that

sup
pZ |S∈P

L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk; ŜB,B ∈ 2A+|Zk−1)

= sup
pZ |S∈P

L∑

k=1

L

k
(L

k

)

×
∑

A∈2L+ ,|A|=k

I (Zk; ŜB,B ∈ 2A+ |Z0, . . . , Zk−1)

≤ sup
pZ |S

L∑

k=1

L

k
(L

k

)

×
∑

A∈2L+ ,|A|=k

I (Zk; ŜB,B ∈ 2A+ |Z0, . . . , Zk−1).

On the other hand, setting Z ′
k = (Z0, . . . , Zk), k = 0,

1, . . . , L, we have

sup
pZ |S

L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk ; ŜB,B ∈ 2A+ |Z0, . . . , Zk−1)

= sup
pZ |S

L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Z ′
k; ŜB,B ∈ 2A+|Z ′

k−1)

≤ sup
pZ |S∈P

L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk ; ŜB,B ∈ 2A+ |Zk−1),

(37)

where (37) is due to the fact that pZ ′
k−1|S is physically degraded

with respect to pZ ′
k |S , k = 1, . . . , L. Therefore, r([d]) can be

expressed alternatively as

r([d]) = inf
p[Ŝ]|S∈P([d])

sup
pZ |S

L∑

k=1

L

k
(L

k

)

×
∑

A∈2L+ ,|A|=k

I (Zk; ŜB,B ∈ 2A+ |Z0, . . . , Zk−1).

For this expression of r([d]), there is no loss of optimality
in setting |Z0| = 1 and Z L = S; moreover, it suffices to
have |Zk | ≤ |S| in view of the fact [24, p. 631] that, for
every (z0, . . . , zk−1), one can find a conditional distribution
of (S, Zk , . . . , Z L−1) given (Z0, . . . , Zk−1) = (z0, . . . , zk−1)
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with |Zk| ≤ |S| that preserves pS|Z0,...,Zk−1(·|z0, . . . , zk−1)
and

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zk; ŜB,B ∈ 2A+|Z0 = z0, . . . ,

Zk−1 = zk−1)

+
L∑

j=k+1

L

j
(L

j

)
∑

A∈2L+ ,|A|= j

I (Z j ; ŜB,B ∈ 2A+ |Z0 = z0, . . . ,

Zk−1 = zk−1, Zk, . . . , Z j−1),

k = 1, . . . , L − 1.

The desired cardinality bounds for the original form of r([d])
in (2) follow immediately.

APPENDIX B
PROOF OF THEOREM 1

We augment the probability space by introducing an aux-
iliary random vector process {(Z0(t), Z1(t), . . . , Z L(t))}∞t=1.
It is assumed that {(Z0(t), Z1(t), . . . , Z L(t))}∞t=1 and
{S(t)}∞t=1 form a jointly stationary and memoryless process
with (S(t), Z0(t), Z1(t), . . . , Z L(t)) distributed according
to pS,Z � pS pZ|S for every t , where pZ |S ∈ P . Let
f (n)i : Sn → Ci , i ∈ L, and g(n)A : ∏

i∈A Ci → Ŝn , A ∈ 2L+,
be arbitrary encoding and decoding functions satisfying (1).
By Han’s subset entropy inequality [25],

1

(k − 1)
( L

k−1

)
∑

A∈2L+ ,|A|=k−1

H ( f (n)i (Sn), i ∈ A|Zn
k−1)

≥ 1

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k−1)

for k = 2, . . . , L. Therefore, we have

L−1∑

k=1

1

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k )

≥
L∑

k=2

1

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k−1). (38)

Note that
L∑

i=1

log |Ci |

≥
L∑

i=1

H ( f (n)i (Sn))

≥
L∑

i=1

H ( f (n)i (Sn))

−
L−1∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k )

+
L∑

k=2

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k−1) (39)

≥ −
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k )

+
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k−1)

= −
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k )

+
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A|Zn
k−1)

+
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A)

−
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

H ( f (n)i (Sn), i ∈ A)

=
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zn
k ; f (n)i (Sn), i ∈ A)

−
L∑

k=1

L

k
(L

k

)
∑

A∈2L+ ,|A|=k

I (Zn
k−1; f (n)i (Sn), i ∈ A), (40)

where (39) is due to (38). It can be verified that, for any k ∈ L
and A ∈ 2L+,

I (Zn
k ; f (n)i (Sn), i ∈ A)− I (Zn

k−1; f (n)i (Sn), i ∈ A)
= I (Zn

k−1, Zn
k ; f (n)i (Sn), i ∈ A)

−I (Zn
k−1; f (n)i (Sn), i ∈ A) (41)

= I (Zn
k ; f (n)i (Sn), i ∈ A|Zn

k−1)

≥ I (Zn
k ; Ŝn

B,B ∈ 2A+|Zn
k−1)

=
n∑

t=1

I (Zk(t); Ŝn
B,B ∈ 2A+|Zn

k−1, Zt−1
k )

=
n∑

t=1

I (Zk(t); Ŝn
B,B ∈ 2A+ , Zn

k−1, Zt−1
k |Zk−1(t)) (42)

≥
n∑

t=1

I (Zk(t); ŜB(t),B ∈ 2A+ |Zk−1(t)), (43)

where (41) is due to the fact that Zn
k−1 ↔ Zn

k ↔ ( f (n)i (Sn),
i ∈ A) form a Markov chain, and (42) is due to the fact that
Zk(t) ↔ Zk−1(t) ↔ (Zn

k−1, Zt−1
k ) form a Markov chain. Now

let T be uniformly distributed over {1, . . . , n} and independent
of (Sn, Zn

0 , Zn
1 , . . . , Zn

L). We have, for any k ∈ L and A ∈ 2L+,

n∑

t=1

I (Zk(t); ŜB(t),B ∈ 2A+|Zk−1(t))

= nI (Zk(T ); ŜB(T ),B ∈ 2A+|Zk−1(T ), T )

= nI (Zk(T ); ŜB(T ),B ∈ 2A+ , T |Zk−1(T )) (44)

≥ nI (Zk(T ); ŜB(T ),B ∈ 2A+|Zk−1(T )), (45)
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where (44) is due to the fact that Zk(T ) ↔ Zk−1(T ) ↔ T
form a Markov chain. Combining (40), (43), and (45) gives

1

n

L∑

i=1

log |Ci | ≥
L∑

k=1

L

k
(L

k

)

×
∑

A∈2L+ ,|A|=k

I (Zk(T ); ŜB(T ),B ∈ 2A+ |Zk−1(T )).

(46)

Moreover, one can readily verify the following facts:

• (S(T ), Z0(T ), Z1(T ), . . . , Z L(T )) and (S, Z0, Z1, . . .,
Z L) are identically distributed;

• (Z0(T ), Z1(T ), . . . , Z L(T )) ↔ S(T ) ↔ (ŜA(T ),
A ∈ 2L+) form a Markov chain;

• E[m(S(T ), ŜA(T ))] ≤ dA, A ∈ 2L+.

Note that, given encoding and decoding functions, the con-
ditional distribution p[Ŝ(T )]|S(T ) (with [Ŝ(T )] = (ŜA(T ),
A ∈ 2L+)) is fixed, and (46) holds for an arbitrary choice
of pZ |S . This completes the proof of Theorem 1.

Remark: In the proof of Theorem 1, remote sources are
incorporated in a specific way to facilitate the use of Han’s
subset entropy inequality. It is worth mentioning that, when
the distortion constraints have a hierarchical structure, one
can exploit remote sources in a different manner as shown
in [12]. However, neither the method in [12] not the one in
the present work seems powerful enough to yield conceptually
satisfactory single-letter lower bounds on weighted sum rates
subject to general distortion constraints. Establishing such
bounds requires a deeper investigation and is beyond the scope
of this work.

APPENDIX C
PROOF OF LEMMA 1

Our proof is based on a natural extension of an interesting
method developed in [27] (see [27, p. 7, Example 1]).

Let Y (X ′) and Ỹ (X ′) be the channel outputs induced by
input X ′ via pY |X and pỸ |X , respectively. Moreover, let pX∗
be an optimal solution to the following optimization problem

max
pX ′

−αH (Y (X ′))+ α̃H (Ỹ (X ′)).

Note that, for any pU |X : X → U , we have

−αH (Y |U)+ α̃H (Ỹ |U)
≤ sup

u∈U
−αH (Y |U = u)+ α̃H (Ỹ |U = u)

≤ −αH (Y ∗)+ α̃H (Ỹ ∗), (47)

where Y ∗ = Y (X∗) and Ỹ ∗ = Ỹ (X∗).
Since pY |X and pỸ |X are circularly symmetric, there exist

bijective functions μ : Y → Y and μ̃ : Ỹ → Ỹ such
that μM (y) = y, pY |X (μx (y)|x) = pY |X (y|0), μ̃M (ỹ) = ỹ,
and pỸ |X (μ̃x(ỹ)|x) = pỸ |X (ỹ|0) for all (x, y) ∈ X × Y
and (x, ỹ) ∈ X × Ỹ . Define distributions pX (k) over X ,
k = 0, 1, . . . ,M − 1, such that pX (k)(x ⊕M k) = pX∗(x)
for all x ∈ X . Let Y (k) and Ỹ (k) be the channel outputs

induced by input X (k) via pY |X and pỸ |X , respectively,
k = 0, 1, . . . ,M − 1. Note that

pY (k) (μ
k(y)) =

∑

x∈X
pX (k)(x)pY |X (μk(y)|x)

=
∑

x∈X
pX (k)(x ⊕M k)pY |X (μk(y)|x ⊕M k)

=
∑

x∈X
pX∗(x)pY |X (y|x)

= pY ∗(y)

for all y ∈ Y . Similarly,

pỸ (k)(μ̃
k(ỹ)) = pỸ ∗(ỹ)

for all ỹ ∈ Ỹ . Since μ and μ̃ are bijective functions, it follows
that

H (Y (k)) = H (Y ∗), (48)

H (Ỹ (k)) = H (Ỹ ∗) (49)

for k = 0, 1, . . . ,M − 1. Now choose U = {0, 1,
. . . ,M − 1} and set pU∗(u) = 1

M for all u ∈ U . Moreover, let
pX |U∗(x |u) = pX (u)(x) for all (x, u) ∈ X ×U . One can readily
verify that this construction preserves the uniform distribution
of X and the induced pU∗|X (u|x) depends on (x, u) only
through u �M x for all (x, u) ∈ X ×U . Furthermore, we have

−αH (Y |U∗)+ α̃H (Ỹ |U∗)

= 1

M

∑

u∈U
[−αH (Y |U∗ = u)+ α̃H (Ỹ |U∗ = u)]

= 1

M

∑

u∈U
[−αH (Y (u))+ α̃H (Ỹ (u))]

= −αH (Y ∗)+ α̃H (Ỹ ∗), (50)

where (50) is due to (48) and (49). In view of (47) and (50),
pU∗|X must be a maximizer of (12). This completes the proof
of Lemma 1.

Remark: The proof in fact implies that maximum value
of (12) remains the same even if one has to the freedom to
optimize over pX,U .

APPENDIX D
PROOF OF LEMMA 2

Since −H (U |Y )+H (Ũ|Y ) depends on pU,Ũ |X only through
pU |X and pŨ |X , there is no loss of generality in assuming
that pŨ |X is physically degraded with respect to pU |X . As a
consequence,

H (U, Ũ|Y ) = H (U |Y )+ H (Ũ|U).
On the other hand,

H (U, Ũ|Y ) = H (Ũ|Y )+ H (U |Y, Ũ).
Therefore, we have

−H (U |Y )+ H (Ũ |Y ) = −H (U |Y, Ũ)+ H (Ũ|U),
which implies

−αH (U |Y )+ α̃H (Ũ|Y )
= −α[H (U |Y, Ũ)− H (Ũ|U)] − (α − α̃)H (Ũ |Y ).
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In view of the fact that H (Ũ|U) does not depend on pY |X and
the fact that H (U |Y, Ũ) and H (Ũ|Y ) are concave functions
of pY |X , one can readily show that −αH (U |Y )+ α̃H (Ũ |Y )
is a convex function of pY |X .

Let pY ∗|X be a minimizer of (13). Define pY (k)|X : X → Y ,
k = 0, 1, . . . ,M − 1, such that pY (k)|X (μk(y)|x ⊕M k) =
pY ∗|X (y|x) for all (x, y) ∈ X × Y . It is easy to see that

pX,U,Y (k) (x ⊕M k, u ⊕M k, μk(y))

= pX,U (x ⊕M k, u ⊕M k)pY (k)|X (μk(y)|x ⊕M k)

= pX,U (x, u)pY ∗|X (y|x)
= pX,U,Y ∗(x, u, y)

for all (x, u, y) ∈ X ×U ×Y and k = 0, 1, . . . ,M −1, which,
together with the fact that μ is a bijective function, implies

H (U |Y ∗) = H (U |Y (k)) (51)

for k = 0, 1, . . . ,M − 1. Similarly, we have

H (Ũ |Y ∗) = H (Ũ |Y (k)) (52)

for k = 0, 1, . . . ,M − 1.
Now define pȲ |X : X → Y such that

pȲ |X (y|x) = 1

M

M−1∑

k=0

pY (k)|X (y|x)

for all (x, y) ∈ X × Y . Note that

pȲ |X (μ
x(y)|x) = 1

M

M−1∑

k=0

pY (k)|X (μx(y)|x)

= 1

M

M−1∑

k=0

pY ∗|X (μx�M k(y)|x �M k)

= 1

M

M−1∑

k=0

pY ∗|X (μk(y)|k),

which does not depend on x . Therefore,

pȲ |X (μ
x(y)|x) = pȲ |X (y|0)

for all (x, y) ∈ X × Y . Moreover, we have

E[m(X, Ȳ )] =
∑

(x,y)∈X×Y
pX (x)pȲ |X (y|x)m(x, y)

= 1

M

∑

(x,y)∈X×Y

M−1∑

k=0

pX (x)pY (k)|X (y|x)m(x, y)

= 1

M

M−1∑

k=0

∑

(x,y)∈X×Y
pX (x)pY (k)|X (y|x)m(x, y)

= 1

M

M−1∑

k=0

∑

(x,y)∈X×Y
pX (x ⊕M k)

×pY (k)|X (μk(y)|x ⊕ k)m(x ⊕M k, μk(y))

= 1

M

M−1∑

k=0

∑

(x,y)∈X×Y
pX (x)pY ∗|X (y|x)m(x, y)

= E[m(X,Y ∗)]
≤ d.

Since −αH (U |Y )+ α̃H (Ũ|Y ) is a convex function of pY |X ,
it follows that

−αH (U |Ȳ )+ α̃H (Ũ |Ȳ )

≤ 1

M

M−1∑

k=0

[−αH (U |Y (k))+ α̃H (Ũ|Y (k))]

= −αH (U |Y ∗)+ α̃H (Ũ|Y ∗), (53)

where (53) is due to (51) and (52). Therefore, pȲ |X must also
be a minimizer of (13). This completes the proof of Lemma 2.

APPENDIX E
PROOF OF THEOREM 2

The following result due to von Neumann [28] (see also
[29, Th. 2]) plays a crucial role in establishing the minimax
theorems in this paper.

Lemma 4: Let X and Y be two bounded closed convex
sets in the Euclidean spaces R

m and R
n , respectively, and

X × Y be their Cartesian product in R
m+n . Let U and V be

two closed subsets of X × Y such that for any x ∈ X the
set {y ∈ Y : (x, y) ∈ U} is non-empty, closed, and convex,
and such that for any y ∈ Y the set {x ∈ X : (x, y) ∈ V}
is non-empty, closed, and convex. Under these assumptions,
U and V have a common point.

The next result is a direct consequence of Lemma 4.
Lemma 5: Let f (x, y) be a continuous real-valued function

defined for x ∈ X and y ∈ Y , where X and Y are two bounded
closed convex sets in the Euclidean spaces R

m and R
n ,

respectively. If for any x ∈ X the set arg miny∈Y f (x, y) is
non-empty, closed, and convex, and for any y ∈ Y the set
arg maxx∈X f (x, y) is non-empty, closed, and convex, then
there exists a saddle point (x∗, y∗) in the sense that

x∗ ∈ arg max
x∈X

f (x, y∗), (54)

y∗ ∈ arg min
y∈Y

f (x∗, y). (55)

Proof: Let U = {(x, y) : x ∈ X , y ∈ U(x)} and V =
{(x, y) : x ∈ V(y), y ∈ Y}, where U(x) = arg miny∈Y f (x, y)
and V(y) = arg maxx∈X f (x, y). Consider a Cauchy sequence
(x (n), y(n)), n = 1, 2 . . ., with (x (n), y(n)) ∈ U for every n.
Denote the limit of this sequence by (x, y). Note that

f (x, y) = lim
n→∞ f (x (n), y(n))

≤ lim
n→∞ f (x (n), y(x))

= f (x, y(x)),

where y(x) ∈ U(x). Hence, we must have y ∈ U(x), which
implies (x, y) ∈ U . This proves that U is closed. Similarly,
it can be proved that V is also closed. Now it follows from
Lemma 4 that U ∩ V �= ∅, i.e., there exists (x∗, y∗) such
that (54) and (55) are satisfied.

Now we proceed to prove Theorem 2. Note that the
maximization problem

max
q∈[0, 1

2 ]L+1
κ(α, q, δ)
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can be decomposed into the following sub-problems

max
q0∈[0, 1

2 ]
α1(1 − δ1)Hb(q0), (56)

max
qk∈[0, 1

2 ]
[−αk(1 − δk)+ αk+1(1 − δk+1)]Hb(qk),

k = 1, . . . , L − 1, (57)

max
qL∈[0, 1

2 ]
−αL(1 − δL)Hb(qL). (58)

It is clear that the maximizers of (56), (57), (58) are,
respectively, given by

q0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, α1(1 − δ1) < 0

any number in [0, 1

2
], α1(1 − δ1) = 0

1

2
, α1(1 − δ1) > 0,

(59)

qk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, αk(1 − δk) > αk+1(1 − δk+1)

any number in [0, 1

2
],

αk(1 − δk) = αk+1(1 − δk+1)
1

2
, αk(1 − δk) < αk+1(1 − δk+1),

k = 1, . . . , L − 1, (60)

qL =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, αL(1 − δL) > 0

any number in [0, 1

2
], αL(1 − δL) = 0

1

2
, αL(1 − δL) < 0.

(61)

Similarly, the minimization problem

min
δ∈D(d)

κ(α, q, δ)

can be decomposed into the following sub-problems

min
δk∈[0,dk]

αk(1 − δk)[Hb(qk−1)− Hb(qk)], k = 1, . . . , L,

and the corresponding minimizers are given by

δk =

⎧
⎪⎪⎨

⎪⎪⎩

0, αk[Hb(qk−1)− Hb(qk)] < 0
any number in [0, dk],

αk [Hb(qk−1)− Hb(qk)] = 0
dk, αk [Hb(qk−1)− Hb(qk)] > 0,

k = 1, . . . , L . (62)

According to (62), the set arg minδ∈D(d) κ(α, q, δ) is non-
empty, closed, and convex for every q ∈ [0, 1

2 ]L+1. Moreover,
according to (59)-(61), the set arg maxq∈[0, 1

2 ]L+1 κ(α, q, δ) is
non-empty, closed, and convex for every δ ∈ D(d). Therefore,
it follows from Lemma 5 that there exists (q∗, δ∗) such
that (14) and (15) are satisfied.

Now consider the case α1 ≥ · · · ≥ αL ≥ 0. Let (q∗, δ∗) be
an arbitrary saddle point solution. If q∗

k−1 < q∗
k for some k,

then, in light of (60)-(62), one of the following must be true:

• αk = αk+1 and δ∗k = δ∗k+1 = 0;
• αk = 0.

Moreover, if q∗
k−1 > q∗

k and dk = 1 for some k, then, in light
of (60)-(62), one of the following must be true:

• δ∗k = δ∗k+1 = 1;
• αk+1 = 0 and δ∗k = 1;

• k = L and δ∗L = 1;
• αk = 0.

Based on these observations, one can readily show via induc-
tion that (q̃∗, δ∗) with q̃∗ = (q̃∗

0 , q̃∗
1 , . . . , q̃∗

L) is also a saddle-
point solution, where q̃∗

0 = q∗
0 and

q̃∗
k =

⎧
⎨

⎩

q̃∗
k−1, q̃∗

k−1 < q∗
k

q̃∗
k−1, q̃∗

k−1 > q∗
k and dk = 1

q∗
k otherwise

for k = 1, . . . , L. Note that by construction we have q̃∗
0 ≥

q̃∗
1 ≥ . . . ≥ q̃∗

L and q̃∗
k−1 = q̃∗

k whenever dk = 1, k = 1, . . . , L.
In view of (60), it is clear that, if δ∗k < δ∗k+1 for some k,
then either q̃∗

k = 0 or αk = 0. Based on this observation,
one can show via a simple induction that (q̃∗, δ̃∗) with δ̃

∗ =
(δ∗1 , . . . , δ∗L) is still a saddle-point solution, where δ̃∗1 = δ∗1 and

δ̃∗k+1 =
{
δ̃∗k , δ̃∗k < δ∗k+1
δ∗k+1, otherwise

for k = 1, . . . , L − 1. Note that by construction we have
δ̃∗1 ≥ . . . ≥ δ̃∗L . In the case α1 > . . . > αL > 0, if q∗

k−1 < q∗
k

for some k, then it follows by (62) that δ∗k = 0, which, in
view of (60) and (61), further implies q∗

k = 0, leading to
a contradiction with the assumption q∗

k−1 < q∗
k ; therefore,

we must have q∗
0 ≥ q∗

1 ≥ · · · ≥ q∗
L . This completes the proof

of Theorem 2.

APPENDIX F
PROOF OF THEOREM 4

We first prove the following technical result. Define

g(α, α̃, δ, δ̃) = −α(1 − 2δ) log
(1 − δ

δ

)

+ α̃(1 − 2δ̃) log
(1 − δ̃

δ̃

)
,

g̃(α, α̃, δ, δ̃) = −α(1 − 2δ)2 + α̃(1 − 2δ̃)2,

where α ≥ α̃ ≥ 0, δ ∈ [0, 1
2 ], and δ̃ ∈ [0, 1

2 ]. When no
confusion can arise, we will simply write g(α, α̃, δ, δ̃) and
g̃(α, α̃, δ, δ̃) as g and g̃, respectively.

Lemma 6: The maximizer of the following optimization
problem

max
q∈[0, 1

2 ]
−αHb(q  δ)+ α̃Hb(q  δ̃),

where α ≥ α̃ ≥ 0, δ ∈ [0, 1
2 ], and δ̃ ∈ [0, 1

2 ], is given by

q =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, g ≤ 0 and g̃ < 0
q†, g > 0 and g̃ < 0
1

2
, g > 0 and g̃ ≥ 0

any number in [0, 1

2
], g = g̃ = 0

with q† being the unique solution of

α(1 − 2δ) log
(1 − q  δ

q  δ

)
= α̃(1 − 2δ̃) log

(1 − q  δ̃

q  δ̃

)

for q ∈ (0, 1
2 ).
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Proof: One can readily verify Lemma 6 for the following
degenerate cases: 1) α̃ = 0, 2) δ = δ̃, 3) δ = 1

2 , 4) δ̃ = 1
2 .

Therefore, it suffices to consider the case where α ≥ α̃ > 0,
δ ∈ [0, 1

2 ), δ̃ ∈ [0, 1
2 ), and δ �= δ̃.

Let ς(q) = −αHb(q  δ)+ α̃Hb(q  δ̃). Note that

ς ′(q) = −α(1 − 2δ) log
(1 − q  δ

q  δ

)

+ α̃(1 − 2δ̃) log
(1 − q  δ̃

q  δ̃

)
,

ς ′′(q) = α(1 − 2δ)2

(q  δ)(1 − q  δ)
− α̃(1 − 2δ̃)2

(q  δ̃)(1 − q  δ̃)

for q ∈ [0, 1
2 ]; in particular,

ς ′(0) = g(α, α̃, δ, δ̃),

ς ′′(1

2
) = −4g̃(α, α̃, δ, δ̃).

We shall prove the following statements:
a) ς ′(q) = 0 has no more than one solution in [0, 1

2 );
b) ς ′′(q) = 0 cannot have two different solutions in [0, 1

2 ].
In view of Rolle’s theorem and the fact that ς ′( 1

2 ) = 0,
it suffices to prove statement b). Note that

ς ′′(q) = 0 ⇐⇒ (α − α̃)(1 − 2δ)2(1 − 2δ̃)2(q2 − q)

−α(1 − 2δ)2δ̃(1 − δ̃)+α̃(1 − 2δ̃)2δ(1 − δ)=0

(63)

for q ∈ [0, 1
2 ]. If α = α̃ > 0, then we further have

ς ′′(q) = 0 ⇐⇒ τ (δ) = τ (δ̃),

where τ (x) = x(1−x)
(1−2x)2

; since τ (x) is a strictly increasing

function for x ∈ [0, 1
2 ), it follows that ς ′′(q) = 0 has no

solution in (0, 1
2 ) (under our assumption δ ∈ [0, 1

2 ), δ̃ ∈ [0, 1
2 ),

and δ �= δ̃). For the case α > α̃ > 0, note that the sum of
the two roots of the equation in (63) is equal to one, which
implies that ς ′′(q) = 0 cannot have two different solutions
in [0, 1

2 ].
Now consider the following cases.
• g ≤ 0 and g̃ < 0 (i.e., ς ′(0) ≤ 0 and ς ′′( 1

2 ) > 0):
Recall that ς ′( 1

2 ) = 0. Since ς ′′( 1
2 ) > 0, there exists

some ε ∈ (0, 1
2 ] such that ς ′(q) < 0 for q ∈ [ 1

2 − ε,
1
2 ); moreover, in view of the fact that ς ′(0) ≤ 0
and the fact that ς ′(q) = 0 has no more than one
solution in [0, 1

2 ), we must have ς ′(q) ≤ 0 for
q ∈ [0, 1

2 − ε]; therefore, q = 0 is the unique maximizer
of ς(q) for q ∈ [0, 1

2 ].
• g > 0 and g̃ < 0 (i.e., ς ′(0) > 0 and ς ′′( 1

2 ) > 0): In this
case, q = q† is the unique solution of ς ′(q) = 0 for
q ∈ (0, 1

2 ); furthermore, we have ς ′(q) > 0 for
q ∈ [0, q†) and ς ′(q) < 0 for q ∈ (q†, 1

2 ). Therefore,
q = q† is the unique maximizer of ς(q) for q ∈ [0, 1

2 ].
• g > 0 and g̃ ≥ 0 (i.e., ς ′(0) > 0 and ς ′′( 1

2 ) ≤ 0): Again
recall that ς ′( 1

2 ) = 0. If ς ′′( 1
2 ) < 0, then there exists

some ε ∈ (0, 1
2 ] such that ς ′(q) > 0 for q ∈ [ 1

2 − ε, 1
2 );

moreover, in view of the fact that ς ′(0) > 0 and the fact
that ς ′(q) = 0 has no more than one solution in [0, 1

2 ),

we must have ς ′(q) ≥ 0 for q ∈ [0, 1
2 − ε]; therefore,

q = 1
2 is the unique maximizer of ς(q) for q ∈ [0, 1

2 ].
For the case ς ′(0) > 0 and ς ′′( 1

2 ) = 0, in view of the fact
that ς ′( 1

2 ) = 0 and the fact that ς ′′(q) = 0 cannot have
two different solutions in [0, 1

2 ], we must have ς ′(q) > 0
for q ∈ [0, 1

2 ); as a consequence, q = 1
2 is again the

unique maximizer of ς(q) for q ∈ [0, 1
2 ].

• g ≤ 0 and g̃ ≥ 0: We shall show that this case does
not exist under our assumption α ≥ α̃ > 0, δ ∈ [0, 1

2 ),
δ̃ ∈ [0, 1

2 ), and δ �= δ̃. Since g ≤ 0 and g̃ ≥ 0, it follows
that ρ(δ) ≥ ρ(δ̃), where

ρ(x) = 1

1 − 2x
log

(1 − x

x

)
.

It can be verified that

ρ′(x) = 1

(1 − 2x)2
ξ(x),

where

ξ(x) = 2 log
(1 − x

x

)
− 1 − 2x

x(1 − x)
.

Moreover,

ξ ′(x) = − 2

x(1 − x)
+ 2x(1 − x)+ (1 − 2x)2

x2(1 − x)2

= (1 − 2x)2

x2(1 − x)2
> 0

for x ∈ (0, 1
2 ). Therefore, we have ξ(x) < ξ( 1

2 ) = 0 for
x ∈ (0, 1

2 ), which implies ρ′(x) < 0 for x ∈ (0, 1
2 ) and

further implies that ρ(x) a strictly decreasing function for
x ∈ [0, 1

2 ). As a consequence, ρ(δ) ≥ ρ(δ̃) if and only if
δ ≤ δ̃. On the other hand, g̃ ≥ 0 implies δ ≥ δ̃. Hence,
we must have δ = δ̃. However, this case is excluded by
our assumption δ �= δ̃.

This completes the proof of Lemma 6.
Now we proceed to prove Theorem 4. Note that the

maximization problem

max
q∈[0, 1

2 ]L+1
η(α, q, δ)

can be decomposed into the following sub-problems

max
q0∈[0, 1

2 ]
α1 Hb(q0  δ1), (64)

max
qk∈[0, 1

2 ]
−αk Hb(qk  δk)+ αk+1 Hb(qk  δk+1),

k = 1, . . . , L − 1, (65)

max
qL∈[0, 1

2 ]
−αL Hb(qL  δL). (66)

It is clear that the maximizers of (64) and (66) are, respectively,
given by

q0 =
⎧
⎨

⎩

1

2
, α1 > 0 and δ1 ∈ [0, 1

2 )

any number in [0, 1
2 ], α1 = 0 or δ1 = 1

2 ,

qL =
{

0, αL > 0 and δL ∈ [0, 1
2 )

any number in [0, 1
2 ], αL = 0 or δL = 1

2 .
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Moreover, it follows from Lemma 6 that the maximizers
of (65) are given by

qk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, gk ≤ 0 and g̃k < 0
q†

k , gk > 0 and g̃k < 0
1

2
, gk > 0 and g̃k ≥ 0

any number in [0, 1
2 ], gk = g̃k = 0,

where gk = g(αk, αk+1, δk, δk+1), g̃k = g̃(αk, αk+1, δk, δk+1),
and q†

k is the unique solution of

αk(1 − 2δ) log
(1 − q  δk

q  δk

)

= αk+1(1 − 2δk+1) log
(1 − q  δk+1

q  δk+1

)

for q ∈ (0, 1
2 ), k = 1, . . . , L − 1. Similarly, the minimization

problem

min
δ∈D(d)

η(α, q, δ)

can be decomposed into the following sub-problems

min
δk∈[0,dk ]

αk[Hb(qk−1  δk)− Hb(qk  δk)], k = 1, . . . , L .

(67)

It is easy to verify that the minimizers of (67) are given by

δk =
⎧
⎨

⎩

0, αk > 0 and qk−1 < qk

dk, αk > 0 and qk−1 > qk

any number in [0, dk], αk = 0 or qk−1 = qk,

k = 1, . . . , L .

The rest of the proof is almost identical with its counterpart
in the proof of Theorem 2 (see the steps after Equation (62))
and thus is omitted.

APPENDIX G
PROOF OF THEOREM 6

The following technical lemma is needed for the proof of
Theorem 6. Define

h(α, α̃, δ, δ̃) = −(α − α̃)(λ− δ)(λ− δ̃),

h̃(α, α̃, δ, δ̃) = −α(λ− δ)δ̃ + α̃(λ− δ̃)δ,

where α ≥ α̃ ≥ 0, δ ∈ [0, λ], and δ̃ ∈ [0, λ]. When no
confusion can arise, we will simply write h(α, α̃, δ, δ̃) and
h̃(α, α̃, δ, δ̃) as h and h̃, respectively.

Lemma 7: The maximizer of the following optimization
problem

max
θ∈[0,λ] −α log(λθ + λδ − θδ)+ α̃ log(λθ + λδ̃ − θ δ̃),

where α ≥ α̃ ≥ 0, δ ∈ [0, λ], and δ̃ ∈ [0, λ], is given by

θ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, h ≤ 0, h̃ ≤ 0, and h + h̃ < 0

min
{
− h̃

hλ, λ
}
, h < 0 and h̃ > 0

λ, h = 0 and h̃ > 0
any number in [0, λ], h = h̃ = 0.

Proof: Note that

�′(θ) = hθ + h̃λ

(λθ + λδ − θδ)(λθ + λδ̃ − θ δ̃)

for θ > 0, where

�(θ) = −α log(λθ + λδ − θδ)+ α̃ log(λθ + λδ̃ − θ δ̃).

Now consider the following cases.
• h ≤ 0, h̃ ≤ 0, and h + h̃ < 0: In this case, �(θ) is

a strictly decreasing function for θ ≥ 0; consequently,
θ = 0 is the unique maximizer of �(θ) for θ ∈ [0, λ].

• h < 0 and h̃ > 0: In this case, �(θ) is a strictly increasing
function for θ ∈ [0,− h̃

hλ) and a strictly decreasing

function for θ > − h̃
hλ; consequently, θ = min{− h̃

hλ, λ}
is the unique maximizer of �(θ) for θ ∈ [0, λ].

• h = 0 and h̃ > 0: In this case, �(θ) is a strictly increasing
function for θ ≥ 0; consequently, θ = λ is the unique
maximizer of �(θ) for θ ∈ [0, λ].

• h = h̃ = 0: In this case, �(θ) is a constant.
This completes the proof of Lemma 7.

Now we proceed to prove Theorem 6. The main difficulty
here is that ω(α, ·, ·) is not continuous at certain boundary
points8; as a consequence, Lemma 5 in Appendix E is not
applicable anymore. So we shall instead rely on Lemma 4 in
Appendix E.

Note that the maximization problem

max
θ∈[0,λ]L+1

ω(α, θ, δ)

can be decomposed into the following sub-problems

max
θ0∈[0,λ]

α1

2
log(λθ0 + λδ1 − θ0δ1), (68)

max
θk∈[0,λ] −

αk

2
log(λθk + λδk − θkδk)

+αk+1

2
log(λθk + λδk+1 − θkδk+1),

k = 1, . . . , L − 1, (69)

max
θL∈[0,λ] −

αL

2
log(λθL + λδL − θLδL). (70)

It is clear that the maximizers of (68) and (70) are, respectively,
given by

θ0 =
{
λ, α1 > 0 and δ1 ∈ [0, λ)
any number in [0, λ], α1 = 0 or δ1 = λ, (71)

θL =
{

0, αL > 0 and δL ∈ [0, λ)
any number in [0, 1

2 ], αL = 0 or δL = λ.
(72)

8For example, consider an arbitrary (α, θ, δ) such that αk > 0 and θk−1 =
θk = δk = 0 for some k. It can be shown that, for any a ∈ [−∞,∞],
one can find a sequence (θ(n), δ(n)), n = 1, 2, . . ., converging to (θ, δ) such
that limn→∞ ω(α, θ(n), δ(n)) = a. Similarly, if αk > 0, αk+1 > 0, and
θk = δk = δk+1 = 0 for some k, then, for any a ∈ [−∞,∞], one can
find a sequence (θ(n), δ(n)), n = 1, 2, . . ., converging to (θ, δ) such that
limn→∞ ω(α, θ(n), δ(n)) = a.



SONG et al.: LOWER BOUND ON THE SUM RATE OF MULTIPLE DESCRIPTION CODING 7563

Moreover, it follows from Lemma 7 that the maximizers
of (69) are given by

θk =

⎧
⎪⎪⎨

⎪⎪⎩

0, hk ≤ 0, h̃k ≤ 0, and hk + h̃k<0
min

{
− h̃k

hk
λ, λ

}
, hk < 0 and h̃k > 0

λ, hk = 0 and h̃k > 0
any number in [0, λ], hk = h̃k = 0,

k = 1, . . . , L − 1, (73)

where hk = h(αk, αk+1, δk, δk+1) and h̃k = h̃(αk, αk+1,
δk, δk+1). Similarly, the minimization problem

min
δ∈D(d)

ω(α, θ, δ)

can be decomposed into the following sub-problems

min
δk∈[0,dk ]

αk

2
log

(λθk−1 + λδk − θk−1δk

λθk + λδk − θkδk

)
, k = 1, . . . , L . (74)

It is easy to verify that the minimizers of (74) are given by

δk =
⎧
⎨

⎩

0, αk > 0 and θk−1 < θk

dk, αk > 0 and θk−1 > θk

any number in [0, dk], αk = 0 or θk−1 = θk,

k = 1, . . . , L . (75)

For every θ ∈ [0, 1
2 ]L+1, define U(θ) to be the set of

δ ∈ D(d) satisfying (75); similarly, for every δ ∈ D(d),
define V(δ) to be the set of θ ∈ [0, 1

2 ]L+1 satisfying (71), (72),
and (73). Furthermore, define

U = {(θ, δ) : θ ∈ [0, 1

2
]L+1, δ ∈ U(θ)},

V = {(θ, δ) : θ ∈ V(δ), δ ∈ D(d)}.
Note that9

U(θ) ⊆ arg min
δ∈D(d)

ω(α, θ, δ), θ ∈ [0, 1

2
]L+1, (76)

V(δ) ⊆ arg max
θ∈[0, 1

2 ]L+1
ω(α, θ, δ), δ ∈ D(d), (77)

where the equality in (76) holds if

min
δ∈D(d)

ω(α, θ, δ) > −∞,

and the equality in (77) holds if

max
θ∈[0, 1

2 ]L+1
ω(α, θ, δ) < ∞.

In view of (75), the set U(θ) is non-empty, closed, and convex
for every θ ∈ [0, 1

2 ]L+1. Moreover, in view of (71)-(73),
the set V(δ) is non-empty, closed, and convex for every
δ ∈ D(d). Consider a Cauchy sequence (θ(n), δ(n)) with
θ(n) = (θ

(n)
0 , θ

(n)
1 , . . . , θ

(n)
L ) and δ(n) = (δ

(n)
1 , . . . , δ

(n)
L ),

n = 1, 2, . . ., such that (θ(n), δ(n)) ∈ U for every n. Denote the
limit of this sequence by (θ, δ). Note that, for any k, if αk = 0

9For example, if α1 ≥ . . . ≥ αL > 0, θ0 > θ1 = 0, and θ2 > . . . > θL ,
then arg minδ∈D(d) ω(α, θ, δ) = {δ ∈ D(d) : δ1 > 0, δ2 = 0}; in contrast, we
have U(θ) = {(d1, 0, d3, . . . , dL )}. Note that in this example U(θ) is a closed
set whereas arg minδ∈D(d) is not. Similarly, if α1 > . . . > αL > 0, δ1 = 0,
and δk ∈ (0, λ), k = 2, . . . , L , then arg max

θ∈[0, 1
2 ]L+1 ω(α, θ, δ) = {θ ∈

[0, 1
2 ]L+1 : θ0 > 0, θ1 = 0}; in contrast, V(δ) contains a single element. Note

that in this example V(δ) is a closed set whereas arg max
θ∈[0, 1

2 ]L+1 ω(α, θ, δ)

is not.

or θk−1 = θk , then (75) is clearly satisfied by δk . On the other
hand, if αk > 0 and θk−1 < θk (θk−1 > θk), then we must
have θ(n)k−1 < θ

(n)
k (θ(n)k−1 > θ

(n)
k ) for all sufficiently large n,

which, together with the fact that (θ(n), δ(n)) ∈ U for every n,
implies δ(n)k = 0 (δ(n)k = dk) for all sufficiently large n and
consequently δk = 0 (δk = dk); hence, (75) is still satisfied
by δk . Therefore, we have (θ, δ) ∈ U . This proves that U
is a closed set. Similarly, let (θ(n), δ(n)), n = 1, 2, . . ., be
a Cauchy sequence with (θ(n), δ(n)) ∈ V for every n. Again
denote the limit of this sequence by (θ, δ). It is easy to verify
that θ0 and θL satisfy (71) and (72), respectively. In order to
show that (73) is satisfied by θk , k = 1, . . . , L−1, we consider
the following cases.

• hk(αk , αk+1, δk, δk+1) ≤ 0, h̃k(αk , αk+1, δk, δk+1) ≤ 0,
and they are not equal to zero at the same
time: If h̃k(αk, αk+1, δk, δk+1) < 0, then we have
h̃k(αk , αk+1, δ

(n)
k , δ

(n)
k+1) < 0 for all sufficiently large n,

which, together with the fact that (θ(n), δ(n)) ∈ V for
every n, implies θ(n)k = 0 for all sufficiently large n
and consequently θk = 0. On the other hand, if
hk(αk , αk+1, δk, δk+1) < 0 and h̃k(αk , αk+1, δk, δk+1) =
0, then hk(αk, αk+1, δ

(n)
k , δ

(n)
k+1) < 0 for all sufficiently

large n. Since (θ(n), δ(n)) ∈ V for every n, it follows
that, when n is sufficiently large, we have θ(n)k = 0 if
h̃k(αk , αk+1, δ

(n)
k , δ

(n)
k+1) ≤ 0, and

θ
(n)
k = min

{
− h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1)

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1)

λ, λ
}

if h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) > 0. This, together with the

fact that

lim
n→∞ hk(αk, αk+1, δ

(n)
k , δ

(n)
k+1) < 0,

lim
n→∞ h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1) = 0,

implies θk = 0. Hence, (73) is satisfied in this case.
• hk(αk , αk+1, δk, δk+1) < 0 and h̃k(αk, αk+1, δk,

δk+1) > 0: We must have hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) < 0

and h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) > 0 for all sufficiently

large n, which, together with the fact that (θ(n), δ(n)) ∈ V
for every n, implies

θ
(n)
k = min

{
− h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1)

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1)

λ, λ
}

for all sufficiently large n. Hence,

θk = lim
n→∞ θ

(n)
k = min

{
− h̃k(αk , αk+1, δk, δk+1)

hk(αk , αk+1, δk, δk+1)
λ, λ

}
,

which satisfies (73).
• hk(αk , αk+1, δk, δk+1) = 0 and h̃k(αk, αk+1,

δk, δk+1) > 0: In this case h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) > 0

for all sufficiently large n. Recall that (θ(n), δ(n)) ∈ V
for every n. Therefore, when n is sufficiently large, we
must have

θ
(n)
k = min

{
− h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1)

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1)

λ, λ
}
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if hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) < 0, and θ

(n)
k = λ if

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) = 0. This, together with the fact

that

lim
n→∞ hk(αk, αk+1, δ

(n)
k , δ

(n)
k+1) = 0,

lim
n→∞ h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1) > 0,

implies θk = λ. Hence, (73) is satisfied in this case.
• hk(αk, αk+1, δk, δk+1) = h̃k(αk, αk+1, δk, δk+1) = 0:

This case is trivial.

This proves (θ, δ) ∈ V , which further implies that V is a closed
set. Therefore, it follows from Lemma 4 that U ∩V �= ∅; as a
consequence, there exists (θ∗, δ∗) such that (32) and (33) are
satisfied.

Now consider the case α1 ≥ . . . ≥ αL ≥ 0. Let (θ∗, δ∗) be
an arbitrary saddle point solution. It is clear that ω(α, θ∗, δ∗) ∈
(−∞,∞). Therefore, we must have (θ∗, δ∗) ∈ U ∩ V . Define
θ̃

∗ = (θ̃∗
0 , θ̃

∗
1 , . . . , θ̃

∗
L), where θ̃∗

0 = θ∗
0 and

θ̃∗
k =

⎧
⎨

⎩

θ̃∗
k−1, θ̃∗

k−1 < θ∗
k

θ̃∗
k−1, θ̃∗

k−1 > θ∗
k and dk = λ

θ∗
k otherwise

for k = 1, . . . , L; note that by construction we have
θ̃∗

0 ≥ θ̃∗
1 ≥ . . . ≥ θ̃∗

L and θ̃∗
k−1 = θ̃∗

k whenever dk = λ,
k = 1, . . . , L. Moreover, define δ̃

∗ = (δ∗1 , . . . , δ∗L), where
δ̃∗1 = δ∗1 and

δ̃∗k+1 =
{
δ̃∗k , δ̃∗k < δ∗k+1
δ∗k+1, otherwise

for k = 1, . . . , L − 1; note that by construction we have δ̃∗1 ≥
. . . ≥ δ̃∗L . It can be shown that (θ̃

∗
, δ̃

∗
) is also a saddle-point

solution (see the counterpart in the proof of Theorem 2).
Finally consider the case α1 ≥ . . . ≥ αL > 0. If θ∗

k−1 < θ∗
k

for some k, then it follows by (75) that δ∗k = 0. We shall
show that it is impossible to have θ∗

k > 0 and δ∗k = 0 at the
same time. Indeed, if θ∗

k > 0 and δ∗k = 0, then, according
to (73), we must have δ∗k+1 = 0 (and αk = αk+1), which,
in view of (75), further implies θ∗

k ≤ θ∗
k+1 (and consequently

θ∗
k+1 > 0); now a simple induction yields θ∗

L > 0 and δ∗L = 0,
leading to a contradiction with (72). Therefore, we must have
θ∗

0 ≥ θ∗
1 ≥ . . . ≥ θ∗

L . This completes the proof of Theorem 6.

APPENDIX H
PROOF OF COROLLARY 9

It follows from Theorem 6 that

ψ(α, d) = max min
δ∈D(d)

ω(α, θ, δ),

where the maximization is taken over those θ such that
λ ≥ θ0 = · · · = θi−1 ≥ θi = · · · = θ j−1 ≥ θ j = · · · =

θL ≥ 0. As a consequence, we have

ψ(α, d) = max
(θ0,θi ,θ j ):λ≥θ0≥θi≥θ j ≥0

min
(δi ,δ j )∈[0,di ]×[0,d j ]

αi

2
log

(λθ0 + λδi − θ0δi

λθi + λδi − θiδi

)

+ α j

2
log

( λθi + λδ j − θiδ j

λθ j + λδ j − θ jδ j

)

= max
(θ0,θi ,θ j ):λ≥θ0≥θi≥θ j ≥0

αi

2
log

(λθ0 + λdi − θ0di

λθi + λdi − θi di

)

+ α j

2
log

( λθi + λd j − θid j

λθ j + λd j − θ j d j

)

= max
θi∈[0,λ]

αi

2
log

( λ2

λθi + λdi − θidi

)

+ α j

2
log

(λθi + λd j − θi d j

λd j

)
.

One can readily verify the following statements by invoking
Lemma 7 in Appendix G.

• h̃(αi , α j , di , d j ) ≤ 0 (i.e., αi (λ− di )d j ≥ α j (λ− d j )di ):
We have

max
θi∈[0,λ]

αi

2
log

( λ2

λθi + λdi − θi di

)

+α j

2
log

(λθi + λd j − θi d j

λd j

)

= αi

2
log

( λ2

λθi + λdi − θi di

)

+ α j

2
log

(λθi + λd j − θi d j

λd j

)∣∣∣∣
θi =0

= αi

2
log

( λ
di

)
.

• h(αi , α j , di , d j )+ h̃(αi , α j , di , d j ) ≥ 0 (i.e., αi (λ−di ) ≤
α j (λ− d j )): We have

max
θi∈[0,λ]

αi

2
log

( λ2

λθi + λdi − θi di

)

+α j

2
log

(λθi + λd j − θid j

λd j

)

= αi

2
log

( λ2

λθi + λdi − θi di

)

+ α j

2
log

(λθi + λd j − θi d j

λd j

)∣∣∣∣
θi=λ

= α j

2
log

( λ
d j

)
.

• h̃(αi , α j , di , d j ) > 0 and h(αi , α j , di , d j ) +
h̃(αi , α j , di , d j ) < 0 (i.e., αi (λ− di )d j < α j (λ− d j )di

and αi (λ− di) > α j (λ− d j )): We have

max
θi∈[0,λ]

αi

2
log

( λ2

λθi + λdi − θi di

)

+α j

2
log

(λθi + λd j − θid j

λd j

)

= αi

2
log

( λ2

λθ† + λdi − θ†di

)
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+α j

2
log

(λθ† + λd j − θ†d j

λd j

)
,

where

θ† = − h̃(αi , α j , di , d j )

h(αi , α j , di , d j )
λ

= −αiλ(λ− di )d j + α jλ(λ− d j )di

(αi − α j )(λ− di)(λ− d j )
.

It can be verified that

αi

2
log

( λ2

λθ† + λdi − θ†di

)
+ α j

2
log

(λθ† + λd j − θ†d j

λd j

)

= αi

2
log

[ (αi − α j )(λ− d j )

αi (di − d j )

]

+α j

2
log

[ α jλ(di − d j )

(αi − α j )(λ− di )d j

]
.

This completes the proof of Corollary 9.

APPENDIX I
PROOF OF THEOREM 9

We shall treat the three cases separately. It will be seen that
Case 3) is the most non-trivial one whereas the other two are
simple consequences of Corollary 11.

1) In view of Corollary 11, we must have
R(d) ≥ R	,k(d	, dk) and consequently R	,k(d	, dk) =
L
2	 log

(
λ
d	

)
for all k > 	. Note that R	,k(d	, dk) =

L
2	 log

(
λ
d	

)
if and only if

dk ≥
(k

	
d−1
	 − k − 	

	
λ−1

)−1
.

2) In view of Corollary 11 (or Corollary 12), we must have
R(d) ≥ Rk,L(dk, dL) and consequently Rk,L (dk, dL) =
1
2 log

(
λ

dL

)
for all k < L. Note that Rk,L(dk, dL) =

1
2 log

(
λ

dL

)
if and only if

dL ≤ L

k
dk − L − k

k
λ,

i.e.,

dk ≥ k

L
dL + L − k

L
λ.

3) For any integer k ∈ (	, L), it follows from Corollary 10
that R(d) ≥ ψ(α∗, d̃), where d̃ = (d̃1, . . . , d̃L) with
d̃	 = d	, d̃k = dk , d̃L = dL , and dk′ = λ, k ′ /∈ {	, k, L}.
By Theorem 6, we have

ψ(α∗, d̃) = max min
δ∈D(d̃)

ω(α∗, θ, δ),

where the maximization is taken over those θ such that
λ ≥ θ0 = · · · = θ	−1 ≥ θ	 = · · · = θk−1 ≥ θk = · · · =

θL−1 ≥ θL ≥ 0. As a consequence, we have

ψ(α∗, d̃)

= max
(θ0,θ	,θk ,θL ):λ≥θ0≥θ	≥θk≥θL≥0

min
(δ	,δk ,δL )∈[0,d	]×[0,dk ]×[0,dL ]
L

2	
log

(λθ0 + λδ	 − θ0δ	

λθ	 + λδ	 − θ	δ	

)

+ L

2k
log

(λθ	 + λδk − θ	δk

λθk + λδk − θkδk

)

+ 1

2
log

( λθk + λδL − θkδL

λθL + λδL − θLδL

)

= max
(θ0,θ	,θk ,θL ):λ≥θ0≥θ	≥θk≥θL≥0

L

2	
log

(λθ0 + λd	 − θ0d	
λθ	 + λd	 − θ	d	

)

+ L

2k
log

(λθ	 + λdk − θ	dk

λθk + λdk − θkdk

)

+ 1

2
log

( λθk + λdL − θkdL

λθL + λdL − θLdL

)

= max
(θ	,θk):λ≥θ	≥θk≥ 0

L

2	
log

( λ2

λθ	 + λd	 − θ	d	

)

+ L

2k
log

(λθ	 + λdk − θ	dk

λθk + λdk − θkdk

)

+ 1

2
log

(λθk + λdL − θkdL

λdL

)
.

Now consider the following optimization problems:

max
θ	∈[0,λ] −

L

2	
log(λθ	 + λd	 − θ	d	)

+ L

2k
log(λθ	 + λdk − θ	dk), (78)

max
θk∈[0,λ] −

L

2k
log(λθk + λdk − θkdk)

+1

2
log(λθk + λdL − θkdL). (79)

First note that the condition L
	 d	 − L−	

	 λ < dL <

( L
	 d−1
	 − L−	

	 λ−1)−1, together with the assumption that
d	 ∈ (0, λ] and dL ∈ (0, λ], implies 0 < dL < d	 < λ,
h̃(α∗

	 , α
∗
L , d	, dL) > 0, and h(α∗

	 , α
∗
L , d	, dL) + h̃(α∗

	 ,
α∗

L , d	, dL) < 0, which further implies θ† ∈ (0, λ),
where

θ† = − h̃(α∗
	 , α

∗
L , d	, dL)

h(α∗
	 , α

∗
L , d	, dL)

λ

= −Lλ(λ − d	)dL + 	λ(λ− dL)d	
(L − 	)(λ− d	)(λ− dL)

.

Now define

θ(dk) = − h̃(α∗
	 , α

∗
k , d	, dk)

h(α∗
	 , α

∗
k , d	, dk)

λ,

θ̃(dk) = − h̃(α∗
k , α

∗
L , dk, dL)

h(α∗
k , α

∗
L , dk, dL)

λ.
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It is easy to verify that

θ(dk) = −kλ(λ− d	)dk + 	λ(λ− dk)d	
(k − 	)(λ− d	)(λ− dk)

,

θ̃(dk) = −Lλ(λ − dk)dL + kλ(λ− dL)dk

(L − k)(λ− dk)(λ− dL)
;

moreover, θ(dk) is a strictly decreasing function and
θ̃ (dk) is a strictly increasing function for dk ∈ (0, λ).
Note that

θ̃ (d	) = −Lλ(λ− d	)dL + kλ(λ− dL)d	
(L − k)(λ− d	)(λ− dL)

<
−Lλ(λ− dL)d	 + kλ(λ− dL)d	

(L − k)(λ− d	)(λ− dL)

= −λd	
λ− d	

= θ(d	),

θ(dL) = −kλ(λ− d	)dL + 	λ(λ− dL)d	
(k − 	)(λ− d	)(λ− dL)

<
−kλ(λ− d	)dL + 	λ(λ− d	)dL

(k − 	)(λ− d	)(λ− dL)

= −λdL

λ− dL

= θ̃ (dL).

Therefore, the equation θ(dk) = θ̃ (dk) has a unique
solution for dk ∈ (d	, dL), which is given by

d∗
k = L(k − 	)(λ− d	)dL + 	(L − k)(λ− dL)d	

k(L − 	)λ− L(k − 	)d	 − 	(L − k)dL
.

It is clear that h̃(α∗
	 , α

∗
k , d	, d∗

k ) > 0 and
h̃(α∗

k , α
∗
L , d∗

k , dL) > 0. Moreover, it can be verified that

θ(d∗
k ) = θ̃ (d∗

k ) = θ† ∈ (0, λ).
Therefore, there exists an ε ∈ (0, d∗

k ] such that

h̃(α∗
	 , α

∗
k , d	, dk) > 0,

h̃(α∗
k , α

∗
L , dk, dL) > 0,

0 < θ̃(dk) < θ(dk) < λ (80)

for any dk ∈ (d∗
k − ε, d∗

k ). It follows from Lemma 7 in
Appendix G that θ	 = θ(dk) is the unique maximizer of
(78) and θk = θ̃ (dk) is the unique maximizer of (79) for
any dk ∈ (d∗

k −ε, d∗
k ), which, together with (80), implies

ψ(α∗, d̃) = L

2	
log

( λ2

λθ(dk)+ λd	 − θ(dk)d	

)

+ L

2k
log

(λθ(dk)+ λdk − θ(dk)dk

λθ̃ (dk)+ λdk − θ̃ (dk)dk

)

+1

2
log

(λθ̃(dk)+ λdL − θ̃ (dk)dL

λdL

)

>
L

2	
log

( λ2

λθ† + λd	 − θ†d	

)

+ L

2k
log

(λθ† + λdk − θ†dk

λθ† + λdk − θ†dk

)

+1

2
log

(λθ† + λdL − θ†dL

λdL

)

= R	,L(d	, L)

for any dk ∈ (d∗
k − ε, d∗

k ). Therefore, if R(d) =
R	,L(d	, dL), then we must have dk ≥ d∗

k .
This completes the proof of Theorem 9.
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