Practice Problem 1

1. Evaluate (a) $(\sqrt{3}-j)^{6}$; (b) $\frac{5 j}{2+j}$; (c) $(-1+j)^{7}$; (d) $(-8-8 \sqrt{3} j)^{1 / 4}$.
2. Find $u(x, y)$ and $v(x, y)$ if $f(z)$ is given by (a) $\sin z$; (b) $\frac{1}{z^{2}+1}$.
3. Evaluate $\int_{C} f(z) d z$ where the contour C is the unit circle $|z|=1$ described in the positive sense: (a) $f(z)=\frac{z^{2}}{z-3}$; (b) $f(z)=z e^{-z}$.
4. Expand $\sin z$ into a Taylor series about the point $z_{0}=0$.
5. Find the residue of $f(z)$ at the points indicated if $f(z)$ is given by (a) $\frac{1}{z(z-b)}$ at $z=0, b$; (b) $\frac{z}{z^{2}+1}$ at $z= \pm j$.
6. Evaluate the integral of each of these functions around the circle $|z|=3$ in the positive sense: (a) $\frac{e^{-z}}{z^{2}}$; (b) $\frac{z+1}{z^{2}-2 z}$.
7. Evaluate the integral $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{a+b \cos \theta} d \theta$ for $a>b>0$.
8. Find the Laplace transforms of the following functions: (a) $t \sin 2 t$; (b) $e^{-t} t^{3}$; (c) $\cosh \sqrt{2} t+\cos \sqrt{2} t$; (d) $\frac{e^{-2 t}}{t}$.
