Practice Problem 1

- 1. Evaluate (a) $(\sqrt{3}-j)^6$; (b) $\frac{5j}{2+j}$; (c) $(-1+j)^7$; (d) $(-8-8\sqrt{3}j)^{1/4}$.
- 2. Find u(x, y) and v(x, y) if f(z) is given by (a) $\sin z$; (b) $\frac{1}{z^2+1}$.
- 3. Evaluate $\int_C f(z)dz$ where the contour C is the unit circle |z| = 1 described in the positive sense: (a) $f(z) = \frac{z^2}{z-3}$; (b) $f(z) = ze^{-z}$.
- 4. Expand $\sin z$ into a Taylor series about the point $z_0 = 0$.
- 5. Find the residue of f(z) at the points indicated if f(z) is given by (a) $\frac{1}{z(z-b)}$ at z = 0, b; (b) $\frac{z}{z^2+1}$ at $z = \pm j$.
- 6. Evaluate the integral of each of these functions around the circle |z| = 3 in the positive sense: (a) $\frac{e^{-z}}{z^2}$; (b) $\frac{z+1}{z^2-2z}$.
- 7. Evaluate the integral $\int_0^{2\pi} \frac{\cos 2\theta}{a+b\cos \theta} d\theta$ for a > b > 0.
- 8. Find the Laplace transforms of the following functions: (a) $t \sin 2t$; (b) $e^{-t}t^3$; (c) $\cosh \sqrt{2}t + \cos \sqrt{2}t$; (d) $\frac{e^{-2t}}{t}$.