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Intrinsic Capacity
Shengtian Yang , Senior Member, IEEE, Rui Xu, Jun Chen , Senior Member, IEEE,

and Jian-Kang Zhang, Senior Member, IEEE

Abstract— Every channel can be expressed as a convex
combination of deterministic channels with each deterministic
channel corresponding to one particular intrinsic state. Such
convex combinations are, in general, not unique, each giving rise
to a specific intrinsic-state distribution. In this paper, we study
the maximum and minimum capacities of a channel when the
realization of its intrinsic state is causally available at the encoder
and/or the decoder. Several conclusive results are obtained for
binary-input channels and binary-output channels. By-products
of our investigation include a generalization of the Birkhoff–von
Neumann theorem and a condition on the uselessness of causal
state information at the encoder.

Index Terms— Birkhoff-von Neumann theorem, channel
capacity, deterministic channel, state information.

I. INTRODUCTION

ADISCRETE channel is commonly viewed as a black
box with the input-output relation characterized by a

stochastic matrix. In practice, it is often possible to obtain
some additional information (known as the state information)
by probing the channel. The knowledge of the state infor-
mation might be useful in increasing the channel capacity.
Note that, given each state, the channel can again be viewed
as a black box and can potentially be further probed. One
may continue this process until the black box is fully opened,
i.e., the channel becomes deterministic given the acquired state
information. This line of thought suggests that every channel
has its own intrinsic state, which fully captures the randomness
of the channel, and any state information acquired via channel
probing is a degenerate version of this intrinsic state. As such,
the intrinsic capacity, defined as the capacity of a channel
when its intrinsic state is revealed, determines the ultimate
capacity gain one can hope for by probing the channel.

It turns out that the intrinsic capacity of a channel
is not necessarily uniquely defined. Consider a binary
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symmetric channel with crossover probability 0.5:
W = (Wx,y)x∈{0,1},y∈{0,1} = ( 0.5 0.5

0.5 0.5 ), where each entry
Wx,y denotes the conditional probability W (y | x) of output
y given input x . The capacity of W is clearly zero. For this
channel, we consider the following two models:

F(x) = x ⊕ N and G(x) = N,

where ⊕ denotes the modulo-2 addition and N is uniformly
distributed over {0, 1}. It is easy to verify that they both have
the conditional probability distribution W . If the actual model
of W is F , then for every realization of N , W becomes
a deterministic perfect channel, ( 1 0

0 1 ) or ( 0 1
1 0 ), so that the

capacity of W with N available at the encoder and/or the
decoder increases to one. On the other hand, if the actual
model of W is G, then for every realization of N , W becomes
a deterministic useless channel, ( 1 0

1 0 ) or ( 0 1
0 1 ), and hence,

even with N known at both sides, the capacity of W is still
zero. In fact, it will be seen that, for every number r ∈ [0, 1],
one can find a model for W such that the resulting intrinsic
capacity is r .

This example indicates that a channel may admit different
decompositions into deterministic channels. All these decom-
positions are mathematically legitimate though the actual way
the deterministic channels are mixed to produce the given
channel depends on the underlying physical mechanism. In this
work we study the minimum and the maximum intrinsic
capacities of a channel over all admissible decompositions.
They will be referred to as the lower intrinsic capacity and the
upper intrinsic capacity. For the aforementioned channel W , its
lower and upper intrinsic capacities are 0 and 1, respectively.
Since the causal state information may be available at the
encoder, the decoder, or both, there are totally three different
notions of lower and upper intrinsic capacities of a channel W ,
denoted by IC f (W ) and IC f (W ), for f = 10, 01, 11, where
the two bits indicate if the state information is available at the
encoder and the decoder, respectively.

The main contributions of this work are:
1) We study the structure of the convex polytope dec(W ),

which consists of all convex combinations of determinis-
tic channels for channel W , with a particular focus on its
vertices. It is shown that IC f (W ) for all f ∈ {10, 01, 11}
and IC11(W ) are attained at certain vertices of dec(W )
(Theorem 2).

2) We prove a generalization of the Birkhoff-von Neumann
theorem for a family W[a, b] of channel matrices with
integer-valued column-sum vector constraints a and b
from below and above, respectively (Theorem 19). It
is shown that W[a, b] is convex and its vertices are
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exactly all deterministic channels in W[a, b]. Using this
fundamental result, we determine the exact values of
IC11(W ) and IC11(W ) when the input or the output
is binary. General lower and upper bounds are further
provided for the nonbinary cases (Theorems 8 and 9),
and in some cases, the exact value of IC11(W ) is also
determined.

3) We obtain the exact values of IC10(W ) and IC10(W )
when W is a binary-output channel (Theorem 10), and
obtain the exact values of IC01(W ) and IC01(W ) when
W is a binary-input channel (Proposition 11). An inter-
esting phenomenon observed is that IC10(W ) = C(W )
for binary-output W , where C(W ) denotes the capac-
ity of W . In other words, every binary-output chan-
nel can be generated through a certain mechanism
such that the capacity remains the same if the source
of randomness is causally revealed to the encoder.
We further prove that the causal state information
at the encoder is useless for a broad class of
channels (Theorem 24). Finally, by providing some
counterexamples, we show that the results such as
IC10(W ) = C(W ) and IC01(W ) = IC11(W )
are specific to binary-input or binary-output chan-
nels, and do not hold in general (Example 46 and
Proposition 48).

The rest of this paper is organized as follows. Section II
lists some common notations used throughout this paper.
Section III provides the definitions of various notions of
(lower/upper) intrinsic capacity and a summary of the
main results of this paper. The proofs and some other
relevant findings are presented in Section IV and the
appendices.

II. NOTATIONS

Although most notations will be defined at their first occur-
rences, some common ones are listed here for easy reference.

[[x, y]] The set of integers in the interval [x, y].
B A The set of all maps f : A→ B , or equivalently,

the set of all indexed families x = (xi ∈ B)i∈A

(a generalized form of sequences).
If A = [[1, n]], then B A degenerates to the
Cartesian product Bn . In this paper, a vector
(for example, in Rn) will be regarded as a row
vector, and an all-c vector is usually denoted
by c.

x ∧ y The minimum of x and y.
x ∨ y The maximum of x and y.
supp(x) The support set {i ∈ I : xi �= 0} of x = (xi )i∈I .
wt(x) The weight |supp(x)| of x = (xi )i∈I .
�x	 The largest integer ≤ x . If the argument is a

sequence x = (xi )i∈I , then �x	 := (�xi	)i∈I .
The same convention also applies to other
functions such as |x |, �x�, (x)+, and (x)−.

�x� The smallest integer ≥ x .
(x)+ x ∨ 0.
(x)− x ∧ 0.
log x log2 x .

D(P�Q) The relative entropy∑
a∈A P(a) log(P(a)/Q(a))

of P with respect to Q, where P and Q are
probability distributions over finite set A.

III. DEFINITIONS AND MAIN RESULTS

Let X and Y be two finite sets. A channel W : X → Y is
a stochastic matrix with each entry Wx,y , or conventionally,
W (y | x) denoting the probability of output y ∈ Y given
input x ∈ X . A deterministic channel D : X → Y is a
special channel whose stochastic matrix is a zero-one matrix,
as such it uniquely identifies a map of X into Y . In the sequel,
deterministic channels and maps will be regarded as equivalent
objects and denoted using the same notation.

It is clear that the set of all channels forms a convex
polytope in RX×Y . We denote this polytope by WX ,Y , or
succinctly, W . The deterministic channels are exactly the
vertices of W , and every channel can be expressed as a
convex combination of them. This simple observation suggests
that, for any channel, one can define a random state variable
(referred to as the intrinsic state) given which the channel
becomes deterministic. We are interested in characterizing the
capacity of a channel when its intrinsic state is available at
the encoder and/or the decoder. Such capacity results are of
fundamental importance since they delineate the potential gain
that can be achieved by probing the channel.

For a given channel, there are often multiple ways to write
it as a convex combination of deterministic channels; as a
consequence, the distribution of its intrinsic state is in general
not uniquely defined. Let DX ,Y (or simply D) denote the set
of all deterministic channels X → Y . Then the set of all
possible convex decompositions of a channel W is given by

dec(W ) := {λ ∈ PD : W =
∑

D∈D
λD D},

where PD is the set of all probability distributions over D and
can be regarded as the set W{∅},D of matrices or vectors. For
each intrinsic-state distribution λ ∈ PD, we define the result-
ing capacities when the intrinsic state is causally available at
the encoder, the decoder, or both, by

C10(λ) := max
μ∈PXD

J10(λ, μ)

= max
μ∈PXD

I

⎛

⎝μ,

(
∑

D∈D
λD Du(D),y

)

u∈XD,y∈Y

⎞

⎠,

C01(λ) := max
μ∈PX

J01(λ, μ) = max
μ∈PX

∑

D∈D
λD I (μ, D),

C11(λ) := max
κ∈WD,X

∑

D∈D
λD I (κD,∗, D)

=
∑

D∈D
λD log rank(D),

respectively (Remark 1), where

I (μ, W ) :=
∑

x

μxD
(
Wx,∗�μW

)
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is the mutual information given input distribution μ and
channel W , and the flag f ∈ {10, 01, 11} indicates the
availability of the intrinsic state at the encoder and the decoder.
For example, 10 means that the intrinsic state is available
at the encoder but not at the decoder. For completeness,
we also define the capacity with no encoder and decoder side
information:

C(W ) = C00(λ) := max
μ∈PX

I

(

μ,
∑

D∈D
λD D

)

= max
μ∈PX

I (μ, W ).

Remark 1: Every intrinsic-state distribution λ ∈ PD
identifies a channel W (y | x, s) = sx,y with state distribution
pS(s) = λs , where s ∈ D. So the definitions of C01(λ) and
C11(λ) are easy consequences of [2, eqs. (7.2) and (7.3)],
respectively. The definition of C10(λ) follows from
[2, Th. 7.2 and Remark 7.6]. In this case, we obtain
by the so-called Shannon strategy an equivalent channel

W �(y | u, s) = su(s),y

with state distribution pS(s) = λs , where s ∈ D and the input
u ∈ XD is a map from D to X , which provides an input
strategy for all the cases of s. After averaged with respect to
pS , this channel is finally converted into a channel with no
state:

W ��(y | u) =
∑

s∈D
λssu(s),y.

Reference [2, Th. 7.2] shows that its capacity is exactly the
capacity of the original one with state information causally
available at the encoder. Since it is customary to denote by D
a deterministic channel, we use D instead of s in the definition
of C f (λ) for f ∈ {10, 01, 11}.

Then, given a channel W , we can define its intrinsic-
capacity set by

IC f (W ) := {C f (λ) : λ ∈ dec(W )}.
Furthermore, we define the lower intrinsic capacity and the
upper intrinsic capacity of W for f ∈ {10, 01, 11} by

IC f (W ) := inf IC f (W )

and

IC f (W ) := sup IC f (W ),

respectively. The set IC f (W ) turns out to be a closed interval,
so its infimum and supremum are the minimum and the
maximum, respectively. More facts about dec(W ) and IC f (W )
are given by the next theorem as well as the results in
Appendices A and B.

Theorem 2: The set dec(W ) is a bounded, closed convex
polytope. For each f ∈ {10, 01, 11}, IC f (W ) is a closed
interval and IC f (W ) can be attained at some vertex of dec(W ).
Furthermore, IC11(W ) can also be attained at some vertex of
dec(W ).

Proof: By definition, it is clear that dec(W ) is a bounded,
closed convex polytope, so that IC f (W ) is a closed interval
(Proposition 35). It is also easy to see that C f (λ) attains

its maximum IC f (W ) at some vertex of dec(W ) and that
C11(λ) attains its minimum IC11(W ) at some vertex of dec(W )
(Proposition 35 and [3, Proposition 3.4.1]). �

The definitions of IC f (W ) and IC f (W ) may look somewhat
artificial. The next two remarks explain their significance.

Remark 3: A channel W with any form of state informa-
tion, say S, can be decomposed into the following form:

W =
∑

s∈S
pS(s)W �s .

For every s ∈ S, we choose a distribution λs ∈ dec(W �s).
Note that pS and λs , s ∈ S, induce an intrinsic state S� with
distribution

pS � :=
∑

s∈S
pS(s)λs ∈ dec(W ).

Moreover, S can be represented as a function of
(S�, U) for some random variable U independent of
S� (the functional representation lemma [2, p. 626],
[4, Lemma 1]); therefore, S� is at least as informative as S.
This shows that IC f (W ) is the maximum of the capacities
of W with any form of state information whose availability
at the encoder and the decoder is specified by f .

Remark 4: IC f (W ) is exactly the capacity of the compound
channel (S)pS∈dec(W ) with the availability of S at the encoder
and the decoder specified by f , where S is D-valued and pS

is selected arbitrarily from dec(W ). For example, for f = 10,
it follows from the minimax theorem [5] and Proposition 34
that

IC10(W ) = min
λ∈dec(W )

C10(λ)

= min
λ∈dec(W )

max
μ∈PXD

J10(λ, μ)

= max
μ∈PXD

min
λ∈dec(W )

J10(λ, μ),

which is the capacity of the compound channel (S)pS∈dec(W )

with state information S causally available at the encoder [2,
Ths. 7.1 and 7.2 and Remark 7.6 as well as a remark before
Example 7.2]. Note that the state of this compound channel
is pS , which remains the same throughout the transmission
block, and that once pS is chosen, we are faced with a mem-
oryless channel S with causal state information S available at
the encoder. Other cases of f can be proved similarly using
the minimax theorem, Proposition 34, and [2, eqs. (7.2) and
(7.3)].

The main results of this paper are given as follows. With no
loss of generality, we assume from now on that the channel
W is from [[1, m]] to [[1, n]], where m, n ≥ 2.

Since C11(λ) can be rewritten as

C11(λ) =
m∧n∑

r=1

log r
∑

D∈D:rank(D)=r

λD,

the total probability of all D with the same rank is an important
quantity for analyzing IC11(W ) and IC11(W ). This quantity
also turns out to be important for other kinds of lower and
upper intrinsic capacities (Theorem 10 and Proposition 11).
So let us begin with the “rank probability”.
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Definition 5: The rank probability function �λ(r) induced
by λ ∈ dec(W ) is defined by

�λ(r) := λ{D ∈ D : rank(D) = r} =
∑

D∈D:rank(D)=r

λD .

Definition 6: The lower and the upper rank-r probabilities
of W are defined by

�W (r) := min
λ∈dec(W )

�λ(r) and �W (r) := max
λ∈dec(W )

�λ(r),

respectively.
Note that dec(W ) is compact and the finite summation in

the definition of �λ(r) is continuous with respect to λ, so the
minimum and the maximum operations in the definitions of
�W (r) and �W (r) are justified. In the sequel, we are mainly
interested in the cases r = 1 and r = m ∧ n. Most of our
results will be expressed in terms of these quantities. Bounds
for �W (m ∧ n) will be given in Proposition 20. Exact values
of �W (1) and �W (1) are determined in the next proposition.

Proposition 7:

�W (1) = (g − m + 1)+ ,

�W (1) =
n∑

j=1

α j ,

where

g = max
1≤ j≤n

(1W ) j ,

α =
(

min
1≤i≤m

Wi, j

)

j∈[[1,n]]
.

Theorem 8 (Bounds for IC11(W)):

IC11(W ) ≤
{

(1− �W (1)) log γ, if �W (1) < 1,

0, otherwise,

IC11(W ) ≥ 1− �W (1),

where

γ = (m + wt(a)− a1T) ∧ n, a = ⌊
1W �

⌋
,

W � = W −∑n
j=1 α j U j

1− �W (1)
,

1 denotes the m- or n-dimensional all-one row vectors so that
a = (

⌊∑m
i=1 W �i, j

⌋
)n

j=1, and U j is the deterministic channel
with its j -th column being all one.

If m = 2 or n = 2, then IC11(W ) = 1− �W (1).
Theorem 9 (Bounds for IC11(W)): If �W (1) > 0 or

m = 2 or n = 2, then

IC11(W ) = 1− �W (1);
otherwise,

log γ � ≤ IC11(W ) ≤ log(o − 1)+ �W (o) log
o

o − 1
,

where

γ � = wt(a)+
⎛

⎝m −
∑

j∈supp(a)

b j

⎞

⎠

+
, o = m ∧ n,

a = �1W	, b = �1W�.

TABLE I

THE CASES WHERE IC11(W ) OR IC11(W ) ARE DETERMINED

If m ≤ n and 1W ≤ 1 (i.e.,
∑m

i=1 Wi, j ≤ 1 for all
1 ≤ j ≤ n), then IC11(W ) = log m.

If m ≥ n and 1W ≥ 1 (i.e.,
∑m

i=1 Wi, j ≥ 1 for all
1 ≤ j ≤ n), then IC11(W ) = log n.

The upper bound for IC11(W ) is expressed in terms of
�W (m ∧ n) whose exact value is only known in some special
cases. To have an explicit bound, we need the upper bound
for �W (m ∧ n) given by Proposition 20.

It is clear that the bounds given in Theorems 8 and 9
are not tight in general, and may be very loose in some
special cases. Possible ways to improve these bounds will
be discussed in Remark 23. Table I lists all the cases where
IC11(W ) or IC11(W ) are determined.

Theorem 10 (IC10(W) and IC10(W) for Binary-Output
Channels): If n = 2, then

IC10(W ) = C(W )

and

IC10(W ) = C

((
1 0

�W (1) 1− �W (1)

))

.

Proposition 11 (IC01(W) and IC01(W) for Binary-Input
Channels): If m = 2, then for every λ ∈ dec(W ),
C01(λ) = C11(λ), so that IC01(W ) = 1 − �W (1) and
IC01(W ) = 1− �W (1).

The above results enable us to obtain explicit characteriza-
tions of all lower and upper intrinsic capacities for binary-input
binary-output channels. The relevant expressions are collected
in the following example.

Example 12: Suppose

W =
(

1− �1 �1
�2 1− �2

)

.

From Theorem 8 and Proposition 11, it follows that

IC11(W ) = IC01(W )

= 1− �W (1)

=
{

�1 + �2 − 1, �1 + �2 ≥ 1

1− �1 − �2, �1 + �2 ≤ 1

= |1− �1 − �2|.
Theorem 10 shows that

IC10(W ) = C(W )

(a)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log

(

2
�2h(�1)−(1−�1)h(�2)

1−�1−�2 + 2
�1h(�2)−(1−�2)h(�1)

1−�1−�2

)

,

if �1 + �2 �= 1,

0, otherwise,
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where (a) uses the method in [6, eq. (4.5.11)], and h(�) :=
−� log � − (1 − �) log(1 − �) is the binary entropy function.
Theorem 9 and Proposition 11 give

IC11(W ) = IC01(W )

= 1− �W (1)

=
{

1+ �1 − �2, �1 ≤ �2

1− �1 + �2, �1 ≥ �2

= 1− |�1 − �2|.

Theorem 10 together with the above result gives

IC10(W ) = C

((
1 0

|�1 − �2| 1− |�1 − �2|
))

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, �1 = �2,

log

[

1+ (1− |�1 − �2|)|�1 − �2|
|�1−�2|

1−|�1−�2|
]

,

|�1 − �2| ∈ (0, 1),

0, |�1 − �2| = 1.

If W is a binary symmetric channel with crossover probability
� (i.e., �1 = �2 = �), then

IC11(W ) = IC01(W ) = |1− 2�|,
IC10(W ) = C(W ) = 1− h(�),

IC11(W ) = IC01(W ) = IC10(W ) = 1.

If W is a Z-channel with crossover probability θ (i.e., �1 = 0
and �2 = θ ), then

IC11(W ) = IC01(W ) = IC11(W ) = IC01(W ) = 1− θ,

IC10(W ) = IC10(W ) = C(W )

=

⎧
⎪⎪⎨

⎪⎪⎩

1, θ = 0,

log
(

1+ (1− θ)θ
θ

1−θ

)
, θ ∈ (0, 1),

0, θ = 1.

The case of Z-channel is special, because in this case W admits
a unique convex decomposition into deterministic channels:

θ

(
1 0
1 0

)

+ (1− θ)

(
1 0
0 1

)

.

The lower and the upper intrinsic capacities of these two
special channels are plotted in Figs. 1 and 2.

IV. PROOFS OF MAIN RESULTS

Theorem 2 shows that IC f (W ) for all f ∈ {10, 01, 11} and
IC11(W ) are attained at certain vertices of dec(W ). As such,
it is of great importance to study the structure of dec(W ).
A series of results on the vertices of dec(W ) is provided in
Appendix A. Although these results shed useful light on the
structure of dec(W ), the characterizations are still too coarse
for our purpose. It will be seen that additional insights can be
gained by taking the objective functions into consideration.

Fig. 1. The lower and the upper intrinsic capacities of a binary symmetric
channel with crossover probability �.

Fig. 2. The lower and the upper intrinsic capacities of a Z-channel with
crossover probability θ .

A. IC11(W) and IC11(W)

In this subsection, we will prove Theorems 8 and 9. To this
end, we will establish a characterization of λ that achieves
IC11(W ) or IC11(W ) (Proposition 13) and a generalization of
the Birkhoff-von Neumann theorem (Theorem 19). The exact
values of �W (1) and �W (1) (Proposition 7), upper bounds for
�W (m ∧ n) (Proposition 20), and the relation between �W (1)
and IC11(W ) (Proposition 21) are then investigated. Based on
these results, Theorems 8 and 9 are proved. Various ways to
improve the bounds in Theorems 8 and 9 are discussed in
Remark 23.

We first provide a complete characterization of λ that
achieves IC11(W ) or IC11(W ).

Proposition 13: Let

U+ =
{

supp((α)+) : α ∈ RD,

∑

D∈D
αD D = 0,

∑

D∈D
αD log rank(D) > 0

}
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and

U− =
{

supp((α)−) : α ∈ RD,

∑

D∈D
αD D=0,

∑

D∈D
αD log rank(D) > 0

}

.

For λ ∈ dec(W ), C11(λ) = IC11(W ) iff there is no U ∈ U+
such that U ⊆ supp(λ); C11(λ) = IC11(W ) iff there is no
U ∈ U− such that U ⊆ supp(λ).

Proof: It suffices to prove the first part, because the second
part can be proved in the same vein.

(Sufficiency) If there exists some β ∈ dec(W ) such that
C11(β) < C11(λ), then

∑

D∈D
(λD − βD)D = 0

and
∑

D∈D
(λD − βD) log rank(D) > 0,

so that U = supp((λ − β)+) ∈ U+ and U ⊆ supp(λ),
a contradiction.

(Necessity) For U ∈ U+, if U ⊆ supp(λ), then there
is a vector α ∈ RD such that supp((α)+) ⊆ supp(λ),∑

D αD D = 0, and
∑

D αD log rank(D) > 0. Let β = λ− tα.
For sufficiently small t > 0, it can be verified that β ∈ dec(W )
and C11(β) < C11(λ) = IC11(W ), which is absurd. �

Definition 14: A subset S ⊆ D is said to be IC11-
minimized, or succinctly, IC-minimized (resp., IC-maximized)
if there is a λ ∈ PD such that supp(λ) = S and
C11(λ) = IC11(W ) (resp., C11(λ) = IC11(W )), where
W =∑

D∈D λD D.
The following result is a simple consequence of

Proposition 13.
Proposition 15: If S ⊆ D is IC-minimized (resp.,

IC-maximized), then any λ ∈ PD supported on S achieves
IC11(W ) (resp., IC11(W )), where W = ∑

D∈D λD D. As a
consequence, any nonempty subset of S is also IC-minimized
(resp., IC-maximized).

By Proposition 15, it is important to identify patterns of
sets that are not IC-minimized or IC-maximized. Some simple
patterns that are not IC-minimized or IC-maximized are given
as follows and their proofs are relegated to Appendix C.

Proposition 16: If m ≤ n, then any deterministic perfect
channels P1, …, P
 such that at least one column of
P1 + · · · + P
 has a weight greater than one are not
IC-minimized.

Proposition 17: If m ≥ n, then any deterministic perfect
channels P1, …, P
 such that at least one column of P1 +
· · · + P
 has no entry equal to 
 are not IC-minimized.

Proposition 18: For D ∈ D, if wt(D∗, j ) ≤ m − 2, then
{D, U j } is not IC-maximized.

The next result is a generalization of the Birkhoff-von
Neumann theorem, which plays a crucial role in proving
Theorems 8 and 9. Our proof hinges on an extension of the
ideas in [7] and [8].

Theorem 19: Let a and b be two n-dimensional integer-
valued vectors such that a ≤ b, namely, a j ≤ b j for

1 ≤ j ≤ n. Let

W[a, b] := {W ∈W : a ≤ 1W ≤ b}
and D[a, b] := W[a, b] ∩ D, where 1 denotes the
m-dimensional all-one row vector. If W[a, b] is not empty,
then W[a, b] is convex and the vertices of W[a, b] are exactly
the matrices in D[a, b].

When m = n and a = b = 1, Theorem 19 reduces to the
classical Birkhoff-von Neumann theorem for doubly stochastic
matrices.

Proof: It is clear that W[a, b], if nonempty, is a convex
set. We will show that any matrix W ∈ W[a, b] with non-
integer entries cannot be a vertex of W[a, b]. There are two
cases:

Case (a): There is a non-integer entry in a non-boundary
column.

Case (b): All non-integer entries are in the boundary
columns.
Here, a column is called a boundary column if its sum is either
a j or b j , where j is the index of the column.

In either case, we can pick a non-integer entry, say the
(i0, j0) entry, which in Case (a) must be a non-integer entry in
a non-boundary column. By the following argument, we will
find a chain or loop of non-integer entries of the matrix, which
will be used to prove that the matrix is not extremal.

Because the (i0, j0) entry is not an integer, there exists
at least another entry in the same row that is also not an
integer, say the (i0, j1) entry. If the j1-th column is not on the
boundary, then we are done. If however the j1-th column is
on the boundary, then there exists at least another non-integer
entry in the same column, say (i1, j1). In general, after t steps,
we have visited t + 1 columns, with the chain

(i0, j0), (i0, j1), (i1, j1), . . . , (it−1, jt), (it , jt ).

Except for the j0-th column, every column has exactly one
inbound entry (is−1, js) and one outbound entry (is, js), where
1 ≤ s ≤ t . Now in the (t + 1)-th step, by the same argument,
we find the (it , jt+1) entry in the jt+1-th column. If this
column has already been visited, then jt+1 = js for some
0 ≤ s ≤ t − 1 and we are done. If this column is new but not
on the boundary, we are also done. If however this new column
is on the boundary, then we can further find an outbound entry
in this column, say (it+1, jt+1), and proceed to the (t + 2)-th
step. Because there are finite columns, we will always end up
with a chain

(i0, j0), (i0, j1), (i1, j1), . . . , (ik−1, jk−1), (ik−1, jk)

which only happens in Case (a), or a loop

(i
, j
), (i
, j
+1), (i
+1, j
+1), . . . , (ik−1, jk),

(ik, jk) = (i
, j
)

for some 0 ≤ 
 < k − 1.
Then we can construct a matrix N by setting all outbound

entries (in the chain or the loop) Nis , js = 1, all inbound entries
Nis−1 , js = −1, and all other entries to be zero. It is clear that

1N = e j0 − e jk , N1T = 0
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in the former case and

1N = 0, N1T = 0

in the latter case, where ek = (1{ j = k}) j∈[[1,n]].
Let U = W + �N and V = W − �N . It is clear that

U, V ∈ W[a, b] for sufficiently small � > 0. It is also clear
that W = 1

2 U + 1
2 V and U �= V , that is, W is not a vertex

of W[a, b].
Therefore, we have V ⊆ D[a, b], where V denotes the

set of all vertices of W[a, b]. It remains to show that
D[a, b] ⊆ V . For any W ∈ D[a, b], if W = αU + (1 − α)V
with U, V ∈ W[a, b] and α ∈ (0, 1), then for every
1 ≤ i ≤ m,

ei W = αei U + (1− α)ei V ,

which however implies that ei U = ei V for every
1 ≤ i ≤ m, or U = V . �

Equipped with Theorem 19, we proceed to study the lower
and the upper rank probabilities (see Definitions 5 and 6).

Proof of Proposition 7: By Theorem 19, W can be
expressed as a convex combination of deterministic channels
of rank ≥ 2 if g ≤ m − 1, in which case, �W (1) = 0.
Otherwise, let 
 be the index of the column with the sum
g > m − 1. Consider the convex combination

W = tU
 + (1− t)W �.

It is clear that W � cannot be a convex combination of determin-
istic channels of rank ≥ 2 unless the sum of its 
-th column
is ≤ m − 1. To this end, we set t = g − m + 1, which is the
minimum value required, and we have

(1W �)
 = (1W )
 − tm

1− t
= m − 1

and

(1W �) j = (1W ) j

1− t
≤ 1

for j �= 
, so that �W (1) = g − m + 1.
If W has the following convex decomposition

W =
⎛

⎝1−
n∑

j=1

s j

⎞

⎠W � +
n∑

j=1

s j U j ,

then W � is a valid stochastic matrix iff s j ≤ α j for all j .
Therefore, �W (1) =∑n

j=1 α j . �
Proposition 20: If m ≤ n, then

�W (m) ≤ 1− β,

where

β = 0 ∨ max
1≤ j≤n

β �j (1)

and

β �j =
{

(1W ) j−1
wt(W∗, j )−1 , if wt(W∗, j ) > 1,

0, otherwise.

Furthermore, if β = 0, then �W (m) = 1.

If m ≥ n, then

�W (n) ≤ h,

where

h = 1 ∧ min
1≤ j≤n

(1W ) j . (2)

If h = 1, then �W (n) = 1.
Proof: If m ≤ n, then the sum of every column of a

deterministic channel of rank m is at most 1, and for every 1 ≤
j ≤ n, W admits a convex decomposition into deterministic
channels with the j -th column sum at most wt(W∗, j ). Thus
for every λ ∈ dec(W ) and every j ,

(1W ) j ≤ (1 ∧wt(W∗, j )) �λ(m)+ wt(W∗, j )(1− �λ(m))

= wt(W∗, j )− (wt(W∗, j )− 1)+ �λ(m),

so that

�λ(m) ≤ 1− (1W ) j − 1

wt(W∗, j )− 1

for wt(W∗, j ) > 1 and hence �W (m) ≤ 1−β. If β = 0, which
implies that (1W ) j ≤ 1 for all 1 ≤ j ≤ n, then �W (m) = 1
(Theorem 19).

If m ≥ n, then the sum of every column of a deterministic
channel of rank n is at least 1, so that, for every λ ∈ dec(W )
and every 1 ≤ j ≤ n,

(1W ) j ≥ �λ(n),

and hence �W (n) ≤ h. If h = 1, which implies (1W ) j ≥ 1
for all 1 ≤ j ≤ n, then �W (n) = 1 (Theorem 19). �

The next result establishes the relation between
�W (1) and IC11(W ).

Proposition 21: If λ ∈ dec(W ) achieves IC11(W ), then
�λ(1) = �W (1). In particular, if �W (1) > 0, then
λU
 = �W (1) and �λ(2) = 1 − �W (1), where

 = arg max1≤ j≤n(1W ) j .

Proof: If λ is zero on all deterministic useless channels,
then �λ(1) = �W (1) = 0.

If λU j > 0 for some j , then λ must be zero on
all deterministic channels whose j -th column weight is
less than m − 1 (Propositions 15 and 18). Therefore,
we must have λU j = �λ(1) = �W (1) (Proposition 7) and
�λ(2) = 1− �W (1). �

Is there a similar relation between �W (1) and IC11(W )?
The following example shows that the λ attaining IC11(W )
does not necessarily satisfy �λ(1) = �W (1).

Example 22: Let

W =

⎛

⎜
⎜
⎜
⎝

1 0 0 0
1
3 0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0

⎞

⎟
⎟
⎟
⎠

.

If we decompose W as follows:

W = 1

3

⎛

⎜
⎜
⎝

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠+

2

3

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 1
2

1
2

0 1
2 0 1

2

0 1
2

1
2 0

⎞

⎟
⎟
⎟
⎟
⎠

,
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then the second channel does not have a composition con-
taining deterministic channels of rank less than 3, so that
the associated intrinsic capacity is greater than or equal to
2 log 3/3 ≈ 1.057. On the other hand, it can be shown via
linear programing that IC11(W ) = 1 with the decomposition

W = 1

3

⎛

⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0

⎞

⎟
⎟
⎠+

1

3

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
1 0 0 0
0 0 1 0

⎞

⎟
⎟
⎠

+ 1

3

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠.

In this case, the optimal λ satisfies �λ(1) = �λ(3) =
�λ(4) = 0 and �λ(2) = 1.

We are now ready to prove Theorems 8 and 9.
Proof of Theorem 8: To establish a good upper bound for

IC11(W ), we need to find an “unfavorable” convex decom-
position of W . To this end, we can first extract from W a
collection of useless channels with the total probability �W (1)
(Proposition 7), that is,

W =
n∑

j=1

α j U j + (1− �W (1))W �.

If �W (1) = 1, then IC11(W ) = 0; otherwise,

IC11(W ) ≤ (1− �W (1)) IC11(W �).
It is clear that W � ∈ W[a, m], where m denotes the all-m

row vector. The best deterministic channels in W[a, m] are
those with the number of nonzero columns maximized. The
rank of those matrices is

γ =
⎛

⎝wt(a)+ m −
n∑

j=1

a j

⎞

⎠ ∧ n,

so IC11(W �) ≤ log γ (Theorem 19).
Let λ be a vertex of dec(W ) that attains IC11(W ). Then

IC11(W ) =
∑

D∈D
λD log rank(D)

≥ 1− �λ(1) ≥ 1− �W (1).

Finally, the special case of m = 2 or n = 2 can be easily
verified. �

Proof of Theorem 9: Let λ be a vertex of dec(W ) that
attains IC11(W ).

If �W (1) > 0 or m = 2 or n = 2, then �λ(r) = 0 for
all r > 2 (Proposition 21), so that IC11(W ) = 1 − �W (1)
(Proposition 7). The remaining case is then �W (1) = 0.

To establish a good lower bound for IC11(W ), we need
to find a “favorable” convex decomposition of W . It is
clear that W ∈ W[a, b], so IC11(W ) is bounded below by
the capacity of the worst deterministic channels in W[a, b]
(Theorem 19), which are obviously those with the number of
nonzero columns minimized. The rank of those matrices is

γ � = wt(a)+
⎛

⎝m −
∑

j∈supp(a)

b j

⎞

⎠

+
,

so IC11(W ) ≥ log γ �.
On the other hand,

IC11(W ) =
∑

D∈D
λD log rank(D)

≤ (1− �λ(o)) log(o− 1)+ �λ(o) log o

= log(o − 1)+ �λ(o) log
o

o − 1

≤ log(o − 1)+ �W (o) log
o

o − 1
,

where o = m ∧ n. The remaining part of the proof is
straightforward. �

Remark 23: The bounds given by Theorems 8 and 9 can be
improved in various ways. In Theorem 8, if γ = m ∧ n, then
the upper bound for �W (m∧n) in Proposition 20 can be used
to improve the upper bound for IC11(W ); if γ = m = n, the
upper bound for IC11(W ) can be improved by Proposition 16
(see Example 43). The lower bound for IC11(W ) can also be
improved to (1− �W (1))∨C(W ) because C(W ) ≤ IC11(W ).
However, all these improvements are somewhat ad hoc. The
fundamental problem to be solved is how we can choose λ in
order to approach or achieve the lower or the upper intrinsic
capacities. Example 22 shows that naive greedy strategies do
not work for this problem in general.

B. IC10(W) and IC10(W)

Although it is difficult to compute IC10(W ) and IC10(W )
in general, their exact values can be determined in the binary-
output case, as is shown by Theorem 10. In this subsection,
we will prove Theorem 10. Moreover, we will study the so-
called “universally useless (causal) state information” phenom-
enon and the identity IC10(W ) = C(W ) in Theorem 10 turns
out to be a special case of this phenomenon (Theorem 24,
Definition 26, and Theorem 27). The proofs of Theorems 10
and 24 rely heavily on the sufficient and necessary condition
of a capacity-achieving input probability distribution as well
as the corresponding geometric interpretation. Readers not
familiar with this result are referred to [6, Th. 4.5.1] and
Appendix D.

Proof of Theorem 10: Since n = 2, we only need to choose
two maps from all the m|D| = m2m

maps of D into [[1, m]] for
constructing the capacity-achieving distributions. We denote
these two maps by u and v. The optimal strategy for choosing
u, v is to maximize W �u,1 and minimize W �v,1, where W �u,y =∑

D∈D λD Du(D),y. There are only two classes of deterministic
channels in D, rank 1 and rank 2. For D of rank 1, it does not
matter how to choose the values of u(D) and v(D). For D of
rank 2, however, we choose u(D) = i1 such that Di1,1 = 1
and choose v(D) = i2 such that Di2,1 = 0. Then we have

W �u,∗ = (1− λU2, λU2)

and

W �v,∗ = (λU1 , 1− λU1).

By Proposition 7, the maximum of �λ(1) = λU1 + λU2 is
α1 + α2 with each α j being the maximum of feasible values
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of λU j , so that

IC10(W ) = C

((
1− α2 α2

α1 1− α1

))

.

Observing that these two rows are exactly those of W ,
we further have IC10(W ) = C(W ). Again by Proposition 7,
the minimum �W (1) of �λ(1) is (g −m + 1)+. With no loss
of generality, we suppose g = (1W )1. Then the minima of
feasible values of λU1 and λU2 are (g − m + 1)+ and 0,
respectively, so that

IC10(W ) = C

((
1 0

�W (1) 1− �W (1)

))

. �

The fact that IC10(W ) = C(W ) for binary-output channels
is quite intriguing (although it is not true in general when
the output is non-binary (Example 46)). It implies that every
binary-output channel can be simulated in a certain way that
the capacity cannot be increased even when the encoder has
causal access to the source of randomness, i.e., the intrinsic
state. The following result shows that, in fact for a fairly broad
class of channels, the causal state information at the encoder
is useless as far as the capacity is concerned.

Theorem 24: Let W = W �W ��, where W � is a channel with
binary output and W �� is a channel with binary input and
W ��1,∗ �= W ��2,∗. Suppose

W � =
∑

s∈S
pS(s)K (s),

where S denotes the channel state and pS is its distribution.
The capacity of W cannot be increased by the causal state
information S at the encoder iff all K (s) with pS(s) > 0 are
(i1, i2)-ended for some fixed i1 and i2, where a binary output
channel K is said to be (i1, i2)-ended if Ki1,1 = mini Ki,1
and Ki2,1 = maxi Ki,1. In other words, all row vectors of
K are contained in the line segment from endpoint Ki1,∗ to
endpoint Ki2,∗.

Proof: (Sufficiency) By [2, Th. 7.2 and Remark 7.6],
we consider the channel V : [[1, m]]S → [[1, n]] given by
V = V �W �� and

V �u,∗ =
∑

s∈S
pS(s)K (s)

u(s),∗.

Because every channel K (s) is (i1, i2)-ended, it is easy to show
that V � is also (i1, i2)-ended, where i1 and i2 are regarded as
two constant maps from S to [[1, m]]. Then every row vector
of V is contained in the line segment between V �i1,∗W �� and
V �i2,∗W ��, which implies that V has a capacity-achieving input
probability distribution supported on {i1, i2} (Proposition 44),
and consequently the capacity of W cannot be increased by
the causal state information at the encoder.

(Necessity) If the capacity of W cannot be increased by
its causal state information at the encoder, then a capacity-
achieving input probability distribution of V must have a
support, say {i1, i2}, so that for every map u : S → [[1, m]],
the vector

Vu,∗ = V �u,∗W �� =
(
∑

s∈S
pS(s)K (s)

u(s),∗

)

W ��

Fig. 3. A generalized channel model.

is contained in the line segment between Vi1,∗ and Vi2,∗
(Proposition 45), where i1 and i2 are understood as two
constant maps from S to [[1, m]]. With no loss of gener-
ality, we assume V �i1,1 ≤ V �i2,1. For any t ∈ S and any
i0 ∈ [[1, m]], we can take u(t) = i0 and u(s) = i1 for
s �= t , then we get V �u,1 ≥ V �i1,1, so that K (t)

i0,1 ≥ K (t)
i1,1.

Similarly, we have K (t)
i0,1 ≤ K (t)

i2,1. Therefore, every K (s) is
(i1, i2)-ended. �

It can be shown via a perturbation and continuity argu-
ment that the uselessness of the causal state information
at the encoder is not restricted to the channels covered by
Theorem 24. However, we have not been able to identify
a simple explicit condition under which the sufficiency part
of Theorem 24 can be extended. For example, consider
a seemingly natural condition postulated by the following
conjecture.

Conjecture 25: Let W be a channel from [[1, 2]] to [[1, n]].
Suppose

W =
∑

s∈S
pS(s)K (s),

where S denotes the state of channel. If for every 1 ≤ j ≤ n,
K (s)

1, j and K (s)
2, j have an order (either ≤ or ≥) independent of s,

then the capacity of W cannot be increased by the causal state
information available at the encoder.

This conjecture is obviously true for n = 2. Numerical
results indicate that it also holds in many cases when n > 2.
However it turns out to be false in general as shown by
Example 47.

Theorem 24 imposes no restriction on the distribution of the
channel state. This universal property motivates us to introduce
the following definition.

Definition 26: The state information S of a channel
W (y | x, s) is said to be universally useless at the encoder
if for any pS , the capacity of W with S causally available
at the encoder is equal to the capacity of W �(y | x) :=∑

s pS(s)W (y | x, s).
This definition is not void in view of Theorem 24 (in

fact, according to our numerical results, many channels not
covered by Theorem 24 also satisfy this definition). Now
consider the channel model shown in Fig. 3, where the
channel state S is distributed according to pS , and (noisy) state
observations SE and SD generated by S through pSE,SD|S are
causally available at the encoder and the decoder, respectively.
Let C(W, SE, SD, pS) denote the capacity of this channel
model.
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Fig. 4. Illustration of W and pS given by (3) and (4), respectively.

It is instructive to study the following example (see also
Fig. 4) where

W (y | x, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 , (x, y, s) = (0, 0, 0), (0, 1, 0), (1, 0, 1)

or (1, 1, 1),

0, (x, y, s) = (1, 0, 0) or (0, 1, 1),

1, (x, y, s) = (1, 1, 0) or (0, 0, 1),

(3)

pS(0) = pS(1) = 1

2
. (4)

The matrix form of the channel W with state S is

W (0) =
( 1

2
1
2

0 1

)

and W (1) =
(

1 0
1
2

1
2

)

.

It is clear that both W (0) and W (1) are (1, 0)-ended (supposing
the row indices are input symbols 0 and 1), so the state
information S of W is universally useless at the encoder
(Theorem 24 and Definition 26). For this example, we assume
that pSE|S is a binary symmetric channel with crossover
probability p ∈ [0, 1

2 ], and pSD|S is a binary symmetric
channel with crossover probability q = 0.25; furthermore,
we assume that pSE|S is physically degraded with respect
to pSD|S when p ≥ q = 0.25, and the other way around
when p ≤ q = 0.25. To gain a better understanding, we plot
C(W, SE, SD, pS) against p for p ∈ [0, 1

2 ] in Fig. 5. It turns
out that, somewhat counterintuitively, C(W, SE, SD, pS) is
maximized when the encoder side information coincides with
the decoder side information (i.e., p = 0.25) rather than when
the encoder has access to the perfect state information S (i.e.,
p = 0). As shown by the following theorem, this is in fact a
general phenomenon for any channel whose state information
is universally useless at the encoder.

Theorem 27: If the state information of W is universally
useless at the encoder, then C(W, SE, SD, pS) is maximized
when SE = SD almost surely (assuming pS,SD is fixed but
pSE|S,SD can be arbitrary).

Proof: It is clear that among all possible forms of encoder
side information SE, C(W, SE, SD, pS) is maximized when
SE = (S, SD) (since any other form of SE can be viewed
as its degenerate version), i.e.,

C(W, SE, SD, pS) ≤ C(W, (S, SD), SD, pS).

Fig. 5. Plot of C(W, SE, SD, pS) against p for p ∈ [0, 0.5], where W and
pS are given by (3) and (4), respectively.

Note that

C(W, (S, SD), SD, pS) =
∑

sD

pSD(sD) C(W, S,∅, pS|SD=sD)

(a)=
∑

sD

pSD(sD) C(W,∅,∅, pS|SD=sD)

= C(W, SD, SD, pS),

where (a) follows from the universal-uselessness property of
the state information of W , and the constant ∅ means no
information. This completes the proof. �

Roughly speaking, Theorem 27 implies that, for the class
of channels satisfying Definition 26, what the encoder really
needs to know is not the state information, but the decoder’s
knowledge of the state information; in other words, for
such channels, it is important to maintain consensus between
the encoder and the decoder. It is also worth noting that
Theorem 27 reduces to Definition 26 when there is no decoder
side information.

Another surprising phenomenon revealed by Fig. 5 is that,
as p moves away from 0.25, the capacity not only decreases
but actually drops to the value corresponding to the no encoder
side information case once p passes certain thresholds. Again,
such a phenomenon is not confined to that specific example.
An investigation of this phenomenon in the context where the
encoder side information is a degenerate version of the decoder
side information can be found in [9].

Similar to Theorem 10, we can also determine the exact
values of IC01(W ) and IC01(W ) when the input is binary.
In this case, we have C01(λ) = C11(λ) for all λ ∈ dec(W ),
so that IC01(W ) = IC11(W ) and IC01(W ) = IC11(W ) (see
Proposition 11 and Appendix F). The general case of IC01(W )
and IC01(W ) is however quite difficult. Currently, we only
know that IC01(W ) = IC11(W ) does not hold in general
(Proposition 48).

V. CONCLUSION

We have studied the lower and the upper intrinsic capacities
of a channel W , denoted by IC f (W ) and IC f (W ), for three
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different scenarios ( f = 10, 01, 11) in terms of the availability
of the causal state information at the encoder and/or the
decoder. Their values are determined in almost all cases when
the input or the output are binary, with only two exceptions
(which are the binary-input nonbinary-output channels for
f = 10 and the nonbinary-input binary-output channels for
f = 01). A deeper understanding of the relevant optimization
problems (especially the structure of dec(W )) is needed for
further progress.

The lower and the upper intrinsic capacities are inherent
properties of a channel with clear operational meanings.
In particular, they characterize the potential capacity gains
that can be achieved with a direct access to the generator of
channel randomness by the encoder and/or the decoder. More
generally, the notion of intrinsic capacity provides a useful
perspective for studying the values of encoder and decoder side
information. For example, our analysis of IC10(W ) reveals that
for a broad class of channels, the capacity is not necessarily
maximized when the encoder has access to the perfect state
information. We believe that this surprising finding is just the
tip of the iceberg, and this line of research can be fruitfully
pursued to uncover many previously unknown phenomena.

APPENDIX A
THE STRUCTURE OF dec(W )

In light of Theorem 2, we proceed to study the structure of
dec(W ) with a focus on its vertices. Our approach is analogous
to [7].

Proposition 28: Let

S =
{

supp(α) : α ∈ RD,
∑

D∈D
αD D = 0

}

or
{

supp(α) : α ∈ RD, α I = 0
}
,

where

I := (ID,(i, j ))D∈D,(i, j )∈[[1,m]]×[[1,n]]
= (Di, j )D∈D,(i, j )∈[[1,m]]×[[1,n]] (5)

is called the incidence matrix. A probability distribution
λ ∈ dec(W ) is a vertex iff for S ∈ S, S ⊆ supp(λ) implies
S = ∅, or in other words, iff rank(IS,∗) = |S|.

Proof: Note that for every i ∈ [[1, m]],
∑

D∈D
αD =

n∑

j=1

∑

D∈D
αD Di, j . (6)

(Sufficiency) If λ = tβ + (1− t)γ for some β, γ ∈ dec(W )
and some 0 < t < 1, then β − γ = (λ− γ )/t and supp(γ ) ⊆
supp(λ), so that supp(β−γ ) ∈ S and supp(β−γ ) ⊆ supp(λ),
hence supp(β − γ ) = ∅, and therefore λ = β = γ is a vertex.

(Necessity) For every nonempty S ∈ S, there is a vector
α ∈ RD such that supp(α) = S and

∑
D αD D = 0. Let

β = λ+ tα and γ = λ− tα with t �= 0, so that λ = (β+γ )/2
with β �= γ . Since λ is a vertex, β and γ must not be elements
of dec(W ) for all t �= 0, or equivalently, S �⊆ supp(λ). �

Below are several easy consequences of Proposition 28.

Proposition 29: Let

T = {supp(α) : α ∈ dec(W )}.
A probability distribution λ ∈ dec(W ) is a vertex iff supp(λ)
is minimal in T, where a minimal pattern in T is a set T ⊆ D
such that T = supp(α) for some α ∈ dec(W ) and for every
β ∈ dec(W ), supp(β) ⊆ T implies β = α.

Proposition 30: If λ ∈ dec(W ) is a vertex, then

wt(λ) ≤ wt(W )− m + 1.

Sketch of Proof: Because of (6), the equations α I = 0
have at most m(n − 1) + 1 linearly independent equations.
This number can be further reduced to wt(W ) − m + 1 by
utilizing the information of W , because all the variables αD

with Di, j = 1 must be zero if
∑

D∈D λD Di, j = Wi, j = 0.
The remaining part of the proof is then straightforward. �

Proposition 30 provides an upper bound for the support
size of a vertex in dec(W ). On the other hand, the following
result provides a lower bound for the support size of points in
dec(W ), including all the vertices of dec(W ).

Proposition 31: For any λ ∈ dec(W ),

wt(λ) ≥ ⌈
log2 s

⌉ ∨wt(W1,∗) ∨ · · · ∨ wt(Wm,∗),

where s = ∣
∣{Wi, j }i∈[[1,m]], j∈[[1,n]]

∣
∣.

Proof: By the definition of dec(W ), we have

Wi, j =
∑

D∈D
λD Di, j .

Since Di, j is either 0 or 1, the right-hand side can yield at
most 2wt(λ) different values, so that

2wt(λ) ≥ s = ∣
∣{Wi, j }i∈[[1,m]], j∈[[1,n]]

∣
∣

or wt(λ) ≥ ⌈
log2 s

⌉
.

On the other hand, every equation
∑

D∈D
λD Di, j = Wi, j > 0

must have at least one positive λD for some

D ∈ Di, j =
{

D ∈ D : Di, j = 1
}
.

Since for every i , the sets Di,1, Di,2, …, Di,n are mutually
disjoint, we conclude that wt(λ) ≥ wt(Wi,∗). �

Algorithm 32: Let f be an arbitrary one-to-one map
of [[1, nm]] onto D. the following algorithm with W and f
as arguments can yield a vertex of dec(W ).

function VERTEX(W, f )
λ← 0, K ← W , i ← 1
while K �= 0 and 1 ≤ i ≤ nm do

D← f (i)
λD ← min1≤r≤m Kr,D(r)
K ← K − λD D
i ← i + 1

end while
return λ

end function
Sketch of Proof: Let λ be the vertex output by the algorithm.

Let S = supp(λ). Then by checking Algorithm 32, it is easy
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to verify that for every D ∈ S, there exists an i ∈ [[1, m]] such
that ID,(i,D(i)) = 1 and ID�,(i,D(i)) = 0 for all D� ∈ S with
f −1(D�) > f −1(D), so that rank(IS,∗) = |S|. �

Remark 33: We can replace the map f in Algorithm 32
with some one-to-one map f � : [[1, 
]] → D, where
1 ≤ 
 < nm . Then we have a modified algorithm returning a
pair (λ�, K ) such that

W = K +
∑

D∈D
λ�D D.

Suppose the nontrivial case K �= 0, so that
α = ∑

D∈D λ�D < 1. Let W � = K/(1 − α). If we have
another algorithm to find a vertex of dec(W �), say λ��, then
it is easy to show that λ = λ� + (1 − α)λ�� is a vertex of
dec(W ).

APPENDIX B
PROPERTIES OF J f AND C f

This section provides some basic results on the analytic
properties of J f and C f defined in Section III. For any
p, p� ∈ PA,

d(p, p�) := 1

2

∥
∥p − p�

∥
∥

1 =
1

2

∑

a∈A

|pa − p�a|

is called the statistical distance on PA. Given the product
space (A, dA)× (B, dB), we define its product metric by

d∨((p, q), (p�, q �)) := dA(p, p�) ∨ dB(q, q �),

which induces the usual product topology. Thus for any
channels W, W � ∈WA,B , we have the channel distance

d(W, W �) := d∨((Wa,∗)a∈A, (W �a,∗)a∈A)

= max
a∈A

d(Wa,∗, W �a,∗).

Proposition 34: (a) J10(λ, μ) is uniformly continuous, and
it is convex in λ for fixed μ and is concave in μ for fixed λ.

(b) J01(λ, μ) is uniformly continuous, and it is linear in λ
for fixed μ and is concave in μ for fixed λ.

Proof: (a) The function J10(λ, μ) can be rewritten as
I (μ, g(λ)) where

g(λ) = ((λV (u))y)u∈XD,y∈Y

with V (u) = (Du(D),y)D∈D,y∈Y. By Proposition 37, for
λ, λ� ∈ PD,

d(g(λ), g(λ�)) = max
u∈XD

d(λV (u), λ�V (u)) ≤ d(λ, λ�),

so that g is uniformly continuous, and hence J10(λ, μ) is
uniformly continuous (Proposition 39). It is also clear that g is
linear, so that J10(λ, μ) is convex for fixed μ and is concave
for fixed λ ( [10, Th. 2.7.4]).

(b) The function J01(λ, μ) can be written as λ(g(μ))T

where g(μ) = (I (μ, D))D∈D . By Propositions 36 and 37,
I (μ, D) is uniformly continuous on PX and is bounded by

log(|X |∧|Y|). Then for λ, λ� ∈ PD and μ,μ� ∈ PX , we have

|λ(g(μ))T − λ�(g(μ�))T|
= |λ(g(μ))T − λ�(g(μ))T + λ�(g(μ))T − λ�(g(μ�))T|
≤ |λ(g(μ))T − λ�(g(μ))T| + |λ�(g(μ))T − λ�(g(μ�))T|
≤ |λ− λ�|(g(μ))T + λ�|g(μ)− g(μ�)|T
≤ log(|X | ∧ |Y|) ∥∥λ− λ�

∥
∥

1 +
∥
∥g(μ)− g(μ�)

∥
∥

1 ,

which implies that J01 is uniformly continuous. The remaining
part is straightforward ([10, Th. 2.7.4]). �

Proposition 35: For f ∈ {10, 01, 11}, C f (λ) is uniformly
continuous and convex (and in fact linear for f = 11).

Sketch of Proof: Use Theorem 34 and Proposition 40 for
f = 10 or 01. The case of f = 11 is trivial because C11(λ)
is a linear function of λ. �

Proposition 36 [11, Th. 2]: For μ,μ� ∈ PA and
W, W � ∈WA,B ,

∣
∣I (μ, W ) − I (μ�, W �)

∣
∣ ≤ 3δ log(|A||B| − 1)+ 3h(δ),

where δ = d(diag(μ)W, diag(μ�)W �).
Proposition 37 (cf. [12, Lemma 3]): For μ,μ� ∈ PA and

W ∈WA,B ,

d(diag(μ)W, diag(μ�)W ) = d(μ,μ�)

and

d(μW, μ�W ) ≤ d(μ,μ�).

Proposition 38 (cf. [12, Lemma 3]): For μ,μ� ∈ PA and
W, W � ∈WA,B ,

d(diag(μ)W, diag(μ�)W �) ≤ d(μ,μ�)+ d(W, W �)
≤ 2 d∨((μ, W ), (μ�, W �)),

so that I (μ, W ) is uniformly continuous on (PA×WA,B , d∨).
Sketch of Proof: Use the triangle inequality and Proposi-

tions 36, 37 and 41. �
Proposition 39: Let g be a map from PC to WA,B . If g is

uniformly continuous, then I (μ, g(λ)) is uniformly continuous
on (PA × PC , d∨), where μ ∈ PA and λ ∈ PC .

Sketch of Proof: Use Propsoitions 36 and 38 and the
observation that I (μ, g(λ)) is a composition of uniformly
continuous mappings. �

Proposition 40: If g : A× B → R is uniformly continuous
on (A × B, d∨), then f (x) := supb∈B g(x, b) is uniformly
continuous.

Proof: Since g is uniformly continuous, for any � > 0,
there is a δ > 0 such that for any a, a� ∈ A and any
b ∈ B , d∨((a, b), (a�, b)) < δ implies |g(a, b)−g(a�, b)| < �.
In other words, for any b ∈ B , dA(a, a�) < δ implies
|g(a, b)− g(a�, b)| < �. Then

sup
b∈B

g(a, b)− sup
b∈B

g(a�, b) ≤ sup
b∈B

(g(a, b)− g(a�, b)) < �

and similarly, supb∈B g(a�, b) − supb∈B g(a, b) < �, so that
f (x) is uniformly continuous. �

Proposition 41: For μ ∈ PA and W, W � ∈WA,B ,

d(diag(μ)W, diag(μ)W �) ≤ d(W, W �).
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Proof:

d(diag(μ)W, diag(μ)W �)

= 1

2

∑

a,b

|μa Wa,b − μaW �a,b|

= 1

2

∑

a

μa

∑

b

|Wa,b −W �a,b|

=
∑

a

μa d(Wa,∗, W �a,∗) ≤ d(W, W �). �

APPENDIX C
PROOFS AND EXAMPLES OF SECTION IV-A

Proof of Proposition 16: Let W = (P1 + · · · + P
)/
 and
j be the column such that wt(W∗, j ) > 1. It is clear that
W = x D + (1− x)W � for some x ∈ (0, 1) and some D ∈ D
such that wt(D∗, j ) > 1, so that IC11(W ) < log m, and hence
P1, …, P
 are not IC-minimized. �

Proof of Proposition 17: Let W = (P1+ · · · + P
)/
 and j
be the column of which all entries are less than 1. It is clear
that W = x D + (1 − x)W � for some x ∈ (0, 1) and some
D ∈ D such that wt(D∗, j ) = 0, so that IC11(W ) < log n, and
hence P1, …, P
 are not IC-minimized. �

Proof of Proposition 18: With no loss of generality,
we assume that Dm, j = 0. It is then clear that

1

2
D + 1

2
U j = 1

2
D� + 1

2
D��,

where

D�(i) =
{

j, if i = m,

D(i), otherwise,

and

D��(i) =
{

D(m), if i = m,

j, otherwise.

It is clear that rank(D�) ≥ (rank(D)−1)∨2 and rank(D��) = 2,
so that

1

2
log rank(D)+ 1

2
log rank(U j ) <

1

2
log rank(D�)

+ 1

2
log rank(D��),

and therefore {D, U j } is not IC-maximized. �
Example 42: If

W =

⎛

⎜
⎜
⎜
⎝

1/n 1/n · · · 1/n
1/n 1/n · · · 1/n
...

...
. . .

...
1/n 1/n · · · 1/n

⎞

⎟
⎟
⎟
⎠

,

which is the probability transition matrix seen in the well-
known random binning scheme, then IC11(W ) = 0 and
IC11(W ) = log(m ∧ n) (Theorems 8 and 9).

Example 43:

W =
⎛

⎝
0.3 0.3 0.4
0.2 0.5 0.3
0.4 0.1 0.5

⎞

⎠

It can be computed using linear programming that
IC11(W ) = 0.4 and IC11(W ) = 0.2 + 0.8 log 3 ≈ 1.4680.
The decompositions of W for IC11(W ) and IC11(W ) are

W = 0.2

⎛

⎝
1 0 0
1 0 0
1 0 0

⎞

⎠+ 0.1

⎛

⎝
0 1 0
0 1 0
0 1 0

⎞

⎠

+ 0.3

⎛

⎝
0 0 1
0 0 1
0 0 1

⎞

⎠+ 0.1

⎛

⎝
1 0 0
0 1 0
1 0 0

⎞

⎠

+ 0.1

⎛

⎝
0 1 0
0 1 0
1 0 0

⎞

⎠+ 0.1

⎛

⎝
0 1 0
0 1 0
0 0 1

⎞

⎠

+ 0.1

⎛

⎝
0 0 1
0 1 0
0 0 1

⎞

⎠

and

W = 0.1

⎛

⎝
0 0 1
1 0 0
0 0 1

⎞

⎠+ 0.1

⎛

⎝
0 0 1
0 1 0
0 0 1

⎞

⎠

+ 0.1

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠+ 0.3

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠

+ 0.1

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠+ 0.3

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠,

respectively. Using Theorems 8 and 9 and Proposition 20,
we have

0.4 ≤ IC11(W ) ≤ 0.4 log 3 ≈ 0.6340

and

1 ≤ IC11(W ) ≤ 1+ �W (3) log
3

2
≤ 1+ 0.9 log

3

2
≈ 1.5265.

From Proposition 16, it follows that the optimal decomposition
λ� for IC11(W �) can have at most one perfect channel, so that
�λ�(3) ≤ 0.25, where

W � =
⎛

⎝
0.25 0.5 0.25

0 1 0
0.5 0 0.5

⎞

⎠

is computed by the formula in Theorem 8. Then we
have an improved bound: IC11(W ) ≤ 0.4 IC11(W �) =
0.3+ 0.1 log 3 ≈ 0.4585.

APPENDIX D
CAPACITY-ACHIEVING INPUT

PROBABILITY DISTRIBUTIONS

Let W be a channel in WX ,Y . According to [6, Th. 4.5.1],
an input probability distribution μ maximizes the mutual
information I (μ, W ) iff

D(Wx,∗�τ ) = C for x ∈ supp(μ)

and

D(Wx,∗�τ ) ≤ C for x /∈ supp(μ),
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where τ = μW . Based on this sufficient and necessary con-
dition, we have the following results concerning the support
of capacity-achieving input probability distributions. In the
sequel, we denote by conv(V ) the convex hull of all vectors
in V .

Proposition 44: Let A ⊆ X . If all row vectors of W are
contained in conv({Wx,∗}x∈A), then there exists a capacity-
achieving probability distribution μ such that supp(μ) ⊆ A.

Proof: Let ν be a capacity-achieving probability distrib-
ution of the sub-matrix WA,∗. Extending ν with zero values,
we obtain a probability distribution μ over X . It is clear that

D(Wx,∗�τ ) = C for x ∈ supp(μ)

and

D(Wx,∗�τ ) ≤ C for x ∈ A \ supp(μ),

where τ = μW = νWA,∗. It remains to show that

D(Wx,∗�τ ) ≤ C for x /∈ A,

which is obvious, because

D(Wx,∗�τ ) = D

(
∑

a∈A

αa Wa,∗
∥
∥
∥τ

)

≤
∑

a∈A

αa D(Wa,∗�τ ) ≤ C

for some nonnegative coefficients (αa)a∈A with∑
a∈A αa = 1. �
Proposition 45: Let μ be a capacity-achieving probability

distribution of W and let A = supp(μ). For any a ∈ A and
any b /∈ A, Wa,∗ /∈ conv({Wx,∗}x∈A∪{b} \ {Wa,∗}).

Proof: It is clear that D(Wx,∗�τ ) = C for all x ∈ A, where
τ = μW . We first show that Wa,∗ /∈ conv({Wx,∗}x∈A\{Wa,∗}),
which corresponds to the case Wb,∗ = Wa,∗. If it is false, then

Wa,∗ =
∑

x∈A�
αx Wx,∗,

where A� = {
x ∈ A : Wx,∗ �= Wa,∗

}
, αx ≥ 0, and∑

x∈A� αx = 1. It is clear that αx < 1 for all x ∈ A�, so that

D(Wa,∗�τ ) <
∑

x∈A�
αx D(Wx,∗�τ ) = C,

a contradiction. Now suppose that

Wa,∗ ∈ conv({Wx,∗}x∈A∪{b} \ {Wa,∗})
for some b /∈ A with Wb,∗ �= Wa,∗. Let A�� = A� ∪ {b}. Then

Wa,∗ =
∑

x∈A��
αx Wx,∗,

where αx ≥ 0 and
∑

x∈A�� αx = 1. It is clear that 0 < αb < 1,
and therefore

C = D(Wa,∗�τ ) < αb D(Wb,∗�τ )+
∑

x∈A��\{b}
αx D(Wx,∗�τ )

= αb D(Wb,∗�τ )+ (1− αb)C,

so that D(Wb,∗�τ ) > C , which is absurd. �

APPENDIX E
COUNTEREXAMPLES FOR SECTION IV-B

Example 46: IC10(W ) > C(W ) for

W =
(

0.8 0.2 0
0.6 0.35 0.05

)

.

Proof: Let S = {D ∈ D : D(1) ∈ {1, 2}, D(2) = 3}. It is
then clear that, for every λ ∈ dec(W ),

∑

D∈S

λD = 0.05.

If we define the map u : D→ [[1, 2]] by

u(D) =
{

1, if D ∈ S,

2, otherwise,

then the row vector v = (
∑

D λD Du(D),y)y∈[[1,3]] is always
on the line segment L with endpoints (0.65, 0.35, 0) and
(0.6, 0.4, 0).

By numerical computation, we know that

D
(
W1,∗�c

)
) = D

(
W2,∗�c

) ≈ 0.03541501,

where

c := μW ≈ (0.71339243, 0.26495568, 0.02165189)

and

μ ≈ (0.56696216, 0.43303784)

is the capacity-achieving input distribution of W . Furthermore,
it can be verified that all points x of L satisfy

D(x�c) > 0.0369.

This implies that μ, if extended to [[1, 2]]D, cannot be
a capacity-achieving distribution ( [6, Theorem 4.5.1]). In
other words, for every λ ∈ dec(W ), the intrinsic capacity
C10(λ) > C(W ), so that IC10(W ) > C(W ). �

Example 47: Let state alphabet S = [[1, 2]] and let

W =
∑

s∈S
pS(s)K (s) = 17

18
K (1) + 1

18
K (2)

=
(

δ
γ

)

=
(

0.05 0.1 0.85
0 0.05 0.95

)

,

where

K (1) =
(

α
γ

)

=
(

0 0.1 0.9
0 0.05 0.95

)

and

K (2) =
(

β
γ

)

=
(

0.9 0.1 0
0 0.05 0.95

)

.

It is easy to show that μ = (0.603123, 0.396877) is the
capacity-achieving input distribution for W , so that the output
distribution is

τ := μ1δ + μ2γ ≈ (0.01984385, 0.06984385, 0.9103123)

and D(δ�τ ) = D(γ �τ ) ≈ 0.0238286. However, for the
channel V : [[1, 2]]S → [[1, 3]] given by

Vu,∗ =
∑

s∈S
pS(s)K (s)

u(s),∗ ( [2, Remark 7.6]),
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if we choose the map u(s) = s, then the corresponding row
vector

ζ := Vu,∗ = p1K (1)
1,∗ + p2K (2)

2,∗

= 17

18
α + 1

18
γ ≈ (0, 0.09722222, 0.90277778)

and D(ζ�τ ) ≈ 0.0246518 > D(γ �τ ). This implies that μ,
if extended to [[1, 2]]S , cannot be a capacity-achieving distri-
bution for V ( [6, Th. 4.5.1]). In other words, the capacity of
W can be increased by the causal state information S at the
encoder.

APPENDIX F
IC01(W ) AND IC01(W )

Proof of Proposition 11: Because m = 2, the binary uni-
form distribution is capacity-achieving for every deterministic
channel, rank 1 or rank 2. Thus we have C01(λ) = C11(λ) for
every λ ∈ dec(W ). The remaining part is an easy consequence
of Theorems 8 and 9. �

Proposition 48: Let W be a channel [[1, 3]] → [[1, 2]]. If all
probabilities Wi, j are distinct and the sum of each column of
W is greater than or equal to 1, then IC01(W ) < IC11(W ).

Proof: By Proposition 20, �W (2) = 1, so that W can be
expressed as a convex combination of perfect channels and
hence IC11(W ) = 1.

Let

S = {λ ∈ dec(W ) : �λ(2) = 1}.
If IC01(W ) = 1, then there exists a λ ∈ S such that the
capacity-achieving input distribution, denoted μ, is capacity-
achieving for every perfect channel D ∈ supp(λ). Thus at
least one entry of μ must be 1/2. With no loss of generality,
we assume μ1 = 1/2.

If μ2 and μ3 are both positive, then μ is capacity-achieving
only for perfect channels

⎛

⎝
1 0
0 1
0 1

⎞

⎠ and

⎛

⎝
0 1
1 0
1 0

⎞

⎠.

By Proposition 31, every λ ∈ dec(W ) satisfies
supp(λ) ≥ ⌈

log2 6
⌉ = 3, which implies that μ is not

capacity-achieving for λ ∈ S.
If μ2 = 0, then μ is capacity-achieving for perfect channels

⎛

⎝
1 0
0 1
0 1

⎞

⎠,

⎛

⎝
0 1
1 0
1 0

⎞

⎠,

⎛

⎝
1 0
1 0
0 1

⎞

⎠,

⎛

⎝
0 1
0 1
1 0

⎞

⎠.

However, any convex combination of these four matrices
can only yield a channel matrix with at most four distinct
probability values, and hence μ is not capacity-achieving for
λ ∈ S.

In all cases, we have shown that μ is not capacity-achieving,
which contradicts the assumption IC01(W ) = 1. Therefore,
we have IC01(W ) < 1 = IC11(W ). �
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