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A Truncated Prediction Framework for
Streaming Over Erasure Channels
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Abstract— We propose a new coding technique for sequen-
tial transmission of a stream of Gauss–Markov sources over
erasure channels under a zero decoding delay constraint. Our
proposed scheme is a combination (hybrid) of predictive coding
with truncated memory, and quantization-and-binning. We study
the optimality of our proposed scheme using an information
theoretic model. In our setup, the encoder observes a stream
of source vectors that are spatially independent and identically
distributed (i.i.d.) and temporally sampled from a first-order
stationary Gauss–Markov process. The channel introduces an
erasure burst of a certain maximum length B, starting at an
arbitrary time, not known to the transmitter. The reconstruction
of each source vector at the destination must be with zero delay
and satisfy a quadratic distortion constraint with an average
distortion of D. The decoder is not required to reconstruct
those source vectors that belong to the period spanning the
erasure burst and a recovery window of length W following it.
We study the minimum compression rate R(B, W, D) in this
setup. As our main result, we establish upper and lower bounds
on the compression rate. The upper bound (achievability) is
based on our hybrid scheme. It achieves significant gains over
baseline schemes such as (leaky) predictive coding, memoryless
binning, a separation-based scheme, and a group of pictures-
based scheme. The lower bound is established by observing
connection to a network source coding problem. The bounds
simplify in the high resolution regime, where we provide explicit
expressions whenever possible, and identify conditions when
the proposed scheme is close to optimal. We finally discuss
the interplay between the parameters of our burst erasure
channel and the statistical channel models and explain how the
bounds in the former model can be used to derive insights into
the simulation results involving the latter. In particular, our
proposed scheme outperforms the baseline schemes over the i.i.d.
erasure channel and the Gilbert–Elliott channel, and achieves
performance close to a lower bound in some regimes.

Index Terms— Rate distortion theory, sequential source cod-
ing, burst erasure channels, multi-terminal source coding, joint
source-channel coding.

I. INTRODUCTION

REAL-TIME streaming applications require communica-
tion systems that are both efficient in compression, yet

resilient to channel errors. In practice compression efficiency

Manuscript received May 20, 2015; revised October 19, 2016; accepted
August 28, 2017. Date of publication September 15, 2017; date of current
version October 18, 2017. This paper was presented at the 2015 International
Symposium on Information Theory.

F. Etezadi was with the University of Toronto, Toronto, ON M5S3G4,
Canada. He is now with Modem R&D, Samsung Electronics, San Diego,
CA 92122 USA.

A. Khisti is with the University of Toronto, Toronto, ON M5S3G4, Canada
(e-mail: akhisti@comm.utoronto.ca).

J. Chen is with McMaster University, Hamilton, ON L8S 4K1, Canada
(e-mail: junchen@ece.mcmaster.ca).

Communicated by S. S. Pradhan, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2752715

and error resilience are conflicting objectives, and one has to
strike a balance between them. Linear predictive techniques
such as Differential Pulse Code Modulation (DPCM) have
long been used to exploit the source memory in streaming
applications. However such techniques are known to be sensi-
tive to channel errors. When packets are lost over the network,
a mismatch in the information available at the encoder and
decoder arises. This effect, known as prediction drift, can lead
to a significant degradation in the performance. Commonly
used video compression formats such as H.264/MPEG and
HEVC use a combination of intra-coded (I) and predictively-
coded (P) frames. The intra-coded frames that can be encoded
and decoded in a stand alone manner are used to limit the
effect of error propagation. The predictively-coded frames,
which depend on the past frames, can be compressed at a much
higher efficiency. The ratio of I and P frames determines the
tradeoff between error resilience and compression efficiency.
Other approaches that strike a similar tradeoff include error
correction coding [1], [2], leaky predictive coding [3]–[5],
and distributed video coding [6], [7]. The main objective of
this paper is to study the tradeoff between error propagation
and compression efficiency for Gauss-Markov sources in an
information theoretic framework. Through our study we also
develop a new coding technique that exhibits significant gains
over baseline schemes.

We consider an information theoretic model for streaming
that captures the trade-off between compression rate and
error propagation over burst erasure channels. In particular
we assume that the channel introduces an erasure burst of
maximum length B . A stream consisting of source sequences
that are sampled from a Gauss-Markov distribution, must be
sequentially transmitted by the encoder, and reconstructed
under a quadratic distortion measure. The decoder is required
to reconstruct each source sequence with zero delay and within
an average distortion D, except those sequences observed
during the error propagation window following the start of the
erasure burst. We assume that this period spans the duration
of the erasure burst, as well as an interval of length W , called
the recovery period, immediately following it. In practice the
receiver will invoke a frame-freeze or use other type of error
concealment techniques in this period. We study the minimum
achievable rate R(B, W, D), and define it as the rate-recovery
function. The formal setup is defined in Section II.

As our main result we establish upper and lower bounds
on the rate-recovery function. Our achievability, discussed in
Sections III and IV, is based on a new coding scheme that
can be described as a hybrid between predictive coding and
quantization & binning. In the first step we apply generalized
predictive coding, albeit with truncated memory at the
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encoder.1 Unlike ideal predictive coding, the resulting output
sequences will not be independent of the past. In the second
step we further reduce the rate using quantization and binning.
We develop an expression for the achievable rate for our
proposed scheme and demonstrate that it results in significant
gains over ideal predictive coding and memoryless binning.
We also establish a lower bound on the rate-recovery function
in Section V. The key insight in our lower bounding technique
is to consider a network source coding problem that captures
the tradeoff between error propagation and compression rate,
and establish lower bounds in such a setup. While our general
expressions for the upper and lower bounds are rather involved
they simplify considerably in the high resolution regime.
We obtain several explicit bounds in this regime. The analysis
of some baseline schemes is presented in Section VI for
comparisons.

While our primary focus is on burst erasure channels,
the coding schemes we study are not dependent on such a
model. The only consideration of the channel model is in
determining the rate R. As such decoder can resume zero-
delay recovery following any erasure sequence after a suffi-
ciently long waiting time. In Section VII we discuss how such
a waiting time at the decoder can be computed for the hybrid
scheme as well as some baseline schemes for mismatched
burst lengths. We also present several simulation results over
statistical channel models such as the independent and iden-
tically distributed (i.i.d.) erasure channel and the Gilbert-
Elliott channel. These results demonstrate that the residual loss
probability of our proposed hybrid scheme can be significantly
lower than commonly used schemes such as predictive coding,
memoryless binning, GOP-type compression and separation
based schemes. Furthermore in certain cases the hybrid scheme
achieves a performance close to a lower bound on the loss
probability.

A. Related Works

The information theoretic model for sequential coding of
video was introduced in [8] and followed up in a number
of works, see e.g., [9], [10] and references therein. These
works only consider source coding aspects and assume an ideal
transmission channel. The source model used in the present
paper follows this line of work. In [11] the authors study a
variation of the setup in [8] where the decoder at each time
has either the entire past or just the present output, with a
different distortion imposed in each case. However this model
too does not capture fact that the decoder has access to a
subset of channel outputs in the streaming setup. In [12] the
authors consider the case of a single packet loss on sequential
coding and compare predictive coding and Wyner-Ziv coding
in this setup. In [3] the authors study real-time transmission
of Gauss-Markov sources over i.i.d. erasure channels. A leaky
prediction based scheme is proposed and the coefficients are
optimized under the assumption that the erasures are sparse
enough that the effect of each erasure remains isolated. To the
best of our knowledge both the coding techniques and lower
bounds in the present work are new.

1In general, the prediction coefficients will not correspond to the optimal
MMSE estimator as will be discussed in Section III.

The authors in [13] consider a similar information theoretic
model for streaming over burst erasure channels, and estab-
lishes upper and lower bounds on the rate-recovery function
for the case of discrete memoryless sources under lossless
recovery. The case of Gauss-Markov sources is also considered
in the special case when immediate recovery is required
following the erasure burst. The optimality of memoryless
quantize and binning is established in the high resolution
regime in this special case. In contrast, the present work
focuses on Gauss-Markov sources in the general case when
a non-zero recovery period is allowed. We show that the
memoryless coding scheme in [13] is sub-optimal in this case.
Our proposed coding scheme gives significant improvements,
not only in the proposed burst-erasure model, but also in
simulations involving i.i.d. erasure channels. The analysis of
the achievable rate is considerably more challenging for the
lossy case as the reconstruction sequences do not satisfy the
Markov condition of the source sequences. Finally we remark
that while the present paper only considers the case of zero-
delay recovery at the destination, extensions to the case of non-
zero decoding delay can be considered and will be reported
elsewhere; see [14], [15]. For a comprehensive treatment of
all the results, see also [16].

Notations: Throughout this paper we represent the expec-
tation operator by E[·] and the variance by V ar(·). The
notation “log” is used for the binary logarithm, and rates are
expressed in bits. The operations H (·) and h (·) denote the
entropy and the differential entropy, respectively. The “slanted
sans serif” font a and the normal font a represent random
variables and their realizations respectively. The notation
an

i = {ai,1, ai,2, . . . , ai,n} represents a length-n sequence of
symbols at time i . The notation [f ] j

i for i < j represents
fi , fi+1, . . . , f j .

II. PROBLEM STATEMENT

At each time t , the Gaussian source vector {sn
t } is sampled

i.i.d. from a zero-mean Gaussian distribution N (0, σ 2
s ) along

the spatial dimension, and forms a first-order Gauss-Markov
chain across the temporal dimension:

st,i = ρst−1,i + nt,i ,

where the first index t ∈ [1 : T ] denotes the temporal index
and the second index i ∈ [1 : n] denotes the spatial index.
We let ρ ∈ (0, 1) and nt,i ∼ N (0, (1 − ρ2)σ 2

s ). Without loss
of generality we assume σ 2

s = 1. The sequence sn
0 which is

also sampled from the same distribution is revealed to both the
encoder and decoder before the start of the communication.
It plays the role of a synchronization frame. Without loss of
generality, one can consider the source sequences {xn

t }, instead
of the original source sequences {sn

t }, where

xt,i � st,i − ρt s0,i . (1)

Note that xt,i ∼ N
(
0, 1 − ρ2t

)
and the source sequences

{xn
t } inherits the first order Markov property from the original

source sequences {sn
t }, i.e., for any i ∈ [1 : n] and t ≥ 1

xt,i = ρxt−1,i + nt,i .
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Fig. 1. Problem Setup: Consider the example of B = 2 and W = 3.
The encoder output f j is a function of the source sequences up to time j
i.e., sn

0 , sn
1 , . . . , sn

j . The channel introduces an erasure burst of length B .
The decoder produces ŝn

j upon observing the sequence {g0, g1, . . . , g j }. The

decoder is not required to produce those source sequences that fall in a
window of length B + W following the start of an erasure burst. However,
the decoder recovers the rest of the source sequences within zero-delay and
average distortion constraint Dt ≤ D where Dt is defined at (5).

Throughout the paper, based on equivalence of the two models
and in order to present the results in the simplest form,
we will interchangeably use the two source models. We will
also suppress the dependence of the encoding and decoding
functions on sn

0 .
An encoder computes an index ft ∈ [1 : 2nRt ] at time t ,

according to an encoding function

ft = Ft
(
xn

1 , xn
2 , . . . , xn

t

)
, 1 ≤ t ≤ T . (2)

Note that the encoder in (2) is a causal function of the source
sequences.

The channel takes each ft as input and either outputs
gt = ft or an erasure symbol, i.e., gt = �. We consider the
class of burst erasure channels. For some particular j ≥ 1,
the channel introduces an erasure burst such that

gt =
{

�, t ∈ { j, j + 1, . . . , j + B − 1}
ft , otherwise.

(3)

To keep the setup simple, we consider a channel model with a
single erasure burst in an unknown location during the entire
communication period. However, as it will become clear in
the sequel, the proposed coding schemes are not specific to
this channel model.

As illustrated in Fig 1, upon observing the sequence {gt}t≥1,
the decoder is required to reconstruct each source sequence
with zero delay, i.e.,

x̂n
t = Gt (g1, g2, . . . , gt ),

t /∈ { j, j + 1, . . . , j + B + W − 1}, (4)

where x̂n
t denotes the reconstruction sequence and j denotes

the time at which burst erasure starts in (3). The destination is
not required to produce the source vectors that appear either
during the burst erasure or in the period of length W following
it. We call this period the error propagation window. The
average distortion at time t outside the error propagation win-
dow, denoted by Dt , is computed according to the quadratic

distortion measure, i.e.,

Dt � E

[
1

n

n∑

i=1

(xt,i − x̂t,i )
2

]

,

t /∈ { j, j + 1, . . . , j + B + W − 1}. (5)

We consider the case where the reconstruction in (4) satis-
fies the zero-delay and average distortion constraint of D.
A tuple (R1, R2, . . . , RT , D) is achievable if there exists a
sequence of encoding and decoding functions and a sequence
εn approaching to zero as n → ∞ such that, for any burst
erasure pattern in (3) and for any time t outside the error
propagation window, Dt ≤ D+εn . Define RT to be the closure
of the achievable tuples (R1, R2, . . . , RT , D). We define the
rate-recovery function as

RT (B, W, D) � inf
(R1,R2,...,RT ,D)∈RT

{
max

k∈[1:T ] Rk

}
. (6)

In particular we are interested in the rate-recovery function
in the large T regime, i.e.,

R(B, W, D) � lim sup
T →∞

RT (B, W, D), (7)

which we will simply call the rate-recovery function.
Furthermore, for convenience, we consider a normalization

of the rate-recovery function. We first define RI(D) to be the
steady state rate-distortion function of the erasure-free channel.
This rate-distortion is achieved by a DPCM scheme and is
computed as [8]:

RI(D) � 1

2
log

(
1 − ρ2

D
+ ρ2

)
. (8)

We define the excess rate as follows.
Definition 1: The excess rate associated with the rate-

recovery function R(B, W, D) is

RE(B, W, D) � R(B, W, D) − RI(D), (9)

where RI(D) is the rate associated with ideal DPCM (8).
In this paper, high resolution regime is defined as follows.
Definition 2: The high resolution regime corresponds to

the limit of RE(B, W, D) when D → 0.
Remark 1: Our setup considers worst case metrics rather

than the average packet loss rate and average distortion across
time. Such worst case metrics may be more relevant to stream-
ing applications where the atypical behavior is important.
For example in interactive conferencing applications, it is
meaningful to design the system so that the quality of the call
remains acceptable up to a certain maximum burst length [17].
We will nevertheless also validate our results for statistical
channels in Section VII.

Remark 2: We note that our setting involves a peak rate
constraint in (6) since we take the maximum across all the
rates. One can also consider average rate constraints. Indeed
when we consider time-varying schemes such as GOP based
coding, it is important to consider average rate constraints.
However all the other schemes treated in this work are time-
invariant in the steady state operation. Hence it suffices to con-
sider the peak rate constraint for these schemes. We however
note upfront that the peak rate constraint is used in deriving
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Fig. 2. Problem Setup for B = W = 1 and high resolution. The channel
packet of time t − 2 is erased and x̂t is required to be reconstructed at time t .

our lower bound, as it seems to simplify certain steps. The
lower bound under an average rate constraint is not addressed
in this paper.

Remark 3: The coding schemes proposed in this work are
not specific to the burst erasure channel model in Fig 1. As will
be apparent, they provide significant gains in simulations over
i.i.d. erasure channels. Nevertheless the study of the simplified
setup yields useful insights.

Remark 4: The source model considered in this paper,
i.e., spatially i.i.d. and temporally Gauss-Markov process, has
been also used in earlier works (see, e.g., [3], [8], [11]). The
spatial independence assumption holds approximately if we
consider the video innovation process generated by applying
suitable transform on original video frames. While the symbols
themselves might not be identically distributed, we note that
our model provides a first step towards establishing the
information theoretic tradeoffs. For further justification of the
source and channel models, see [13, Sec. III-B].

III. PRELIMINARY INSIGHTS

In this section we will discuss the implications of the
truncated prediction step on the resulting test channels in
the simpler setting when B = W = 1. We assume that the
system operates in the steady state, the erasure happens at
time t −2 and zero-delay reconstruction begins starting at time
t . The setup is shown in Fig 2. In analyzing the achievable
rate we will also focus on high resolution regime, where the
decoder is interested in reconstructing the source sequences
with vanishing average distortion D → 0.

A. Hybrid Coding

Our proposed scheme, as illustrated in Fig. 3 encompasses
two steps:

1) Limited Prediction: Predicting the current source
sequence xn

t , from the past W outputs at the decoder:
{un

t−1, . . . , u
n
t−W }, and quantizing the residual error en

t
into a codeword un

t
2) Binning: We apply random binning to the sequence

un
t in a memoryless fashion to output the index

ft ∈ [1, 2nR], that is sent over the channel

Throughout we will assume the test channels to be jointly
Gaussian. In the special case when W = 1 we can represent
the test channel associated with ut as follows:

ut = xt − w · ut−1 + zt (10)

Fig. 3. Block diagram of the proposed coding scheme: a) Encoder,
b) Decoder.

where the scalar w is a free parameter that can be optimized
over and zt ∼ N (0, σ 2

z ) is the noise associated with the
quantization step. We next bin the sequences un

t into indices
ft ∈ [1, 2nR]. The rate is selected such that the decoder can
reconstruct un

t and un
t−1 simultaneously at time t when an

erasure happens at time t − 2 (c.f. Fig. 2). From standard
results in multi-terminal source coding the rate R must satisfy
the following inequalities for all t (see e.g., [18]):

R ≥ h(ut |[u]t−3
1 , ut−1) − 1

2
log (2πeD) , (11)

R ≥ h(ut−1|[u]t−3
1 , ut ) − 1

2
log (2πeD) , (12)

Rsum = 2R ≥ h(ut−1, ut |[u]t−3
1 ) − log (2πeD) . (13)

Using the test channel (10), the decoder can reconstruct x̂t

using ut and ut−1:

x̂t = ut + w · ut−1. (14)

Fig. III-A illustrates the operations at the encoder and
decoder discussed above in the interval [t − 3, t]. Note that
by construction the truncated prediction scheme is such that
the decoder always has the required codewords during the
reconstruction process despite losses over the channel, except
at times {t − 2, t − 1} when reconstruction is not required.

Specializing to the high resolution regime, we must have
xt ≈ x̂t , and the noise in the test channel σ 2

z → 0. In this case
the resulting test channel (c.f. Fig. 3) can be expressed as:

ut ≈ nt + (ρ − w)nt−1 + (ρ2 − wρ + w2)nt−2 + . . . , (15)

where recall that the variables nt ∼ N (0, 1 − ρ2) are
the independent innovation (noise) symbols. The reader can
verify that

ut + w · ut−1 ≈ nt + ρnt−1 + ρ2nt−2 + . . . = xt .

Upon using (13) the sum rate can be expressed as:

Rsum(w) ≈ h

(
nt + (ρ − w)nt−1 + (ρ2 − wρ + w2)nt−2,

nt−1 + (ρ − w)nt−2

)
− log(2πeD) (16)
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Through simple algebra it can be shown that the first term
in (16) is minimized when we select w� = ρ

1+ρ2 and the
associated rate satisfies:

lim
D→0

[
Rsum(w�) − RI (D)

] = 1

2
log

(
1 + ρ2

1 + ρ4

)
, (17)

where the term RI (D) is defined in (8) and thus the term
inside the bracket corresponds to excess rate. In contrast the
choice w = 0 corresponds to the memoryless quantization and
binning, where the prediction loop in Fig. 3 is removed. It can
be shown that in this case

lim
D→0

[Rsum(w = 0) − RI (D)] = 1

2
log

(
1 + ρ2

)
, (18)

which is higher than the limit in (17). Another interesting
choice is to set w = ρ, so that each term in (15) only consists
of alternating noise symbols:

ut = nt + ρ2nt−2 + ρ4nt−4 + . . . . (19)

It can be shown that this choice leads to:

lim
D→0

[Rsum(w = ρ) − RI (D)] = 1

2
log

(
1 + ρ4

)
, (20)

which improves upon Memoryless quantize and binning, but
is still higher than (17).

B. Predictive Coding

A commonly used transmission technique for first order
Gauss-Markov sources is predictive coding. The encoder gen-
erates an estimate of the source at time t , given all the
past encoder outputs and subtracts it from the current source
sample. The difference is quantized and transmitted over the
channel. The setup is similar to Fig. 3, however the entire
past ut−1

1 is used in the prediction loop and optimal MMSE
estimation is applied when computing et .

Unfortunately in the presence of packet losses over the
channel, predictive coding can lead to a significant loss.
To illustrate this effect we will consider the setup in Fig. 2,
where a single loss happens at time t −2. We will also assume
high resolution regime so that xt ≈ x̂t . In this regime we will
have: ut ≈ et ≈ nt . Furthermore the reconstruction before
time t − 2 can be approximated as: x̂k ≈ xk = nk + ρnk−1 +
ρ2nk−2 + · · · . At time t , since ut−2 is not available to the
decoder (see Fig 4), the reconstruction sequence is expressed

as x̂t ≈ nt + ρnt−1 + ρ3nt−3 + · · · . Note that

xt − x̂t ≈ ρ2nt−2.

Thus, the reconstruction at time t , as well as subsequent times
cannot satisfy the high resolution constraint. More generally,
such a mismatch between the encoder and decoder due to
packet losses is referred to as prediction drift and can signifi-
cantly degrade the performance in practice.

A commonly used modification to predictive coding is the
so-called leaky predictive coding approach, see e.g., [3]–[5].
Such schemes allow the flexibility to sweep between the
extremes of ideal prediction and no-prediction depending on
the channel loss rate, typically by varying a single parameter.
Our proposed hybrid scheme is different as it involves a
truncated prediction approach based on limited past. We will
discuss leaky predictive coding scheme in Section VI and
provide numerical comparisons throughout.

IV. HYBRID CODING SCHEME

Our coding scheme consists of a prediction step followed
by quantization-and-binning as shown in Fig. 3(a).

A. Codebook Generation

The steps of codebook generation are as follows:
• Fix the conditional multivariate Gaussian distribution

p([u]T
1 |[x]T

1 ) such that for any t ∈ [1 : T ]

ut = xt −
W∑

k=1

wkut−k + zt , (21)

where zt is drawn i.i.d. from N (0, σ 2
z ).2

• For each time t ∈ [1 : T ], randomly and independently
generate 2nR̃t sequences un

t (lt ) for lt ∈ [1 : 2nR̃t ], each
according to

∏n
k=1 put (ut,k).

• For each time t ∈ [1 : T ], partition the set of indices
lt ∈ [1 : 2nR̃t ] into 2nRt equal-size bins with the bin
index ft ∈ [1 : 2nRt ].

The choice of the parameters σ 2
z , Rt and R̃t will be apparent

in the analysis. The codebook is revealed to the encoder and
decoder.

2ui is zero for non-positive index i .
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Fig. 4. Illustration of the predictive coding scheme in the high resolution regime, which fails in reconstructing xn
t for the setup in Fig. 2. The notations P and Q

represent the pre-processor and quantizer respectively.

B. Encoding

The encoding consists of two steps:
Step 1 (Successive Quantization): The source

sequences {xn
1 , xn

2 , . . . , xn
T } are successively quantized into

{un
1 , un

2 , . . . , un
T }. In particular, the encoder, at each time t ,

identifies a quantization sequences un
t jointly typical [19] with

{xn
t , un

t−W , un
t−W+1, . . . , u

n
t−1} using the test channel (21).

Step 2 (Random Binning): The encoder, upon finding
a particular quantization sequence un

t , sends its bin index
ft ∈ [1 : 2nRt ] through the channel.

Remark 5: As sketched in Fig. 3(a), our proposed scheme
consists of a prediction step followed by binning. Unlike
DPCM, the predictor does not use all the past un

k , but
only W most recent ones. These particular sequences are
guaranteed to be available to the decoder since we assume
that W sequences after the erasure burst are not supposed
to be reconstructed. Thus there is no mismatch between the
encoder and decoder in the prediction block. Furthermore
since the codewords un

k are correlated, the binning block is
used to exploit this correlation. In this paper we will refer to
this approach of combining predictive coding and binning as
hybrid coding.

C. Decoding

The block diagram of the decoder is shown in Fig. 3(b).
The decoder consists of two steps.

Step 1 (Decoding With Side-Information): The decoder,
while receiving the channel outputs, applies the joint typicality
decoding to recover the quantization codewords. Note that in
this stage, all the previously recovered quantization sequences
can be used by the decoder as the side information. In partic-
ular, for an erasure burst spanning [ j : j + B − 1], we have

ûn
t =

⎧
⎪⎨

⎪⎩

Tt ([f ]t
1) for t < j

Tt ([f ] j−1
1 , [f ] j+B+W

j+B ) for j + B ≤ t ≤ j + B + W

Tt ([f ] j−1
1 , [f ]t

j+B) for t > j + B + W,

where Tt (·) denotes the typicality-based decoder [19] at time t .
Step 2 (Minimum Mean Squared Error (MMSE) Estima-

tion): The decoder applies the MMSE estimation using all the

recovered quantization sequences:

x̂n
t =

{
Mt ([ûn]t

1) for t < j

Mt ([ûn] j−1
1 , [ûn]t

j+B) for t ≥ j + B + W,

where Mt (·) denotes the MMSE estimator at the decoder at
time t . This completes the description of the encoder and the
decoder.

D. Analysis of Achievable Rate

We begin with a restatement of the test channel (21) used
in the quantization step as follows:

Aw[u]T
1 = [x]T

1 + [z]T
1 , (22)

where Aw is a T × T lower triangular Topelitz matrix with
(i, j)-th element ai, j defined as

ai, j �
{

wi− j if 0 ≤ i − j ≤ W

0 otherwise,

where without loss of generality we assume w0 = 1. Equiva-
lently, (22) can be represented as

[u]T
1 = Qw

(
[x]T

1 + [z]T
1

)
, (23)

where Qw, i.e., the inverse of the matrix Aw, is a T ×T lower
triangular matrix with (i, j)-th element qi, j as

qi, j �
{

vi− j if i ≥ j

0 otherwise,

where

vk = −
k−1∑

j=0

wk− j v j . (24)

In order to develop an expression for the achievable rate,
we will focus on the steady state behavior. Assume that the
erasure burst spans the interval [t + 1, t + B] for some t 	 1.
As will be shown later it suffices to focus on the reconstruction
at time t + B + W + 1 as this term will dominate the rate
expression. At this time the decoder has access to the following
collection of variables [ut

1, u
t+B+W+1
t+B+1 ]. In order to provide a

computable expression for the achievable rate, we can simplify
the dependence on these variables as follows:
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First it turns out that for t 	 1, the history ut
1 can be

summarized using the scalar variable:

s̃1 � s1 + e, (25)

where e ∼ N
(
0,�(σ 2

z )/(1 − �(σ 2
z ))

)
and

�(σ 2
z ) � 1

2

√
(1 − σ 2

z )2(1 − ρ2)2 + 4σ 2
z (1 − ρ2)

+ 1 − ρ2

2
(1 − σ 2

z ). (26)

The term �(σ 2
z ) is the estimation error of st given the history

ut−1
1 i.e.,

�(σ 2
z ) = V ar

(
st − E{st |ut−1

1 }
)

in the steady state i.e., t → ∞.
Next, the random variables ut+B+W+1

t+B+1 can be replaced by
their steady-state counterparts as:

⎛

⎜
⎜
⎜
⎝

ũB+1
ũB+2

...
ũB+W+1

⎞

⎟
⎟
⎟
⎠

� Qeff

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

s1
s2
...

sB+W+1

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

z1
z2
...

zB+W+1

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

, (27)

where s1, . . . , sB+W+1 are the source variables and
z1, . . . , zB+W+1 are drawn i.i.d. according to N (0, σ 2

z )
and

Qeff �

⎛

⎜
⎜
⎜
⎝

vB vB−1 · · · 1 0 . . . 0
vB+1 vB+2 · · · v1 1 . . . 0

...
...

. . .
...

...
. . .

...
vB+W vB+W−1 · · · vW vW−1 . . . 1

⎞

⎟
⎟
⎟
⎠

(28)

with the definition of vi in (24). Note that Qeff is a (W +1)×
(B + W + 1) matrix that contains rows [B + 1 : B + W + 1]
and columns [1 : B + W + 1] of Qw. 3

The following theorem characterizes the achievable rate by
the hybrid coding scheme.

Theorem 1: For any given choice of (σ 2
z , w), the rate R

is achievable by the hybrid coding scheme provided that the
constraint

R ≥ RH(σ 2
z , w)

� max
M⊆L
M�=φ

{
1

|M|h ([ũ]M|[ũ]Mc , s̃1)

}
− 1

2
log(2πeσ 2

z ), (29)

is satisfied with the test channel noise σ 2
z satisfying

	H(σ 2
z , w) � Var(sB+W+1|[ũ]B+W+1

B+1 , s̃1) ≤ D, (30)

where L � {B + 1, . . . , B + W + 1}, and for any M ⊆ L,
Mc represents complement of M with respect to L.

�
The proof of Theorem 1 is provided in Appendix B. The

key step in our analysis involves showing that (i) the recovery
window immediately after the erasure dominates the rate
expression and (ii) the worst case erasure is in the steady state,
i.e., as t → ∞.

3Due to the structure of Qw, any set of rows [t + B + 1, t + B + W + 1]
and corresponding columns [t + 1 : t + B + W + 1] of Qw can be selected
to generate Qeff.

Fig. 5. Visualization of the results of Theorem 1: a) The actual worst-
case burst erasure happens at steady state, i.e., [t + 1 : t + B] for
t 	 1. The decoder at time t + B + W + 1 simultaneously recovers
{ut+B+1, . . . , ut+B+W+1} and reconstruct xt+B+W+1 ≈ st+B+W+1 from
{u1, . . . , ut } and {ut+B+1, . . . , ut+B+W+1} b) Shows an equivalent formu-
lation with the contribution of [u]t1 replaced by s̃1 defined Theorem 1 and
assuming steady state.

Since w and σ 2
z are free parameters in Theorem 1, any rate

R ≥ R+
H (B, W, D) is achievable, where

R+
H (B, W, D) = min

w,σ 2
z

	H(σ 2
z ,w)≤D

RH(σ 2
z , w). (31)

E. Numerical Results

In this section we present numerical evaluation of the rate-
recovery function.

Fig. 6 plots the excess rate function (c.f. Definition 1) for
different coding schemes, as a function of ρ, the temporal
correlation coefficient among the source symbols. Fig. 6(a)
and Fig. 6(b) consider the case D = 0.3, and the remaining
two consider the case D = 0.6. The baseline schemes and
their achievable rate-recovery function are studied in detail in
Section VI. Here we provide a brief overview of each scheme.

• Predictive Coding: The excess rate of predictive coding
is represented by the dash-dot (red) line in Fig. 6. The
overall distortion during reconstruction consists of two
terms, i) the quantization noise of the current time and
ii) the effect of erasure burst. To compensate for the latter,
the quantization noise must be small enough. In general
this requires considerably high rate, unless the value of
ρ is small.

• Leaky Prediction: A simple modification of predic-
tive coding scheme, known as Leaky Predictive Coding,
makes the predictive coding scheme more robust to
channel erasures. In this scheme the single prediction
parameter is optimized to strike the trade-off between a
predictive coding scheme and memoryless quantization
scheme with no prediction at the encoder. The excess rate
of leaky predictive coding in Fig. 6 shows performance
improvements over predictive coding scheme.

• Memoryless Quantization-and-Binning: The excess
rate of this scheme is represented by the dashed (blue)
line. The encoder at each time quantizes the current
source sequence in a memoryless fashion. This scheme
is a special case of the hybrid coding scheme described
in Section IV, with parameter w0 = 1 and wk = 0
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Fig. 6. Excess rates based on hybrid coding in comparison with the baseline schemes and the lower bound for (a) B = W = 1, D = 0.3 (b) B = W = 2,
D = 0.3, (c) B = W = 1, D = 0.6 and (d) B = W = 2, D = 0.6.

for k ∈ {1, . . . , W }. While the scheme outperforms the
predictive coding except for small values of ρ, it is still far
from the lower bound. The penalty of this scheme arises
from the fact that it forces all the W +1 quantized sources
in the recovery period to be simultaneously recovered.

• Hybrid Coding: This scheme, illustrated by the solid
green line, corresponds to the rate in Theorem 1.

• Separation Based-Coding: This scheme involves ideal
prediction followed by an error correction code to recover
from channel erasures. It also forces the recovery of all
the source frames and is very inefficient in general, unless
ρ ≈ 1.

• GOP-Based Coding: In this approach, the source
sequences occurring at multiples of W + 1 are encoded
and decoded independently of the past. This corre-
sponds to the presence of I-frames in video compres-
sion. The remaining sequences are compressed using
predictive coding. From Fig. 6, the GOP-based coding
scheme is also inefficient in general.

• Lower Bound: The lower bound on the excess rate,
which is the lowermost curve in all plots in Fig. 6 is
studied in Section V. It is numerically close to the hybrid-
coding scheme.

F. High Resolution Regime

The achievable rate expression in Theorem 1 is rather
complicated. In this section we consider the high resolution
regime where the expression can be simplified in certain
cases. We begin by stating optimal choice of the predic-
tion coefficients wk that minimize the sum rate constraint
(i.e., M = L in (29)) in the high resolution regime when
B = 1.

Corollary 1: In the high resolution regime, for B = 1 and
any W, the excess sum-rate constraint of the hybrid coding
scheme is minimized by:

w�
k � ρk 1 − ρ2(W−k+1)

1 − ρ2(W+1)
for k ∈ {1, . . . , W }. (32)

Furthermore, the resulting expression, with this choice of coef-
ficients coincides with the lower bound on the rate-recovery
function (see Corollary 4) in the high resolution regime. �

The proof of Corollary 1 is presented in Appendix C.
Finding conditions under which the sum rate dominates (29)

appears complicated in general. We have observed numerically
that in the high resolution regime for B = 1 there exists
a ρ� ∈ (0, 1) such that for ρ ≥ ρ�, the choice of (32)
makes the sum-rate constraint dominant. Furthermore under
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Fig. 7. Excess rates in high resolution regime based on hybrid coding in comparison with the baseline schemes and the lower bound, where (a) B = W = 1,
(b) B = W = 2, and (c) W = 1, B → ∞.

TABLE I

NUMERICAL VALUES OF ρ� FOR W ∈ {1, 2, 3, 4}

this condition the resulting rate coincides with the lower bound
in Section V, and hence is optimal. Table I shows some
examples of ρ�. Unfortunately finding an analytical expression
for ρ� appears intractable at this point.

The next two results pertain to upper bounds on the excess
rate in the high resolution regime for W = 1 and any
ρ ∈ (0, 1).

Corollary 2: In the high resolution regime, when W = 1
and B = 1, the excess rate of the hybrid coding scheme
(See Definition 1), denoted by RE,HR(ρ, B = 1) is upper
bounded as follows.

RE,HR(ρ, B = 1) ≤ 1

4
log

(
1 + 2ρ4

(1 + ρ)2

)
. (33)

The proof of Corollary 2 is provided in Appendix D.
Corollary 3: In the high resolution regime, when W = 1

and B → ∞, we have

RE,HR(ρ, B → ∞) = 1
4 minw

{
log

(
f (w)2 − g(w)2

)}
(34)

where

f (w) �
(

ρ2

1 − ρ2 + 1

1 − w2

)
1

(1 + wρ)2 (35)

g(w) � ρ f (w) − w

(1 + wρ)(1 − w2)
. (36)

�
The proof of Corollary 3 is provided in Appendix E. The

bounds presented in the above results are generally conserva-
tive. As illustrated in Fig. 7 the hybrid coding scheme performs
very close to the lower bound for a wide range of ρ at least
for W = 1 or W = 2. Fig. 7(a), (b) and (c) consider the
examples of B = W = 1, B = W = 2 and B → ∞, W = 1,
respectively. The lower bound on the rate-recovery function
and the baseline schemes will be discussed in the next two
sections.

Fig. 8. A network source coding problem as an enhanced version of original
streaming problem.

V. LOWER BOUND ON RATE-RECOVERY FUNCTION

A. Connection to the Network Source Coding Problem

Before stating the general lower bound on R(B, W, D),
we consider a special case of B = W = 1. For this case,
we propose a lower bound by exploiting a connection between
the streaming setup and the network source coding problem
illustrated in Fig. 8. Encoder 1 observes the source sequence
sn

j and Encoder 2 observes the two sources sn
j and sn

j+1.
Decoder j is required to reconstruct sn

j within distortion D
while knowing sn

j−1 whereas decoder j + 1 requires sn
j+1

within distortion D while knowing sn
j−2 and having access

to the codewords {f j , f j+1}. Decoder j resembles a steady
state decoder when the previous source sequence has been
reconstructed whereas decoder j + 1 resembles the decoder
following an erasure and the associated recovery period. The
proposed setting is slightly different from the original one in
that the decoders are revealed actual source sequences rather
than the past encoder outputs. Nevertheless the study of this
model captures one source of tension inherent in the streaming
setup. When encoding sn

j we need to simultaneously satisfy
two requirements: The sequence sn

j must be reconstructed
within a distortion of D at encoder j . It can also be used as a
helper by decoder j + 1. In general these requirements can be
conflicting. If we set sn

j−2 = φ then the setup is reminiscent
of zig-zag source coding problem [20].

We establish a lower bound on the sum-rate with symmetric
rates R. In particular we show that for any D ∈ (0, 1 − ρ2)
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the inequality

2R ≥ 1

2
log

(
1 − ρ6

D

)
+ 1

2
log

(
(1 − ρ2)(1 − (1 − D)ρ2)

D(1 − ρ4)

)

(37)

holds. To show (37), note that

2n R ≥ H (f j , f j+1)

≥ H (f j , f j+1|sn
j−2)

= I (f j , f j+1; sn
j+1|sn

j−2) + H (f j , f j+1|sn
j−2, s

n
j+1)

≥ h(sn
j+1|sn

j−2) − h(sn
j+1|f j , f j+1, s

n
j−2)

+ H (f j |sn
j−2, s

n
j+1)

≥ n

2
log

(
1 − ρ6

D

)
+ H (f j |sn

j−2, s
n
j+1), (38)

where (38) follows from the fact that sn
j+1 must be recon-

structed from (f j , f j+1, s
n
j−2) within distortion D at decoder

j + 1. The first term is the minimum rate associated with
decoder j +1. We next lower bound the second term by using
the fact that f j must also be used by decoder j . In particular,

H (f j |sn
j−2, s

n
j+1) ≥ H (f j |sn

j−2, s
n
j−1, s

n
j+1)

≥ I (f j ; sn
j |sn

j−2, s
n
j−1, s

n
j+1)

= h(sn
j |sn

j−1, s
n
j+1) − h(sn

j |sn
j−2, s

n
j−1, s

n
j+1, f j )

= nh(s1|s0, s2) − h(sn
j |sn

j−2, s
n
j−1, s

n
j+1, f j )

≥ n

2
log

(
2πe

(1 − ρ2)2

(1 − ρ4)

)
− h(sn

j |sn
j−2, s

n
j−1, s

n
j+1, f j ).

(39)

One direct way to upper bound the last term in (39) is to use
the fact that s j can be reconstructed within distortion D using
(f j , s j−1). Thus by ignoring the fact that s j+1 is also available,
one can find the upper bound as

h(sn
j |sn

j−2, s
n
j−1, s

n
j+1, f j ) ≤ h(sn

j |sn
j−1, f j )

≤ n

2
log (2πeD). (40)

However knowing s j+1 can provide an extra observation to
improve the estimation of s j as well as the upper bound
in (40). In particular, we can show that

h(sn
j |sn

j−2, s
n
j−1, s

n
j+1, f j ) ≤ n

2
log

(
D(1 − ρ2)

1 − (1 − D)ρ2

)
. (41)

Note that the upper bound in (41) is strictly tighter than (40),
as the inequality

D(1 − ρ2)

1 − (1 − D)ρ2 ≤ D

always holds. To show (41), note that

h(sn
j |sn

j−2, s
n
j−1, s

n
j+1, f j )

= h(sn
j , s

n
j+1|sn

j−2, s
n
j−1, f j ) − h(sn

j+1|sn
j−2, s

n
j−1, f j )

= h(sn
j |sn

j−2, s
n
j−1, f j ) − h(sn

j+1|sn
j−2, s

n
j−1, f j ) + h(sn

j+1|sn
j )

= h(sn
j |sn

j−2, s
n
j−1, f j ) − h(sn

j+1|sn
j−2, s

n
j−1, f j )

+ n

2
log

(
2πe(1 − ρ2)

)

≤ n

2
log

(
D

1 − (1 − D)ρ2

)
+ n

2
log

(
2πe(1 − ρ2)

)
, (42)

where the first term in (42) follows from the fact that at
decoder j , sn

j is reconstructed within distortion D knowing
{sn

j−1, f j } and hence

h(sn
j |sn

j−2, s
n
j−1, f j ) = h(sn

j |sn
j−1, f j ) ≤ n

2
log(2πeD),

and using Lemma 1 stated below. By combining (39) and (42),
we have

H (f j |sn
j−2, s

n
j+1) ≥ n

2 log
(

(1−ρ2)(1−(1−D)ρ2)
(1−ρ4)D

)
. (43)

Eq. (37) follows from (38) and (43).
Lemma 1: Assume sa ∼ N(0, 1) and sb = ρmsa + n for

n ∼ N(0, 1 − ρ2m). Also assume the Markov chain property
fa → sa → sb. If h(sa |fa) ≤ 1

2 log(2πer), then

h(sa |fa) − h(sb|fa) ≤ 1

2
log

(
r

1 − (1 − r)ρ2m

)
. (44)

Proof: See Appendix F. �
In the following we present the general lower bound on the

rate-recovery function.

B. General Lower Bound

In our original streaming setup, the bound derived in the
previous section for the special case B = W = 1 can be
tightened by noting that the side information to the decoders
in Fig. 8 are actually encoder outputs rather than the true
source sequences. The following theorem characterizes the
general lower bound on the rate-recovery function.

Theorem 2: The rate recovery function satisfies
R(B, W, D) ≥ 
(ϑ, B, W ) for some ϑ satisfying

1−ρ2

22R−ρ2 ≤ ϑ ≤ D, where 
(ϑ, B, W ) is defined at the
bottom of this page. �

The proof of Theorem 2 is provided in Appendix G. The
lower bound in (45) can be viewed as summation of two
terms as

(W + 1)
(ϑ, B, W ) = 1

2
log

(
(1 − (1 − ϑ)ρ2(B+W+1))

D

)

+ 1

2
log

(
(1 − (1 − ϑ)ρ2)W+1

ϑW (1 − (1 − D)ρ2(W+1))

)
,

(46)


(ϑ, B, W ) � 1

2(W + 1)
log

(
(1 − (1 − ϑ)ρ2(B+W+1))(1 − (1 − ϑ)ρ2)W+1

DϑW (1 − (1 − D)ρ2(W+1))

)

(45)
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Fig. 9. Block diagram of Encoder and Decoder of Predictive Coding.

where the terms in (46) are strengthened and generalized
versions of (37).

The function 
(ϑ, B, W ) defined in (45) approaches to ∞
as ϑ → 0 and ϑ → ∞. It also has a global minimum at
ϑ = ϑm . The expression (46) is however not an explicit lower
bound on the rate as the interval for ϑ depends on the rate R.
The lower bound in Theorem 2 is computed as follows. First

λ is computed by solving the fixed point equation


λ = 


(
1 − ρ2

22
λ − ρ2 , B, W

)
.

Then the lower bound on R−(B, W, D) is computed as

R−(B, W, D) �

⎧
⎪⎪⎨

⎪⎪⎩


λ if ϑm ≤ 1−ρ2

22
λ−ρ2 ≤ D


(ϑm , B, W ) if 1−ρ2

22
λ−ρ2 ≤ ϑm ≤ D


(D, B, W ) if 1−ρ2

22
λ−ρ2 ≤ D ≤ ϑm .

Corollary 4: In the high resolution regime, the excess
rate (see Def. 1) for any feasible scheme satisfies RE ≥
R−

E (B, W ), where

R−
E (B, W ) � 1

2(W + 1)
log

(
1 − ρ2(B+W+1)

1 − ρ2(W+1)

)

. (47)

Proof: In the high resolution D → 0 and thus, D ≤ ϑm .
Therefore the lower bound in Theorem 2 is computed as
R−(B, W, D) = 
(D, B, W ). The proof is completed by
computing the limit limD→0 
(D, B, W ) and computing the
excess rate. �

VI. ANALYSIS OF BASELINE SCHEMES

In this section, we discuss the rate associated with various
baseline schemes.

A. Predictive Coding

The block diagram of the encoder and decoder of the
predictive coding is shown in Fig. 9 where αPC = γPC,t = ρ.

The following theorem characterizes the achievable rate of
the predictive coding.

Theorem 3: The predictive coding scheme achieves any
rate R ≥ R+

PC(B, W, D) for D ≥ ρ2(W+1)(1 − ρ2B) where

R+
PC(B, W, D)

� 1

2
log

(
1 − ρ2(W+1)(1 − ρ2B) − (1 − D)ρ2

D − ρ2(W+1)(1 − ρ2B)

)

. (48)

�
The proof of Theorem 3 is presented in Appendix H.

Remark 6: The minimum distortion achieved by predictive
coding is D�

min = ρ2(W+1)(1 − ρ2B). This corresponds to
the contribution of encoder outputs during the burst erasure.
In particular predictive coding cannot be used in the high
resolution when D → 0.

Leaky predictive coding is a modification of predictive
coding with the similar encoder and decoder, shown in Fig. 9
with αLPC ∈ [0, ρ] and

γLPC,t =
{

αLPC, gt = �

ρ, otherwise.
(49)

The encoder consists of
1) Calculating the prediction error of time t as

et = xt − αLPCx̃t−1. (50)

2) Quantizing the prediction error as et = ut + z̃t with the
rate R = I (et ; ut) where z̃t is i.i.d. Gaussian noise.

3) Updating the encoders memory as x̃t = ut + αLPCx̃t−1.
The decoder is able to reconstruct ut from the latest channel
output if and only if gt �= �. It generates the source recon-
struction at any time t as

x̂t =
{

ut + αLPCx̂t−1, gt �= �

ρx̂t−1, gt = �.
(51)

The leaky predictive coding is more robust to channel
erasures than the predictive coding scheme. In high resolu-
tion excess rate, this scheme degenerates into to memoryless
quantization with αLPC = 0. The excess rate can be shown
to be:

R+
E,LPC = 1

2
log

(
1

1 − ρ2

)
.

In this regime, the encoder of the leaky predictive coding
scheme simply sends the quantized source sequences without
any prediction at the encoder. As discussed next, the mem-
oryless quantization-and-binning scheme will outperform this
rate at high resolution regime via the binning step.

B. Memoryless Quantization-and-Binning

The memoryless quantization-and-binning scheme can be
viewed as the special case of the hybrid coding scheme
described in Section IV with

wk =
{

1 k = 1

0 otherwise.

Therefore the achievability result of Corollary 1 also holds for
this scheme.

Corollary 5: The memoryless quantization-and-binning
coding scheme achieves the rate

R+
QB(B, W, D) = min

σ 2
z :	QB(σ 2

z )≤D
RQB(σ 2

z ) (52)

where we define

RQB(σ 2
z ) � 1

W + 1
h([ũ]B+W+1

B+1 |s̃1) − 1

2
log

(
2πeσ 2

z

)
, (53)

	QB(σ 2
z ) � Var(sB+W+1|[ũ]B+W+1

B+1 , s̃1), (54)
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Fig. 10. Block diagram of Separation-Based Coding: A zero-delay predictive
source code followed by a FEC channel code.

where for any ũi � si + zi and zi is sampled
i.i.d. from N (0, σ 2

z ). Also s̃1 � s1 + e and e ∼
N

(
0,�(σ 2

z )/(1 − �(σ 2
z ))

)
, with �(σ 2

z ) defined in (26). �
The proof of Corollary 5 is presented in Appendix I-A. The

proof follows by specializing the proof of the hybrid coding
scheme in Theorem 1 to the memoryless quantization-and-
binning. In particular we show that the sum-rate constraint
of simultaneously recovering W + 1 sequences after the error
propagation window, is the dominant constraint in this case.

The following corollary characterizes the high resolution
performance of the memoryless quantization-and-binning.

Corollary 6: In the high resolution regime, the excess rate
of the memoryless quantization-and-binning scheme satisfies:

lim
D→0

R+
E,QB(B, W, D)

= lim
D→0

(
R+

QB(B, W, D) − 1

2
log

(
1 − ρ2

D
+ ρ2

))

= 1

2(W + 1)
log

(
1 − ρ2(B+1)

1 − ρ2

)

. (55)

�
The proof of Corollary 6 is presented in Appendix I-B. The

proof is based on the observation that in the high resolution
regime we have ut ≈ xt . Therefore, the Markov chain property
among the original source sequences also approximately holds
for ut .

C. Separation-Based Coding

The separation based coding scheme is based on the prin-
ciple of using an optimal source code followed by an optimal
channel code. Thus we apply ideal predictive coding for
the source sequences, followed by a suitable forward-error-
correcting (FEC) code to protect the channel packets from
channel erasures. The following theorem characterizes the
achievable rate.

Theorem 4: The separation based coding scheme achieves
any rate R ≥ R+

SC(B, W, D) where

R+
SC(B, W, D) � B + W + 1

2(W + 1)
log

(
1 − ρ2

D
+ ρ2

)
. (56)

�
The block diagram of the coding scheme is shown in Fig.10.

The n-length source vector at each time is first encoded via
predictive coding scheme which results in n RI bits per source
vector. A rate-(W + 1)/(B + W + 1) FEC code is then
applied over the predictive encoder’s outputs which enables the
recovery of all B + W + 1 codewords from W + 1 available
channel outputs after the erasure. In particular, the channel
code consists of a (B + W + 1, W + 1) Maximum Distance
Separable (MDS) systematic convolutional code which is

capable of correcting B erasures in arbitrary locations (includ-
ing erasure bursts) [21]. The formal proof is omitted as it
is rather straightforward. The excess rate of separation based
coding scheme in high resolution is given by:

R+
E,SC(B, W, D)

= lim
D→0

(
R+

SC(B, W, D) − 1

2
log

(
1 − ρ2

D
+ ρ2

))

= lim
D→0

B

2(W + 1)
log

(
1 − ρ2

D

)
= ∞. (57)

D. GOP-Based Coding

In its simplest form a zero-delay GOP, used in many
practical systems, contains the following structure:

• I-frame (intra coded frame) a picture that is coded
independently of all other pictures. Each GOP begins
(in decoding order) with this type of picture.

• P-frame (predictive coded frame) contains motion-
compensated difference information relative to previously
decoded pictures.

In order to control the error-propagation, the I-frames, which
require higher rates, are transmitted periodically and the
P-frames, with smaller rates, are transmitted in between. When
the decoder fails in recovery of any frame during a GOP,
the rest of the frames of that GOP are not recovered. However
the decoder gets back to recovery of the frames only after the
next I-frame.

In order to analyze the performance of the GOP based
scheme in our framework, we assume that the source sequence
occurring at times as multiples of W + 1 are encoded as
I-Frames using memoryless encoding and decoding. This guar-
antees that recover window at the destination will always be no
greater than W . Predictive coding is applied to the remaining
source sequences. The following theorem characterizes the
achievable rate of such a scheme.

Theorem 5: The GOP-based coding scheme achieves the
average rate R̄GOP(W, D) for any B ≥ 0 where

R̄GOP(W, D) = 1

2
log

(
1 − ρ2

D
+ ρ2

)

+ 1

2(W + 1)
log

(
1

1 − (1 − D)ρ2

)
. (58)

�
Remark 7: The GOP-based coding scheme is a time-

variant scheme and the rate associated with the I-frames and
P-frames are not the same. In this paper we compare the
average rate of the GOP-based scheme, rather than its peak
rate, with other schemes.

The proof of Theorem 5 is presented in Appendix J. It can
be readily observed that in the high resolution regime when
D → 0, the average excess rate of the GOP-based scheme
scales as

lim
D→0

R̄E,GOP(W, D) = 1

2(W + 1)
log

(
1

1 − ρ2

)
. (59)

Table II summarizes the high resolution results of the coding
schemes discussed above. Note that the gap associated with
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TABLE II

HIGH RESOLUTION EXCESS RATES FOR DIFFERENT CODING SCHEMES

predictive coding and separation based scheme is ∞ and hence
not included in the comparison.

VII. MISMATCHED AND STATISTICAL CHANNELS

Although our analysis so far has focussed on the burst
erasure channel, with a maximum burst-length of B , the coding
schemes themselves are universal — following any erasure
sequence, the decoder will resume zero-delay reconstruction
after a sufficiently long recovery period. In this section we first
discuss how such waiting time can be computed for the case
of mismatched burst erasure channels. Thereafter we discuss
simulations over statistical channels.

A. Mismatched Channel

In this section we investigate the performance of differ-
ent coding schemes over mismatched channels. In particular
consider a coding scheme that is designed for the parame-
ters (B, W ) where B is the channel erasure burst length and
W is the waiting time after the erasure burst, before resuming
zero-delay reconstruction of the source sequences. Assume
that the underlying channel introduces an erasure burst of
length β. Obviously if β < B , the decoder will have to wait for
no more that W symbols after the erasure burst. Now consider
the case β > B . As we discuss below, after a suitable waiting
period, say �(β, R, D), the decoder will be able to resume
zero-delay reconstruction.

1) Memoryless Quantization-and-Binning: For a rate R
memoryless quantization-and-binning scheme, with test chan-
nel ut = st + zt , where zt ∼ N (0, σ 2

z ), the minimum waiting
period following an erasure burst of length β is given by:

�QB(β, R, D) � min
rQB(β,W,σ 2

z )≤R
dQB(β,W,σ 2

z )≤D

W,

where

rQB(β, W, σ 2
z )

� lim
t→∞

1

W + 1
h([u]t

t−W |ut−β−W−1
1 ) − 1

2
log(2πeσ 2

z ),

and

dQB(β, W, σ 2
z ) � lim

t→∞ Var(st |ut−β−W−1
1 , [u]t

t−W ).

In particular the decoder will keep collecting the channel
outputs until it accumulates sufficient rate to recover all the
source sequences. We refer to Appendix VIII-A for details.

2) Hybrid Coding: By following the analysis similar to
memoryless quantization-and-binning, the waiting time for the
hybrid coding scheme can be expressed as:

�H(β, R, D) � min
rH(β,W,σ 2

z )≤R
dH(β,W,σ 2

z )≤D

W

where the rate term rH(β, W, σ 2
z ) is equivalent to the rate

expression in (29) of Theorem 1 for erasure burst of length β
rather than B and

dH(β, W, σ 2
z ) � lim

t→∞ Var(st |ut−β−W−1
1 , [u]t

t−W ).

3) Predictive Coding: In the predictive coding, the waiting
time is given by:

�PC(β, R, D) � min
dPC(β,W,R)≤D

W

where

dPC(β, W, R) = ρ2(W+1)σ 2
u

β−1∑

l=0

ρ2l + σ̃ 2
z (60)

denotes the distortion at the destination in the first sequence
to be recovered following the erasure burst. Through standard
analysis it can be shown that σ̃ 2

z = 1−ρ2

22R−ρ2 and σ 2
u =

(1 − σ̃ 2
z )(1 − ρ2). Note that the first term in (60) decreases

exponentially in W . Thus after a sufficiently long waiting time
the effect of the erasure burst will become negligible and only
the quantization noise will prevail.

Similar arguments of predictive coding can be applied to
define �LPC(β, R, D) for the leaky predictive coding. As this
scheme is not the main focus of this paper we only numerically
calculate the waiting time function for this scheme.

4) GOP-Based Coding: By fixing the operational rate to be
R, the period of I-frame transmissions, i.e., W �+1, is specified
by solving

R̄GOP(W �, D) = R,

where R̄GOP(W, D) is defined in (58). In this scheme when-
ever a burst of channel packets are erased, the decoder declares
loss up to the time of the next non-erased I-frame, when
the decoder gets back to recovery. Therefore �GOP(β, R, D)
always belong to the set {0, 1, . . . , W �} with equal proba-
bility depending on the time when the erasure burst ends.
For instance, if the erasure ends right before the I-frame,
the waiting time will be 0, as the next frame will be recovered
immediately. If the erasure burst ends while at the I-frame,
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TABLE III

WAITING TIME �(β, R, D) FOR DIFFERENT ERASURE BURST
LENGTHS β AND R = 1.50, D = 0.1 AND ρ = 0.5

TABLE IV

WAITING TIME �(β, R, D) FOR DIFFERENT ERASURE BURST

LENGTHS β AND R = 1.063, D = 0.1 AND ρ = 0.8

the decoder need to wait for the entire period. Thus the average
waiting time for this scheme is

�GOP(β, R, D) = W �

2
.

Note that for the GOP-based scheme, unlike the other schemes,
the average rate is considered rather than the peak rate.

5) Lower Bound: In order to derive the lower bound on
the waiting time for any burst length, we invoke the lower
bound on the rate-recovery function (see Section V) to find the
minimum required W for any burst length β and fixed opera-
tional rate R. In particular, the minimum possible waiting time
after an erasure of length β, has to satisfy R−(β, W, D) ≤ R.
It gives a lower bound on the waiting function as

�−(β, R, D) � min
R−(β,W,D)≤R

W,

where R−(β, W, D) is the lower bound on the rate recovery
function derived in Theorem 2.

Tables III and IV illustrate �(β, R, D) as a function of
burst length β, when the average distortion is D = 0.1, and
correlation coefficients are ρ = 0.5 and ρ = 0.8, respectively.
The communication rate is selected to be

R = 1.02RI = 1.02 × 1

2
log

(
1 − ρ2

D
+ ρ2

)
,

which is a 2% rate-overhead over the ideal channel rate.
We note that for β = 1, the hybrid coding scheme attains
a wait time that coincides with the lower bound. This obser-
vation will be useful when we discuss simulations over i.i.d.
erasure channels, where the isolated erasure can be dominant
error patterns.

B. Statistical Channels

In this section we apply the coding schemes designed in the
previous section over different statistical channel models.

Fig. 11. Gilbert channel model: In the “Good” state, the channel perfectly
reveals the encoder output to the decoder, while in the “Bad” state, the channel
erases the decoder output.

1) Channel With i.i.d. Erasures: We first consider the case
of i.i.d. erasures. The channel at each time may introduce
an erasure with probability of γ . The decoder declares a
source sequence sn

t as lost if it cannot reproduce it at
time t within required distortion D. Naturally due to the
zero delay constraint, all the source sequences corresponding
to the channel erasures will have to be lost for any coding
scheme. The probability of excess loss is the fraction of source
sequences corresponding to non-erasures that are also declared
as lost.

When the erasures are sparse, so that the effect of each
erasure is locally isolated, we can approximate the excess
loss rate PEL using the function �(β, R, D) with β = 1.
In particular

PEL ≈ γ · �(1, R, D).

Fig. 12(a) and Fig. 13(a) illustrate the simulated excess
loss rate of different schemes over i.i.d. erasure channel as
a function of erasure probability for the case of ρ = 0.5
and ρ = 0.8, respectively, D = 0.1 and a 2% rate over-
head. It can be observed that the hybrid coding scheme
outperforms the other schemes. From Table III it can be
observed that, for isolated erasure, i.e, β = 1, the hybrid
coding scheme attains the same waiting time as the lower
bound, i.e., �H(1, R, D) = �−(1, R, D). This is the main
reason that the hybrid coding scheme performs very close to
optimal in this scenario. The predictive coding and GOP-based
coding schemes require three times longer waiting time and
the memoryless quantization-and-binning requires four time
longer waiting time after an isolated erasure. Note that as γ ,
i.e, the packet erasure probability, increases, the chance of
consecutive erasures increases. This is the reason that the
hybrid coding shows a loss probability slightly higher than
the lower bound as γ increases.

2) Gilbert-Elliott Channel Model: We further consider the
two-state Gilbert-Elliott channel model [22]–[24] (Fig. 11) in
which all channel packets are erased in “bad state”. In the
“good state” a packet is erased with a probability of ε. Let
pg and qg denote the probability of transition from “good”
to “bad” state and vice versa. In steady state, the probability
of being in “bad state” and thus the erasure probability is
pg/

(
pg + qg

)
. It is not hard to verify that the mean burst

length is equal to 1/qg.
Knowing that the function �(β, R, D) characterizes the

waiting time for erasure bursts of different lengths, and
assuming that the consecutive bursts are separated with long
enough guard interval, the probability of excess loss, PEL can
be approximated as

PEL ≈ ε · �(1, R) + pgqg

∞∑

β=1

(1 − qg)
β−1 · �(β, R, D).
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Fig. 12. Comparison of different schemes ρ = 0.5, D = 0.1, and R = 1.02RI . (a) Probability of excess loss versus probability of erasure (γ ) of a channel
with independent erasures. (b) Probability of excess loss versus probability of erasure in good states (ε) for Gilbert-Elliott channel with pG = 5 × 10−3,
qG = 1

3 .

Fig. 13. Comparison of different schemes ρ = 0.8, D = 0.1, and R = 1.02RI . (a) Probability of excess loss versus probability of erasure (γ ) of a channel
with independent erasures. (b) Probability of excess loss versus probability of erasure in good states (ε) for Gilbert-Elliott channel with pG = 5 × 10−3,
qG = 1

3 .

In particular the first term is the average number of losses
resulted by isolated erasures in good state and the second term
is the summation of average number of losses resulted by burst
erasures of length β in bad state, for different burst lengths
β ∈ [1 : ∞).

In Fig. 12(b) and Fig. 13(b), we illustrate the performance
of different schemes for a Gauss-Markov source with ρ = 0.5
and ρ = 0.8 respectively for average distortion D = 0.1 and
2% rate overhead over the Gilbert-Elliott channel. In both plots
we fixed the channel parameters (pg, qg) = (5 × 10−3, 1

3 ).
The performance of different schemes are illustrated as a
function of the parameter ε. We verify again that the hybrid
coding scheme provides significant gains over other baseline
schemes.

VIII. CONCLUSIONS

We study real-time coding of Gauss-Markov sources under
a zero decoding delay constraint over an erasure channel.
We first consider a simplified information theoretic model
involving a burst erasure channel and define the rate-recovery
function in this setup. We explain the weakness in tradi-
tional schemes such as predictive coding and memoryless
quantization-and-binning in this setup. We propose a new
coding scheme that can be viewed as a hybrid of these

schemes that achieves significant gains. We also develop a
lower bound on the rate-recovery function and show that in
certain regimes our proposed scheme can be close to optimal.
Several numerical computations and simulations are presented
to illustrate the performance gains of our proposed technique
over baseline schemes in a variety of channel models.

Our present setup requires that every sequence outside of
the error propagation period be recovered with distortion D,
while sequences inside this period need not be recovered.
One natural extension is that the sequences within the error
propagation period must be recovered, albeit with a higher
distortion. Another extension is to relax the zero decod-
ing delay constraint at the receiver, and allow a non-zero
decoding delay. Some effort in that direction is presented
in [14] and [16] however a more complete characterization
remains to be developed.

APPENDIX A
SUM-RATE OF THE CASE B = W = 1 IN THE

HIGH RESOLUTION REGIME

In this section we establish the rate expressions stated
in Section III. In all of our analysis we start with the sum-rate
expression (13).
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Fig. 14. Burst erasure channel model parametrized by starting time of
erasure, τ .

A. Memoryless Quantization-and-Binning

Since ut = xt + zt we have that:

lim
D→0

{Rsum + log (2πeD)} = lim
D→0

h

((
nt−1 + ρnt−2 + · · · + ρt−2n1 + zt−1

nt + ρnt−1 + ρ2nt−2 + · · · + ρt−1n1 + zt

) ∣
∣
∣[n]t−3

1

)

= lim
D→0

h

((
nt−1 + ρnt−2 + zt−1

nt + ρnt−1 + ρ2nt−2 + zt

))

= lim
D→0

{h(nt−1 + ρnt−2 + zt−1)

+ h(nt + ρnt−1 + ρ2nt−2 + zt |nt−1 + ρnt−2 + zt−1)}
=

{
1

2
log

(
2πe(1 − ρ2)(1 + ρ2)

)
+ 1

2
log

(
2πe(1 − ρ2)

)}
,

where we applied the fact that nt ∼ N (0, 1 − ρ2) and
zt , zt−1 ∼ N (0, σ 2

z ) with σz → 0 as D → 0. We have

lim
D→0

{Rsum − RI (D)} = 1

2
log

(
1 + ρ2

)
,

as required.

B. Imperfect Prediction-and-Binning

We have

lim
D→0

{Rsum + log (2πeD)} = lim
D→0

h(ut−1, ut |[n]t−3
1 ) = lim

D→0

h

((
nt−1 + ρ2nt−3 + · · · + zt−1 − ρzt−2 + ρ2zt−3 − · · ·

nt + ρ2nt−2 + · · · + zt − ρzt−1 + ρ2zt−2 − · · ·
)

∣∣
∣[n]t−3

1

)

= lim
D→0

{
h(nt−1) + h(nt + ρ2nt−2|nt−1)

}

= 1

2
log

(
2πe(1 − ρ2)

)
+ 1

2
log

(
2πe(1 + ρ4)(1 − ρ2)

)
.

(61)

Finally (61) reduces to

lim
D→0

{Rsum − RI (D)} = 1

2
log

(
1 + ρ4

)
,

as required.

APPENDIX B
ACHIEVABILITY OF HYBRID CODING:

PROOF OF THEOREM 1

A. General Rate and Distortion Constraints

In order to study the rate of the hybrid coding scheme,
consider the channel with an erasure burst spanning [τ :
τ + B − 1]. Fig. 14 illustrates a burst erasure channel model
parametrized by τ , i.e., the time where the burst erasure of
length B starts. We identify three different time regions.

• Region 1: t < τ , where there is no previous erasure by the
channel. The decoder recovers ut given {u1, . . . ,ut−1}.
This succeeds with high probability if

R ≥ R1,τ (t, σ
2
z ) � h(ut |[u]t−1

1 ) − 1

2
log

(
2πeσ 2

z

)
. (62)

Furthermore, the decoder reconstructs the source
sequence xt within the distortion

D1,τ (t, σ
2
z ) � Var(xt |[u]t

1). (63)

• Region 2: t = τ + B + W , right after the erasure burst of
length B spanning [τ, τ + B −1] and a window of length
W after that. The decoder simultaneously recovers all the
codewords [u]t

t−W given {u1, . . . ,uτ−1}. This succeeds
with high probability if

R ≥ R2,τ (σ
2
z )

� max
M⊆LτM�=φ

1

|M|h([u]M|[u]τ−1
1 , [u]Mc)

− 1

2
log

(
2πeσ 2

z

)
, (64)

where

Lτ � {τ + B, . . . , τ + B + W } (65)

and Mc denotes the compliment of M with respect to the
set Lτ . Furthermore, the decoder reconstructs the source
sequence xτ+B+W within the distortion

D2,τ (σ 2
z ) � Var(xτ+B+W |[u]τ−1

1 , [u]τ+B+W
τ+B ).

• Region 3: t > τ + B + W , the time after Region 2. The
decoder recovers ut given

{u1, . . . ,uτ−1,uτ+B+W , . . . ,ut−1}.
This succeeds with high probability if

R ≥ R3,τ (t, σ
2
z ) � h(ut |[u]τ−1

1 , [u]t−1
τ+B)− 1

2
log

(
2πeσ 2

z

)
.

(66)

Furthermore, the decoder reconstructs the source
sequence xt within the distortion

D3,τ (t, σ
2
z ) � Var(xt |[u]τ−1

1 , [u]t
τ+B).

For any parameter τ , define

Rτ (t, σ
2
z ) �

⎧
⎪⎨

⎪⎩

R1,τ (t, σ 2
z ), t < τ

R2,τ (σ
2
z ), t ∈ [τ, τ + B + W ]

R3,τ (t, σ 2
z ), t > τ + B + W,

(67)

Dτ (t, σ
2
z ) �

⎧
⎪⎨

⎪⎩

D1,τ (t, σ 2
z ), t < τ

D2,τ (σ
2
z ), t ∈ [τ, τ + B + W ]

D3,τ (t, σ 2
z ), t > τ + B + W.

(68)

The rate and distortion constraints have to be satisfied for all
possible parameters τ . In particular, the rate

R ≥ max
τ∈[1:T −B] max

t
Rτ (t, σ

2
z )

is achievable, for any test channel noise satisfying

max
τ∈[1:T −B] max

t
Dτ (t, σ

2
z ) ≤ D.
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B. Worst-Case Characterization of Burst Erasure

In this section we show that for any test channel noise σ 2
z ,

the worst-case rate constraint (67), is

sup
τ,t

Rτ (t, σ
2
z ) = lim

τ→∞ R2,τ (σ
2
z )

= lim
τ→∞ max

M⊆LτM�=φ

1

|M|h([u]M|[u]τ−1
1 , [u]Mc)

− 1

2
log(2πeσ 2

z ), (69)

where Lτ is defined in (65). In addition the test channel
noise σ 2

z has to satisfy the worst-case distortion constraint

sup
τ,t

Dτ (t, σ
2
z )

= lim
τ→∞ D2,τ (σ

2
z )

= lim
τ→∞ Var(xτ+B+W |[u]τ−1

1 , [u]τ+B+W
τ+B ) ≤ D. (70)

Before the proof consider the following lemmas.
Lemma 2 (Time-Shifting Lemma): For the hybrid cod-

ing scheme and for any k < t ,

h(xt |[u]M, [x]k
1, [z]k

1) = h(xt−k |[u]M−k)

for M ⊆ {1, 2, , . . . , t} (71)

h(ut |[u]M, [x]k
1, [z]k

1) = h(ut−k |[u]M−k)

for M ⊆ {1, 2, , . . . , t − 1}, (72)

where M − k � {m − k|m ∈ M, m > k}.
Remark 8: Similar equality holds for estimation error

function rather than differential entropy. In particular,

Var(xt |[u]M, [x]k
1, [z]k

1) = Var(xt−k |[u]M−k)

for M ⊆ {1, 2, , . . . , t − 1}. (73)

This follows from the fact that for a Gaussian variable X we
have h(X) = 1

2 log (2πeVar(X)).
Proof: First consider (71) and note that for any k < j ≤ t ,

we have

x j = ρ j−kxk +
j∑

l=k+1

ρ j−lnl .

Now for any M ⊆ {1, 2, , . . . , t} we have

h(xt |[u]M, [x]k
1, [z]k

1)

= h

(
ρt−kxk +

t∑

l=k+1

ρt−lnl

∣
∣
∣∣

⎧
⎨

⎩

j∑

l=1

q j,l(xl + zl)

⎫
⎬

⎭
j∈M, j>k

,
{
u j

}
j∈M, j≤k , [x]k

1, [z]k
1

)

= h

( t∑

l=k+1

ρt−lnl

∣
∣
∣
∣

⎧
⎨

⎩

j∑

l=k+1

q j,l(xl + zl)

⎫
⎬

⎭
j∈M, j>k

, [x]k
1, [z]k

1

)

= h

⎛

⎝
t−k∑

l=1

ρt−k−lnl

∣
∣
∣
∣

⎧
⎨

⎩

j∑

l=1

q j,l(xl + zl)

⎫
⎬

⎭
j∈M−k

⎞

⎠

Fig. 15. Schematic of the variables in Lemma 4.

= h(xt−k |[u]M−k), (74)

where (74) follows from the fact that u j for j ≤ k are function
of {[x]k

1, [z]k
1}. We use the fact that n1, n2, . . . are i.i.d. and the

fact that each xl depends only on n1, . . . , nl and is independent
of nl+1, . . . as well as the fact that qi, j only depends on j − i ,
to justify the shift backwards by k. Also (72) can be verified
using similar methods. �

Lemma 3: For any test channel noise σ 2
z and any τ and

t, we have the inequalities

Rτ+1(t + 1, σ 2
z ) ≥ Rτ (t, σ 2

z ) (75)

Dτ+1(t + 1, σ 2
z ) ≥ Dτ (t, σ 2

z ). (76)

Proof: First consider the rate inequality in (75). It suffices
to show that the inequality holds for all the rate expressions
in (67). For instance using (62) for R1,τ (t, σ 2

z ), we have

R1,τ+1(t + 1, σ 2
z )

� h(ut+1|[u]t
1) − 1

2
log

(
2πeσ 2

z

)

≥ h(ut+1|[u]t
1, x1, z1) − 1

2
log

(
2πeσ 2

z

)
(77)

= h(ut |[u]t−1
1 ) − 1

2
log

(
2πeσ 2

z

)
� R1,τ (t, σ

2
z ) (78)

where (77) follows from the fact that conditioning reduces
the differential entropy, and (78) follows from the appli-
cation of second equality in Lemma 2 at time t + 1 for
M = {1, . . . , t} and k = 1. The similar inequalities can be
derived for R2,τ (σ

2
z ) and R3,τ (t, σ 2

z ). This verifies (75).
The same method can be applied for the distortion con-

straints to show (76). For example for D1,τ+1(t + 1, σ 2
z )

from (63) we have

D1,τ+1(t + 1, σ 2
z ) � Var(xt+1|[u]t+1

1 )

≥ Var(xt+1|[u]t+1
1 , x1) (79)

= Var(xt |[u]t
1) � D1,τ (t, σ

2
z ) (80)

where (79) follows from the fact that revealing the additional
information x1 can only reduces the distortion and (80) fol-
lows from Remark 8. Similar inequalities can be derived for
D2,τ (σ

2
z ) and D3,τ (t, σ 2

z ). This verifies (76). �
Lemma 4: Consider jointly Gaussian random variables

{X1,X2,Y1,Y2} as shown in Fig. 15, such that for k ∈ {1, 2}
Xk ∼ N (0, 1)

Zk ∼ N (0, ek)

Yk = Xk + Zk .

Also X2 = ρX1 + N . Define

δ(e1, e2, ρ) � Var(X1|Y1) − Var(X2|Y1,Y2).
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For any e2, ρ ≥ 0,

dδ(e1, e2, ρ)

de1
≥ 0. (81)

Proof: Note that

δ(e1, e2, ρ) � Var(X1|Y1) − Var(X2|Y1,Y2)

= 1 − 1

1 + e1
− 1 + (

ρ 1
)
(

1 + e1 ρ
ρ 1 + e2

) (
ρ
1

)

= 1 + e1 − ρ2(1 − e2)

(1 + e1)(1 + e2) − ρ2 − 1

1 + e1
.

We have

dδ(e1, e2, ρ)

de1
= 1

(1 + e1)2 − ρ2e2
2

((1 + e1)(1 + e2) − ρ2)2 .

(82)

It can be readily seen that (82) is non-negative, by simple
manipulation of the inequality

(1 + e1)(1 + (1 − ρ)e2) ≥ 1 ≥ ρ2.

This completes the proof. �
Remark 9: The condition (81) can be interpreted as fol-

lows. Suppose that Z ∼ N (0, σ 2
1 ) and Z ′ ∼ N (0, σ 2

2 ) are
independent of all other variables and σ 2

1 ≤ σ 2
2 . Then if

Var(X1|X1 + Z ) − Var(X2|X1 + Z ,Y2) ≥ 0 we also have that
Var(X1|X1 +Z ′)− Var(X2|X1 +Z ′,Y2) ≥ 0 must be satisfied.

Lemma 5: In the hybrid coding scheme, for any test chan-
nel noise σ 2

z and any t ≥ τ + B + W we have

lim
τ→∞

[
Var(xt−1|[u]τ−1

1 , [u]t−1
τ+B) − Var(xt |[u]τ−1

1 , [u]t
τ+B)

]
≥ 0.

(83)

Proof: First, for t ≥ τ + B + W :

Var(xt |[u]τ−1
1 , [u]t−1

τ+B, ut )

= Var(xt |[u]τ−1
1 , [u]t−1

τ+B , ut +
W∑

k=1

wkut−k)

= Var(xt |[u]τ−1
1 , [u]t−1

τ+B , xt + zt ).

Second, if x̂t−1([u]τ−1
1 , [u]t−1

τ+B) denotes the estimate of xt−1

given ([u]τ−1
1 , [u]t−1

τ+B), we can write

1

α1
x̂t−1([u]τ−1

1 , [u]t−1
τ+B) = xt−1 + ñ1,

where ñ1 ∼ N (0, σ̃ 2
1 ) is independent of xt−1. In addition,

if we define σ 2
1 to be the mean square error (MSE) of the

estimation, it can be shown that

α1 = E{x2
t−1} − σ 2

1

E{x2
t−1}

and

σ̃ 2
1 =

(
1

σ 2
1

− 1

E{x2
t−1}

)−1

. (84)

Third, we can define

1

α2
x̂t−1([u]t−1

1 ) = xt−1 + ñ2,

where ñ2 ∼ N (0, σ̃ 2
2 ) is also independent of xt−1. From

the fact that the MSE of the estimation x̂t−1([u]t−1
1 ) can not

be bigger than the MSE of x̂t−1([u]τ−1
1 , [u]t−1

τ+B), and the
monotonicity of σ̃ 2

1 as a function of the MSE σ 2
1 in (84),

it can be concluded that σ̃ 2
2 ≤ σ̃ 2

1 .
Now, from the principle of sufficient statistics, we have that

Var(xt−1|[u]τ−1
1 , [u]t−1

τ+B) − Var(xt |[u]τ−1
1 , [u]t

τ+B)

= Var(xt−1|xt−1 + ñ1) − Var(xt |xt−1 + ñ1, xt + zt ). (85)

To prove the lemma, it suffices to show the non-negativity of
the right hand side of (85) as t → ∞. To establish this we
instead we show that

lim
t→∞

[
Var(xt−1|xt−1 + ñ2) −Var(xt |xt−1 + ñ2, xt + zt )

] = 0.

(86)

The result then follows from Remark 9. Finally note that in
steady state we have:

lim
t→∞ Var(xt−1|[u]t−1

1 ) = lim
t→∞ Var(xt |[u]t

1), (87)

which in turn establishes (86), and completes the proof. �
Having established the necessary auxiliary results, we now

turn to the proof of (69) and (70). Towards this end we
show that the terms R2,τ and D2,τ will dominate the rate and
distortion expressions. This is accomplished through several
steps outlined below.

Step 1: For any fixed τ , and any t ≤ τ we have

R2,τ (σ
2
z ) ≥ R1,τ (t, σ

2
z ) (88)

D2,τ (σ
2
z ) ≥ D1,τ (t, σ

2
z ). (89)

Proof: To show (88), note that from the definition of
R2,τ (σ

2
z ) (see (64)), we have

R2,τ (σ
2
z ) ≥ h(uτ+B+W |[u]τ−1

1 , [u]τ+B+W−1
τ+B ) − 1

2
log 2πeσ 2

z

≥ h(uτ+B+W |[u]τ+B+W−1
1 , [x]τ+B+W−t

1 , [z]τ+B+W−t
1 )

− 1

2
log 2πeσ 2

z (90)

= h(ut |[u]t−1
1 ) − 1

2
log 2πeσ 2

z (91)

= R1,τ (t, σ
2
z ),

where (90) follows from the fact that conditioning reduces the
differential entropy and (91) follows from the application of
Lemma 2 at time τ + B + W for M = {1, . . . , τ + B + W }
and k = τ + B + W − t . The distortion constraint in (89) can
be verified through the similar steps. �

Step 2: The functions Rτ (σ 2
z ) and Dτ (σ

2
z ), defined as,

Rτ (σ
2
z ) � max

t
Rτ (t, σ

2
z ) (92)

Dτ (σ 2
z ) � max

t
Dτ (t, σ

2
z ) (93)

are increasing functions with respect to τ .
Proof: Note that

Rτ (σ
2
z ) = max

t
Rτ (t, σ 2

z )

≤ max
t

Rτ+1(t + 1, σ 2
z ) (94)

= Rτ+1(σ
2
z ),
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where (94) follows from (75) in Lemma 3. The proof for
Dτ (σ

2
z ) follows similarly. �

This step shows that the dominant term in the rate and
distortion constraints corresponds to the steady state behaviour
i.e., τ → ∞.

Step 3: For any t > τ + B + W , we have that

R2,τ (σ
2
z ) ≥ R3,τ (t, σ

2
z ) (95)

D2,τ (σ
2
z ) ≥ D3,τ (t, σ

2
z ) (96)

are satisfied in the limit τ → ∞.
Proof: We first focus on the rate constraint (95). Note that

by the definition of R2,τ (σ
2
z ) in (64), we have

R2,τ (σ
2
z ) ≥ h(uτ+B+W |[u]τ−1

1 , [u]τ+B+W−1
τ+B ) − 1

2
log

(
2πeσ 2

z

)
.

(97)

According to (97) and the definition of R3,τ (t, σ 2
z ) in (66),

in order to show (95), it suffices to show the following for
any t ≥ τ + B + W ,

h(ut |[u]τ−1
1 , [u]t−1

τ+B) ≥ h(ut+1|[u]τ−1
1 , [u]t

τ+B). (98)

Note that according to the definition of hybrid test channel,
we have

xt + zt = ut +
W∑

k=1

wkut−k,

i.e., xt + zt is only the function of the current and the past W
test channel outputs. Thus for any t ≥ τ + B + W ,

h(ut |[u]τ−1
1 , [u]t−1

τ+B) = h(xt + zt |[u]τ−1
1 , [u]t−1

τ+B),

and hence (98) can be written as

h(xt + zt |[u]τ−1
1 , [u]t−1

τ+B) ≥ h(xt+1 + zt+1|[u]τ−1
1 , [u]t

τ+B),

(99)

and based on the fact that zt and zt+1 are i.i.d., to show (99)
it suffices to show that

h(xt |[u]τ−1
1 , [u]t−1

τ+B) ≥ h(xt+1|[u]τ−1
1 , [u]t

τ+B),

which is equivalent to show,

Var(xt |[u]τ−1
1 , [u]t−1

τ+B) ≥ Var(xt+1|[u]τ−1
1 , [u]t

τ+B). (100)

In addition note that for any t ≥ τ + B + W ,

Var(xt |[u]τ−1
1 , [u]t−1

τ+B)

= Var(ρxt−1 + nt |[u]τ−1
1 , [u]t−1

τ+B)

= ρ2Var(xt−1|[u]τ−1
1 , [u]t−1

τ+B) + (1 − ρ2).

Thus to show (100), it suffice to show

Var(xt−1|[u]τ−1
1 , [u]t−1

τ+B) ≥ Var(xt |[u]τ−1
1 , [u]t

τ+B), (101)

and we only need to show (101) when τ → ∞, which follows
from Lemma 5.

Now consider the distortion constraint in (96). By definition,
it suffices to show that for any t ≥ τ + B + W ,

Var(xt |[u]τ−1
1 , [u]t

τ+B) ≥ Var(xt+1|[u]τ−1
1 , [u]t+1

τ+B),

which is readily justified according to Lemma 5 in the limit
τ → ∞. This proves the distortion constraint in (70). �

According to Step 1, for any t , the rate and distortion
constraints of region 2, i.e., R2,τ (σ

2
z ) and D2,τ (σ 2

z ), always
dominate the constraints of region 1. According to step 2,
we only need to focus on the case where the erasure burst
happens at τ → ∞. Finally according to step 3, as τ → ∞,
the rate and distortion constraints of region 2 also dominate
the constraints of region 3. By combining these results, it can
be concluded that limτ→∞ R2,τ (σ

2
z ) and limτ→∞ D2,τ (σ

2
z )

are the dominating rate and distortion constraints as required
in (69) and (70).

C. Rate Computation

In this step we show how the limit τ → ∞ in the rate
and distortion constraints in (69) and (70) can be replaced
with the steady-state expressions in Theorem 1. In order to
establish (29), we need to show that for any Mτ ⊂ Lτ ,
we have that:

lim
τ→∞ h([u]Mτ |[u]τ−1

1 , [u]Mc
τ
) = h ([ũ]M|[ũ]Mc , s̃1),

(102)

where the variables ũ j and s̃1 are defined in (27) and (25)
respectively and Mτ is the set M shifted by time τ .

In a similar fashion for the distortion constraint we must
show that:

lim
τ→∞ Var(xτ+B+W |[u]τ−1

1 , [u]τ+B+W
τ+B )

= Var(sB+W+1|[ũ]B+W+1
B+1 , s̃1). (103)

In what follows we establish (103). The derivation of (102)
is analogous and hence will be omitted. Consider the (τ −
1) × (τ − 1) matrix QH,τ which consists of the first τ − 1
rows and columns of Qw in Section IV-D. This matrix is lower
triangular and thus invertible. We can express:

Q−1
H,τ

⎛

⎜
⎝

u1
...

uτ−1

⎞

⎟
⎠ =

⎛

⎜
⎝

x1
...

xτ−1

⎞

⎟
⎠ +

⎛

⎜
⎝

z1
...

zτ−1

⎞

⎟
⎠ �

⎛

⎜
⎝

v1
...

vτ−1

⎞

⎟
⎠. (104)

Now consider the left hand side of (103):

Var(xτ+B+W |[u]τ−1
1 , [u]τ+B+W

τ+B )

= Var(xτ+B+W |Q−1
H,τ [u]τ−1

1 , [u]τ+B+W
τ+B )

= Var(xτ+B+W |[v ]τ−1
1 , [u]Lτ ), (105)

where the last step uses Lτ � {τ + B, . . . , τ + B + W }.
Now suppose that the matrix Q1 is of size (W + 1)× (τ +

B + W ) consisting of rows with index Lτ and columns with
index [1, τ + B + W ] of matrix Qw. In addition suppose that
the matrices Q̃1 and Qeff are of sizes (W + 1) × (τ − 1) and
(W + 1) × (B + W + 1), respectively such that

Q1 = [Q̃1, Qeff].
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Then we can express:

[u]Lτ = Q1

(
[x]τ+B+W

1 + [z]τ+B+W
1

)

= [Q̃1, Qeff]
(
[x]τ+B+W

1 + [z]τ+B+W
1

)

= Q̃1

(
[x]τ−1

1 + [z]τ−1
1

)

+ Qeff

(
[x]τ+B+W

τ + [z]τ+B+W
τ

)

= Q̃1[v ]τ−1
1 + Qeff[v ]τ+B+W

τ . (106)

Thus we can express (105) as:

Var(xτ+B+W |[v ]τ−1
1 , [u]Lτ ) = Var(xτ+B+W |[v ]τ−1

1 ,

Qeff[v ]τ+B+W
τ )

= Var(xτ+B+W |x̃τ ([v ]τ−1
1 ),

Qeff[v ]τ+B+W
τ ), (107)

where x̃τ ([v ]τ−1
1 ) the MMSE estimate of xτ given [v ]τ−1

1 ,
which can be done since {xt } also constitute a Markov chain.
Now consider the limit τ → ∞:

lim
τ→∞ Var(xτ+B+W |[v ]τ−1

1 , [u]Lτ )

= lim
τ→∞ Var(xτ+B+W |x̃τ ([v ]τ−1

1 ),

Qeff([x]τ+B+W
τ + [z]τ+B+W

τ ))

= lim
τ→∞ Var(sτ+B+W |s̃τ ([v ]τ−1

1 ),

Qeff([s]τ+B+W
τ + [z]τ+B+W

τ )),

where we use the fact that as τ → ∞, xτ → sτ and
furthermore s̃τ ([v ]τ−1

1 ) is the MMSE estimate of sτ given
[v ]τ−1

1 . Using the analysis of a recursive one-dimensional
Kalman filter [25]:

si = ρsi−1 + ni ni ∼ N (0, 1 − ρ2)

vi = si + zi , z ∼ N (0, σ 2
z ),

we can express the estimate of sτ in the steady state as:

s̃τ = sτ + e

where e ∼ N
(
0,�(σ 2

z )/(1 − �(σ 2
z ))

)
, and �(σ 2

z ) is defined
in (26).

Finally according to the Toeplitz property of the matrix Qw,
and therefore Qeff, we can write (107) as

max
τ,t

Dτ (t, σ 2
z )

= lim
τ→∞ Var(sτ+B+W |s̃τ , Qeff([s]τ+B+W

τ + [z]τ+B+W
τ ))

= Var(sB+W+1|s̃1, Qeff

(
[s]B+W+1

1 + [z]B+W+1
1

)
)

= Var(sB+W+1|s̃1, [ũ]B+W+1
B+1 ),

as required.

APPENDIX C
HYBRID CODING IN THE HIGH RESOLUTION

REGIME: PROOF OF COROLLARY 1

According to the rate analysis of the hybrid coding scheme,
the excess sum-rate constraint associated with an erasure burst

spanning [t : t + B − 1] in steady state, can be expressed as

RE,sum(D) � Rsum(D) − RI(D)

= lim
t→∞ h([u]t+B+W

t+B |[u]t−1
1 )

− (W + 1)

2
log

(
2πeσ 2

z

)
− (W + 1)RI(D),

(108)

where RI(D) is defined in (1). The test channel noise σ 2
z

depends on the distortion D and the choice of hybrid coding
coefficients w, and has to satisfy

lim
t→∞ Var(xt+B+W |[u]t−1

1 [u]t+B+W
t+B ) = D. (109)

We show that the choice of weights in (32) minimizes the
asymptotic behaviour of the excess sum-rate in (108) in the
high resolution regime when D → 0.

We first consider the problem for any distortion D. Follow-
ing similar argument as in the proof of Theorem 1, according
to (106), we have

lim
t→∞ h

(
[u]t+B+W

t+B |[u]t−1
1

)
)

= lim
t→∞ h

(
Qeff([x]t+B+W

t + [z]t+B+W
t )|[x]t−1

1 + [z]t−1
1

)

= lim
t→∞ h

(
Qeff([s]t+B+W

t +[z]t+B+W
t )|ŝt−1([x]t−1

1 +[z]t−1
1 )

)

= lim
t→∞ h

(
Qeff([s]t+B+W

t + [z]t+B+W
t )|st−1 + e

)
(110)

= h
(

Qeff([s]B+W+1
1 + [z]B+W+1

1 )|s0 + e
)

(111)

= h
(
[ũ]B+W+1

B+1 |s0 + e
)
, (112)

where in (110) we replaced the estimate of st−1 with a noisy
version of the source st−1. The noise e is related to the
estimation error of the source st−1 from [u]t−1

1 . Also (111)
follows from the stationarity property of the sources and is
independent of t . The variables ũi in (112) are also defined is
Theorem 1.

According to (112), the excess sum-rate in (108) can be
expressed as

RE,sum(D) = h
(
[ũ]B+W+1

B+1 |s0 + e
)

− (W + 1)

(
1

2
log

(
2πeσ 2

z

)
+ RI(D)

)
. (113)

We now consider a generalization of the test channel in (27)
as

⎛

⎜
⎝

ũ1
...

ũB+W+1

⎞

⎟
⎠ � Q̃eff

⎛

⎜
⎝

⎛

⎜
⎝

s1
...

sB+W+1

⎞

⎟
⎠ +

⎛

⎜
⎝

z1
...

zB+W+1

⎞

⎟
⎠

⎞

⎟
⎠,

where

Q̃eff �

⎛

⎜
⎜⎜
⎝

1 0 · · · 0
v1 1 · · · 0
...

...
. . .

...
vB+W vB+W−1 · · · 1

⎞

⎟
⎟⎟
⎠

.

Note that Qeff consists of rows [B + 1 : B + W + 1] of Q̃eff.
The following lemma is valid for any distortion D.
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Lemma 6: For any B and W, the choice of the hybrid cod-
ing scheme parameters w minimizing h

(
[ũ]B+W+1

B+1 |s0 + e
)

also minimizes

I ([ũ]B
1 ; [ũ]B+W+1

B+1 |s0 + e, sB+W+1). (114)

Proof: Note that,

I ([ũ]B
1 ; [ũ]B+W+1

B+1 |s0 + e, sB+W+1)

= h([ũ]B+W+1
B+1 |s0 + e, sB+W+1)

− h([ũ]B+W+1
B+1 |s0 + e, [ũ]B

1 , sB+W+1)

= h([ũ]B+W+1
B+1 |s0 + e) + h(sB+W+1|s0 + e, [ũ]B+W+1

B+1 )

− h(sB+W+1|s0 + e) − h([ũ]B+W+1
B+1 |s0 + e, [ũ]B

1 )

− h(sB+W+1|s0 + e, [ũ]B+W+1
1 )

+ h(sB+W+1|s0 + e, [ũ]B
1 ). (115)

The third term in (115) is clearly independent of w. The second
term in (115) is equal to 1

2 log (2πeD) according to the dis-
tortion constraint, and is independent of w. The fifth and sixth
terms are also independent of w, because of the invertibility of
any upper-left square sub-matrix of Q̃eff. For instance, the sixth
term can be written as

h(sB+W+1|s0 + e, [ũ]B
1 ) = h(sB+W+1|s0 + e, [s]B

1 + [z]B
1 ).

Also the fourth term is independent of w, because

h([ũ]t+W+1
t+1 |s0 + e, [ũ]t

1) = ∑t+W+1
j=t+1 h(ũ j |s0 + e, [ũ] j−1

1 ),

which is independent of the choice of w, because, for any j ,
h(ũ j |s0 + e, [ũ] j−1

1 ) is independent of the choice of w, i.e.,

h(ũ j |s0 + e, [ũ] j−1
1 )

= h(ũ j |s0 + e, [s] j−1
1 + [z] j−1

1 )

= h

⎛

⎝(s j + z j ) +
j−1∑

k=1

q j,k(sk + zk)
∣
∣
∣s0 + e, [s] j−1

1 + [z] j−1
1

⎞

⎠

= h(s j + z j |s0 + e, [s] j−1
1 + [z] j−1

1 ).

Thus the choice of w which minimizes the first term in
(115), minimizes the mutual information. This completes the
proof. �

The following lemma characterizes the high resolution
behaviour of the second term in the sum-rate (113).

Lemma 7: In the high resolution regime, the asymptotic
behaviour of the second and third terms in (113), is indepen-
dent of w. In particular, for any choice of w,

lim
D→0

(
1

2
log(2πeσ 2

z ) + RI(D)

)
= 1

2
log(2πe(1 − ρ2)). (116)

Proof: First note that the distortion constraint in (109),
is in fact the distortion constraint after the error propagation
window for a erasure burst at steady state, i.e.,

Var(xB+W+1|[u]B+W+1
B+1 , s̃1)

= lim
t→∞ Var(xt+W+1|[u]t−B

1 , [u]t+W+1
t+1 ).

We now derive lower and upper bounds on the test channel
noise σ 2

z . According to the hybrid test channel, we have

xt+W+1 + zt+W+1 =
W∑

j=0

w j ut+W− j+1.

Therefore at least xt+W+1+zt+W+1 is available at the decoder
while reconstructing xt+W+1. So

D = lim
t→∞ Var(xt+W+1|[u]t−B

1 , [u]t+W+1
t+1 )

≤ lim
t→∞ Var(xt+W+1|xt+W+1 + zt+W+1)

= σ 2
z

1 + σ 2
z

. (117)

Also note from the Markov property among the source
sequences that

D = lim
t→∞ Var(xt+W+1|[u]t−B

1 , [u]t+W+1
t+1 )

≥ lim
t→∞ Var(xt+W+1|[x]t+W

1 , [u]t−B
1 , [u]t+W+1

t+1 )

≥ lim
t→∞ Var(xt+W+1|xt+W , xt+W+1 + zt+W+1)

= σ 2
z

1 + σ 2
z

1−ρ2

. (118)

From (117) and (118), we have

1

1 − D
≤ σ 2

z

D
≤ 1

1 − D
1−ρ2

. (119)

From (119),

lim
D→0

σ 2
z

D
= 1. (120)

Thus

lim
D→0

(
1

2
log(2πeσ 2

z ) + 1

2
log

(
1 − ρ2

D
+ ρ2

))

= 1

2
log(2πe(1 − ρ2)) (121)

which implies (116). �
According to Lemma 7, in the high resolution regime, the

contribution of the second and third terms of the excess sum
rate in (108) is independent of the choice of the hybrid coding
coefficient w. So, it suffices to focus on the high resolution
behaviour of the first term in the excess sum-rate Rsum(D)
in (113). Also according to Lemma 6, it suffices to characterize
the choice of w that minimizes the mutual information term
in (114). We specialize the result of Lemma 6 to the case of
B = 1 and the high resolution case. It is not hard to verify
that in the high resolution regime, the variance of the noise e
vanishes to zero. By subtracting out the effect of s0, we define

[̂u]W+2
1 = Q̂

(
[x]W+2

1 + [z]W+2
1

)
, (122)

where Q̂ is the square matrix of size W + 2. In particular,
(122) can be written as (123) at the top of next page. Thus
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⎛

⎜
⎝

û1
...

ûW+2

⎞

⎟
⎠ =

⎛

⎜⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
v1 1 0 · · · 0
v2 v1 1 · · · 0
...

...
...

. . .
...

vW+1 vW vW−1 · · · 1

⎞

⎟⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

⎛

⎜
⎝

x1
...

xW+2

⎞

⎟
⎠ +

⎛

⎜
⎝

z1
...

zW+2

⎞

⎟
⎠

⎞

⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎝

1 0 0 · · · 0
v1 1 0 · · · 0
v2 v1 1 · · · 0
...

...
...

. . .
...

vW+1 vW vW−1 · · · 1

⎞

⎟
⎟⎟
⎟
⎟
⎠

×

⎛

⎜
⎜⎜
⎜
⎜
⎝

⎛

⎜
⎜⎜
⎜
⎜
⎝

1 0 0 · · · 0
ρ 1 0 · · · 0
ρ2 ρ 1 · · · 0
...

...
...

. . .
...

ρW+1 ρW ρW−1 · · · 1

⎞

⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜
⎝

n1
...

nW+2

⎞

⎟
⎠ +

⎛

⎜
⎝

z1
...

zW+2

⎞

⎟
⎠

⎞

⎟
⎟⎟
⎟
⎟
⎠

. (123)

⎛

⎜
⎝

û1
...

ûW+2

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
v1 1 0 · · · 0
v2 v1 1 · · · 0
...

...
...

. . .
...

vW+1 vW vW−1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
ρ 1 0 · · · 0
ρ2 ρ 1 · · · 0
...

...
...

. . .
...

ρW+1 ρW ρW−1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

n1
...

nW+2

⎞

⎟
⎠ (127)

= Q̂�n (128)

the mutual information term in (114) for the case of B = 1
reduces to

lim
D→0

I (ũ1; [ũ]W+2
2 |s0 + e, sW+2)

= lim
D→0

I (ũ1; [ũ]W+2
2 |s0, sW+2)

= lim
D→0

I (̂u1; [̂u]W+2
2 |xW+2). (124)

The following lemma shows that the choice of w in (125)
minimizes (124).

Lemma 8: The vector w�, with the elements

w�
k = ρk 1 − ρ2(W−k+1)

1 − ρ2(W+1)
for k ∈ {1, . . . , W }, (125)

satisfies:

lim
D→0

I (̂u1; [̂u]W+2
2 |xW+2) = 0 (126)

thus minimizing the sum-rate.
Proof: Since D → 0 requires σ 2

z → 0, we will only
establish (126) when σ 2

z = 0. The proof when D → 0
will follow from the continuity of the mutual information
in σ 2

z . Thus we will consider the test channel in (127) at
the top of this page. In (128), as shown at the top of this
page, Q̂ and � represent the first and second matrices of size
W + 2 × W + 2 in (127) and n represents the vector of the
W + 2 i.i.d. innovation random variables [n]W+2

1 . We prove
that I (̂u1; [̂u]W+2

2 |xW+2) = 0 by establishing the following
Markov property

û1 → xW+2 → [̂u]W+2
2 . (129)

Based on the fact the random variables are jointly Gaussian,
in order to show (129), it suffices to show that the MMSE
estimator of û1 from [̂u]W+2

2 is a scaled version of xW+2.
This is equivalent to show that a scalar κ exists such that

(xW+2 − κ û1) ⊥ {̂u2, û3, . . . , ûW+2}.

This is equivalent to

E{(xW+2 − κ û1) (Q̂�n)T } = ξ
(
1 0 · · · 0

)
, (130)

i.e, xW+2 − κ û1 is orthogonal to all the rows of Q̂�n except
the first row. Note that

xW+2 − κ û1 = (
ρW+1 − κ ρW · · · ρ 1

)
n, (131)

Using (131) and from the fact that E{nnT } = (1 − ρ2)I ,
the left hand side of (130), can be written as

E{(xW+2 − κ û1) (Q̂�n)T }
= (1 − ρ2)

(
ρW+1 − κ ρW · · · ρ 1

)
�T Q̂T , (132)

First note that according to the definition of Q̂, we have

Â � Q̂−1 =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 0 0 · · · 0 0
w1 1 0 · · · 0 0
w2 w1 1 · · · 0 0
...

...
...

. . .
...

...
wW wW−1 wW−2 · · · 1 0

0 wW wW−1 · · · w1 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

From (132), by multiplying Q̂−T from the right, it can be
observed that showing (130) is equivalent to show

(
ρW+1 − κ ρW · · · ρ 1

)
�T = ξ

1 − ρ2

(
1 0 · · · 0

)
ÂT .

(133)

It can be written as

(
ρW+1 − κ ρW · · · ρ 1

)

⎛

⎜
⎜
⎜⎜
⎜
⎝

1 ρ ρ2 · · · ρW+1

0 1 ρ · · · ρW

0 0 1 · · · ρW−1

...
...

...
. . .

...
0 0 0 · · · 1

⎞

⎟
⎟
⎟⎟
⎟
⎠

= ξ

1 − ρ2

(
1 w1 w2 · · · wW 0

)
. (134)
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First from the first element of (134), we have

ρW+1 − κ = ξ

1 − ρ2 . (135)

From the second element of (134), we have

(ρW+1 − κ)ρ + ρW = ξ

1 − ρ2 w1. (136)

Thus, from (135) and (136), we have

ρW+1 − κ = ξ

1 − ρ2 = ρW

w1 − ρ
. (137)

Now we show that the choice of coefficients w�
k in (125), for

any k ∈ {2, . . . , W }, satisfies

(ρW+1 − κ)ρk +
k−1∑

j=0

ρk+W−2 j = ξ

1 − ρ2 w�
k . (138)

By using (137) and noting that

w�
1 − ρ = −ρ2W (1 − ρ2)

1 − ρ2(W+1)
,

equation (138) can be verified through basic steps. Finally,
as the last element of (134), we need to show that

(ρW+1 − κ)ρW+1 +
W∑

j=0

ρ2(W− j )+1 = 0,

which is readily verified. This completes the proof. �
Finally we show that the sum-rate constraint in (108)

coincides with the high resolution lower bound in Corollary 4,
and thus is optimal. In particular we want to show that, with
the choice of hybrid coding weights in (32), we have

lim
D→0

{
Rsum − 1

2
log

(
1 − ρ2

D

)}

= lim
D→0

1

2(W + 1)
log

(
1 − ρ2(W+2)

1 − ρ2(W+1)

)

. (139)

We have

lim
D→0

Rsum = lim
D→0

1

W + 1
h([ũ]B+W+1

B+1 |s0 + e)

− 1

2
log (2πeD). (140)

First note that by similar argument used before, can be
written as

lim
D→0

Rsum = lim
D→0

1

W + 1
h([̂u]W+2

2 ) − 1

2
log (2πeD) (141)

where û are defined in (122). Now note that

h([̂u]W+2
2 ) = I (xW+2; [̂u]W+2

2 ) + h([̂u]W+2
2 |xW+2)

= h(xW+2) − h(xW+2|[̂u]W+2
2 ) + h([̂u]W+2

2 |xW+2)

= 1

2
log

(
2πe(1 − ρ2(W+2))

)
− h(xW+2|[̂u]W+2

2 )

+ I (̂u1; [̂u]W+2
2 |xW+2) + h([̂u]W+2

2 |̂u1, xW+2). (142)

When D → 0, the mutual information term in (142)
approaches to zero according to Lemma 8. Now consider the
last term in (142), we have

lim
D→0

h([̂u]W+2
2 |̂u1, xW+2) = lim

D→0
h([̂u]W+1

1 |xW+1)

= lim
D→0

(
h([̂u]W+1

1 ) − I ([̂u]W+1
1 ; xW+1)

)

= h([x]W+1
1 ) − h(xW+1) + lim

D→0
h(xW+1|[u]W+1

1 )

= 1

2
log

(
(2πe)W (1 − ρ2)W+1

1 − ρ2(W+1)

)
+ lim

D→0
h(xW+1|[u]W+1

1 ).

(143)

Note that the second term in (142) and the last term in (143)
cancel each other. Thus (142) can be written as

h([̂u]W+2
2 ) = 1

2
log

(
1 − ρ2(W+2)

1 − ρ2(W+1)

)

+ W + 1

2
log

(
2πe(1 − ρ2)

)
. (144)

Finally by replacing (144) into (141), (139) is verified. This
completes the proof.

APPENDIX D
PROOF OF COROLLARY 2

We need to show that the high resolution excess rate for
B = W = 1 is upper bounded by the expression

RE,HR(ρ, B = 1) ≤ 1

4
log

(
1 + 2ρ4

(1 + ρ)2

)
.

We prove this part through the following steps.
1) Specializing Theorem 1 for B = W = 1 and the high

resolution regime, we have that the achievable rate can be
expressed as:

RH(D, w1) = max

{
1

2
h(ũ2, ũ3), h(ũ2|ũ3), h(ũ3|ũ2)

}

− 1

2
log(2πeD), (145)

where

(
ũ3
ũ2

)
�

(
1 −w1 w2

1
0 1 −w1

)
⎛

⎝
1 ρ ρ2

0 1 ρ
0 0 1

⎞

⎠

⎛

⎝
n3
n2
n1

⎞

⎠

=
(

1 ρ − w1 ρ2 − w1ρ + w2
1

0 1 ρ − w1

)
⎛

⎝
n3
n2
n1

⎞

⎠.

2) For any choice of w1 ∈ [0, ρ], we have

Var(ũ3) = (1 − ρ2)(1 + (ρ − w1)
2 + (ρ2 − ρw1 + w2

1)2)

≥ (1 − ρ2)(1 + (ρ − w1)
2) = Var(ũ2)

and therefore,

h(ũ3|ũ2) = h(ũ2, ũ3) − h(ũ2)

≥ h(ũ2, ũ3) − h(ũ3) = h(ũ2|ũ3).
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Fig. 16. The sum-rate and marginal rates as a function of coefficient w1,
for B = W = 1 and ρ = 0.7. The marginal rate is upper bounded for
approximation.

Thus (145) reduces to

RH(D, w1) = max

{
1

2
h(ũ2, ũ3), h(ũ3|ũ2)

}
− 1

2
log(2πeD)

= 1

2
h(ũ3|ũ2) + 1

2
max {h(ũ2), h(ũ3|ũ2)}

− 1

2
log(2πeD). (146)

3) Fig. 16 shows an example of terms h(ũ2) and h(ũ3|ũ2)
for ρ = 0.7 and w1 ∈ [0, ρ]. Finding the close form expression
of the value of w1,opt at the intersection is not straightforward.
We apply the following approximation.

h(ũ3|ũ2) ≤ h(ũ3 − (ρ − w1)ũ2)

= h(n3 + ρw1n1)

= 1

2
log

(
2πe(1 − ρ2)(1 + ρ2w2

1)
)
.

It can be easily observed that the upper bounds of h(ũ3|ũ2)
and h(ũ2), intersect at w̃1 = ρ/(1 + ρ). Using this value:

1

2
h(ũ2, ũ3)|w1=w̃1

= 1

2
h

⎛

⎝
(

1 ρ − w̃1 ρ2 − w̃1ρ + w̃2
1

0 1 ρ − w̃1

)
⎛

⎝
n3
n2
n1

⎞

⎠

⎞

⎠

= 1

4
log

(
2πe(1 − ρ2)2

(
1 + 2

ρ4

(1 + ρ)2

))
.

Thus the rate expression in (146) is upper bounded as

RH(D, w1) ≤ 1

2
log

(
1 − ρ2

D

)
+ 1

4
log

(
1 + 2

ρ4

(1 + ρ)2

)
.

This completes the proof.

APPENDIX E
PROOF OF COROLLARY 3

We consider the case where W = 1 and B → ∞. Consider
the system at time t where t → ∞ and the erasure burst spans

the interval [1 : t − 2]. We have,

(
ut

ut−1

)
=

(
1 −w1 w2

1 −w3
1 · · ·

0 1 −w1 w2
1 · · ·

)
⎛

⎜
⎜
⎜
⎝

st

st−1
st−2

...

⎞

⎟
⎟
⎟
⎠

. (147)

Now consider the following lemma.
Lemma 9: For the random variables defined in (147),

we have

E{|ut |2} = E{|ut−1|2}
= (1 − ρ2)

(
ρ2

1 − ρ2 + 1

1 − w2
1

)
1

(1 + w1ρ)2

= (1 − ρ2) f (w1)

E{utut−1} = (1 − ρ2)

(

ρ f (w1) − w1

(1 + w1ρ)(1 − w2
1)

)

= (1 − ρ2)g(w1)

where f (.) and g(.) are defined in (35) and (36), respectively.
Proof: From (147), consider the following definition.

(
ut

ut−1

)
=

(
1 −w1 w2

1 −w3
1 · · ·

0 1 −w1 w2
1 · · ·

)

⎛

⎜
⎜⎜
⎝

st

st−1
st−2

...

⎞

⎟
⎟⎟
⎠

�
(

a0 a1 a2 · · ·
0 a0 a1 · · ·

)
⎛

⎜
⎝

nt

nt−1
...

⎞

⎟
⎠.

It is not hard to observe that, for any m ≥ 0,

am =
m∑

k=0

(−w1)
kρm−k .

We have

E{|ut |2} = E{|ut−1|2} = (1 − ρ2)

∞∑

m=0

a2
m

E{utut−1} = (1 − ρ2)

∞∑

m=0

amam+1.

Note that

a2
m =

m∑

l=0

m∑

k=0

(−w1)
k+lρ2m−k−l

=
m∑

l=0

m∑

k=0

ρ2m(
−w1

ρ
)k+l

=
m−1∑

j=0

ρ2m( j + 1)

(
(
−w1

ρ
) j + (

−w1

ρ
)2m− j

)

+ ρ2m(m + 1)(
−w1

ρ
)m ,
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and therefore,

∞∑

m=0

a2
m =

∞∑

m=0

(m + 1)(−w1ρ)m

+
∞∑

m=0

m−1∑

j=0

ρ2m( j + 1)

(
(
−w1

ρ
) j + (

−w1

ρ
)2m− j

)

= 1

(1 + w1ρ)2

+
∞∑

j=0

∞∑

m= j+1

ρ2m( j + 1)

(
(
−w1

ρ
) j + (

−w1

ρ
)2m− j

)

= 1

(1 + w1ρ)2

+
∞∑

j=0

⎛

⎝( j + 1)(
−w1

ρ
) j

∞∑

m= j+1

ρ2m

⎞

⎠

+
∞∑

j=0

⎛

⎝( j + 1)(
−w1

ρ
)− j

∞∑

m= j+1

ρ2m(
−w1

ρ
)2m

⎞

⎠

= 1

(1 + w1ρ)2

+
∞∑

j=0

( j + 1)

(

(
−w1

ρ
) j ρ

2( j+1)

1 − ρ2 + (
−w1

ρ
)− j w

2( j+1)
1

1 − w2
1

)

= 1

(1 + w1ρ)2 + ρ2

1 − ρ2

1

(1 + w1ρ)2 + w2
1

1 − w2
1

1

(1 + w1ρ)2

=
(

1

1 − ρ2 + w2
1

1 − w2
1

)
1

(1 + w1ρ)2

=
(

ρ2

1 − ρ2 + 1

1 − w2
1

)
1

(1 + w1ρ)2 � f (w1).

Similarly,

∞∑

m=0

amam+1 =
∞∑

m=0

m∑

l=0

m+1∑

k=0

ρ2m+1(
−w1

ρ
)k+l

= ρ f (w1) +
∞∑

m=0

m∑

l=0

ρ2m+1(
−w1

ρ
)m+l+1

= ρ f (w1) +
∞∑

l=0

∞∑

m=l

ρ2m+1(
−w1

ρ
)m+l+1

= ρ f (w1) − w1

(1 + w1ρ)(1 − w2
1)

� g(w1).

�
By application of Lemma 9, the sum-rate constraint is

2R ≥ 1

2
log

⎛

⎜
⎜
⎝

(2πe)2 det

(
E{|ut |2} E{utut−1}

E{utut−1} E{|ut−1|2}
)

(2πeD)2

⎞

⎟
⎟
⎠

= log

(
1 − ρ2

D

)
+ 1

2
log

(
f (w1)

2 − g(w1)
2
)

.

Now it suffices to show that the sum-rate is indeed the
dominant constraint. In particular, note that

h(ut−1|ut ) = h(ut−1, ut ) − h(ut )

= h(ut−1, ut ) − h(ut−1) = h(ut |ut−1),

i.e., the two marginal constraints are the same, and

1

2
h(ut−1, ut ) = h(ut ) + h(ut−1|ut )

2

≥ h(ut−1|ut ) + h(ut−1|ut )

2
= h(ut−1|ut ),

i.e., the sum-rate constraint dominates the marginal rate
constraints. This completes the proof.

APPENDIX F
PROOF OF LEMMA 1

First note that for any ρ ∈ (0, 1) and x ∈ R the function

f (x) = x − 1

2
log

(
ρ2m22x + 2πe(1 − ρ2m)

)

is an monotonically increasing function with respect to x ,
because

f ′(x) = 2πe(1 − ρ2m)

ρ2m22x + 2πe(1 − ρ2m)
> 0.

By applying Shannon’s EPI we have.

h(sb|fa) ≥ 1

2
log

(
ρ2m22h(sa|fa) + 2πe(1 − ρ2m)

)

and thus,

h(sa |fa) − h(sb|fa)
≤ h(sa |fa) − 1

2
log

(
ρ2m22h(sa |fa) + 2πe(1 − ρ2m)

)

≤ 1

2
log(2πer) − 1

2
log

(
ρ2m2πer + 2πe(1 − ρ2m)

)

= 1

2
log

(
r

1 − (1 − r)ρ2m

)
, (148)

where (148) follows from the assumption that
h(sa|fa) ≤ 1

2 log (2πer) and the monotonicity property
of f (x). This completes the proof.

APPENDIX G
GENERAL LOWER BOUND ON THE

RATE-RECOVERY FUNCTION

Before providing the proof of the lower bound, define the
notations

θτ � 1

2πe
2

2
n h(sn

τ |[f ]τ1 ,sn
0 ),

Fa(τ ) � 2πe
(
ρ2aθτ + 1 − ρ2a

)
,

G � (1 − (1 − D)ρ2(W+1)).

In order to derive a lower bound on the rate-recovery
function in general case, consider the case where the burst
erasure of length B spans the interval [t − B − W : t − W −1]
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and the decoder is interested in reconstructing the source
sequence sn

t within distortion D at time t . Then the inequality

n
t∑

k=t−W

Rk ≥ H ([f ]t
t−W )

≥ H ([f ]t
t−W |[f ]t−B−W−1

1 , sn
0 ) (149)

= I (sn
t ; [f ]t

t−W |[f ]t−B−W−1
1 , sn

0 )

+ H ([f ]t
t−W |sn

t , [f ]t−B−W−1
1 , sn

0 )

≥ h(sn
t |[f ]t−B−W−1

1 , sn
0 ) − h(sn

t |[f ]t−B−W−1
1 [f ]t

t−W , sn
0 )

+ H ([f ]t
t−W |sn

t , [f ]t−B−W−1
1 , sn

0 ) (150)

holds, where (149) follows from the fact that conditioning
never increases the differential entropy.

The first term in (150) can be lower bounded using
st = ρB+W+1st−B−W−1 + n′

t with n′
t ∈ N (0, 1 −ρ2(B+W+1)),

and using the entropy power inequality as:

h(sn
t |[f ]t−B−W−1

1 , sn
0 ) ≥ n

2
log (FB+W+1(t − B − W − 1)) .

(151)

The second term in (150) that can be lower bounded
based on the fact that the decoder is able to recon-
struct the source sequence sn

t within distortion D knowing
{[f ]t−B−W−1

1 [f ]t
t−W , sn

0 } and follows from the standard source
coding arguments, i.e.,

h(sn
t |[f ]t−B−W−1

1 [f ]t
t−W , sn

0 ) ≤ n

2
log(2πeD).

(152)

To derive a lower bound on the third term in (150) consider
the following:

H ([f ]t
t−W |sn

t , [f ]t−B−W−1
1 , sn

0 )

≥ H ([f ]t−1
t−W |sn

t , [f ]t−W−1
1 , sn

0 )

= I ([f ]t−1
t−W ; [sn]t−1

t−W |sn
t , [f ]t−W−1

1 , sn
0 )

+ H ([f ]t−1
t−W |[sn]t

t−W , [f ]t−W−1
1 , sn

0 )

≥ h([sn]t−1
t−W |sn

t , [f ]t−W−1
1 , sn

0 ) − h([sn]t−1
t−W |sn

t , [f ]t−1
1 , sn

0 ).

(153)

The first term in (153) can be written as

h([sn]t−1
t−W |sn

t , [f ]t−W−1
1 , sn

0 )

= h([sn]t
t−W |[f ]t−W−1

1 , sn
0 ) − h(sn

t |[f ]t−W−1
1 , sn

0 )

= h(sn
t−W |[f ]t−W−1

1 , sn
0 ) + nWh(s1|s0)

− h(sn
t |[f ]t−W−1

1 , sn
0 )

≥ n

2
log(F1(t − W − 1)) + nWh(s1|s0) − n

2
log(2πeG),

(154)

where the first term in (154) follows from Shannon’s EPI with
sn

t−W = ρsn
t−W−1 + nn

t−W , and the last term follows from

h(sn
t |[f ]t−W−1

1 , sn
0 )

≤ h(sn
t − ŝn

t

(
[f ]t−W−1

1 , sn
0

)
) (155)

≤ n

2
log

(
2πeρ2(W+1)D + 2πe(1 − ρ2(W+1))

)
(156)

= n

2
log

(
2πe(1 − (1 − D)ρ2(W+1))

)
,

where (155) follows from the fact that knowing {[f ]t−W−1
1 , sn

0 }
the decoder is able to reproduce an estimate of st as

ŝn
t

(
[f ]t−W−1

1 , sn
0

)
= ρW+1ŝn

t−W−1

(
[f ]t−W−1

1 , sn
0

)
+ ñ

where ñ ∼ N (0, 1−ρ2(W+1)). Eq. (156) also follows from the
fact that the Gaussian distribution maximizes the differential
entropy. The second term in (153) can be written as

q(W )

� h([sn]t−1
t−W |sn

t , [f ]t−1
1 , sn

0 )

= h([sn]t
t−W |[f ]t−1

1 , sn
0 ) − h(sn

t |[f ]t−1
1 , sn

0 )

= h(sn
t−1|[f ]t−1

1 , sn
0 ) + h(sn

t |sn
t−1, [f ]t−1

1 , sn
0 )

+ h([sn]t−2
t−W |sn

t , sn
t−1, [f ]t−1

1 , sn
0 ) − h(sn

t |[f ]t−1
1 , sn

0 )

≤ h(sn
t−1|[f ]t−1

1 , sn
0 ) + h(sn

t |sn
t−1)

+ h([sn]t−2
t−W |sn

t−1, [f ]t−1
1 , sn

0 ) − h(sn
t |[f ]t−1

1 , sn
0 ) (157)

≤ n

2
log(2πeθt−1) + nh(s1|s0)

+ h([sn]t−2
t−W |sn

t−1, [f ]t−2
1 , sn

0 ) − n

2
log(F1(t − 1)) (158)

= n

2
log(2πeθt−1) + nh(s1|s0)

+ q(W − 1) − n

2
log(F1(t − 1)), (159)

where the last term in (158) follows from EPI, the second
and the third terms in (157) follow from the Markov chain
properties

{[f ]t−1
0 , sn−1} → sn

t−1 → sn
t ,

sn
t → {sn

t−1, [f ]t−1
0 , sn−1} → [sn]t−2

t−W .

By repeating these steps steps W times and using q(0) = 0:

q(W ) ≤ n

2
log

(
(2πe)W ∏W

k=1 θt−k
∏W

k=1 F1(t − k)

)

+ nWh(s1|s0). (160)

Substituting (154) and (160) into (153):

H ([f ]t
t−W |sn

t , [f ]t−B−W−1
1 , sn

0 )

≥ n

2
log

( ∏W+1
k=1 F1(t − k)

(2πe)W+1G
∏W

k=1 θt−k

)

. (161)

Finally by replacing (151), (152) and (161) into (150),
we have

t∑

k=t−W

Rk

≥ 1

2
log

(
FB+W+1(t − B − W − 1)

∏W+1
k=1 F1(t − k)

(2πe)W+2G D
∏W

k=1 θt−k

)

.

(162)

Using (162) we have
(
(2πe)W+2G D

)K
2

∑2K
t=K+1

∑t
k=t−W Rk

≥
2K∏

t=K+1

FB+W+1(t − B − W − 1)
∏W+1

k=1 F1(t − k)
∏W

k=1 θt−k
.

(163)
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Now note that
(
(2πe)W+2G D

)K
2K (W+1)R

≥
(
(2πe)W+2G D

)K
2

∑2K
t=K+1

∑t
k=t−W Rk (164)

≥ Fx

2K−B−W−1∏

τ=K

FB+W+1(τ )(F1(τ ))W+1

θW
τ

, (165)

where (164) follows from the fact that peak rate is greater than
the average rate, and (165) follows from (163) after simple
manipulations, also Fx is defined as

Fx

�

⎛

⎝
K+B+W∏

k=K+1

FB+W+1(k − B − W − 1)

K∏

k′=k−W−1

F1(k
′)

⎞

⎠

⎛

⎝
2K∏

k=2K−B−W

k−1∏

k′=2K−B−W−1

F1(k
′)

⎞

⎠,

and is bounded as K → ∞. From (163) we can write,

R ≥ lim
K→∞

1

2K (W + 1)

2K−B−W−1∑

τ=K

log

(
FB+W+1(τ )(F1(τ ))W+1

(2πe)W+2G DθW
τ

)

≥ lim
K→∞

1

K

2K−B−W−1∑

τ=K


(θτ , B, W ), (166)

where the function 
(ϑ, B, W ) is defined in (45) in
Theorem 2. Note that 
(ϑ, B, W ) is a continuous function
with respect to ϑ ∈ (0,∞). It approaches +∞ when ϑ → 0+
and ϑ → ∞. In addition the expression inside the logarithm
has a positive second derivative and thus, 
(ϑ, B, W ) has a
global optimum at ϑm . The variable θτ satisfies the upper and
lower bounds

λ(R) � 1 − ρ2

22R − ρ2 ≤ θτ ≤ D (167)

when τ → ∞. The upper bound follows from the fact the
the decoder will recover the source sequence within average
distortion D provided that all the past channel packets are
available. To derive the lower bound note that,

h(sn
τ |[f ]τ1, sn

0 )

= h(sn
τ |[f ]τ−1

1 , sn
0 ) − I (fτ ; sn

τ |[f ]τ−1
1 , sn

0 )

= h(sn
τ |[f ]τ−1

1 , sn
0 )−H (fτ |[f ]τ−1

1 , sn
0 )+H (fτ |sn

τ , [f ]τ−1
1 , sn

0 )

≥ h(sτ |[f ]τ−1
1 , sn

0 ) − H (fτ ) (168)

≥ n

2
log

(
ρ22

n
2 h(sn

τ−1|[f ]τ−1
1 ,sn

0 ) + 2πe(1 − ρ2)
)

− n R, (169)

where (168) follows from the fact that the conditioning never
increases the entropy and (169) follows from EPI. Thus,

θτ ≥ ρ2

22R
θτ−1 + 1 − ρ2

22R
,

which results in

θτ ≥
(

ρ2

22R

)τ−1

θ1 + 1 − ρ2

22R

τ−2∑

l=0

(
ρ2

2πe22R

)l

≥ 1 − ρ2

22R − ρ2

(

1 −
(

ρ2

22R

)τ−1
)

, (170)

where (170) follows from the fact that 0 < ρ2

22R < 1 for any
ρ ∈ (0, 1) and R > 0. The lower bound in (167) refers to the
tightest lower bound in (170) at τ → ∞.

Applying the lower bound on ϑ in (166) results in a lower
bound in rate as R ≥ 
λ. This is because R − 
(λ(R), B, W )
is an increasing function with respect to R. Also R ≥

(ϑm , B, W ) and R ≥ 
(D, B, W ). Therefore,

• If ϑm ≤ λ(
λ) ≤ D, then R ≥ 
λ.
• If λ(
λ) ≤ ϑm ≤ D, then R ≥ 
(ϑm , B, W ).
• If λ(
λ) ≤ D ≤ ϑm , then R ≥ 
(D, B, W ).

APPENDIX H
PREDICTIVE CODING: PROOF OF THEOREM 3

In predictive coding, the encoder at each time t , computes
the MMSE estimation error of the source xt from all the pre-
vious codewords ui , i ≤ t − 1. Based on the optimality of the
MMSE estimator for jointly Gaussian sources, the estimation
error et , and thus ut , is independent of the random variables
ui , i ≤ t − 1. In the analysis, it is more convenient to use a
backward test channel:

et = ut + z̃t ,

where z̃t ∼ N (0, σ̃ 2
z ) is independent of ui , ∀i ≤ t . Using the

orthogonality principle, one can show that

et = ρz̃t−1 + nt ,

and furthermore we can show that

xt = ρt−1u1 + ρt−2u2 + . . . + ρut−1 + ut + z̃t .

Furthermore, the encoder at each time t quantizes et where
the quantization rate satisfies,

R ≥ RPC(σ 2
e ) � I (et ; ut)

= 1

2
log

(
σ 2

e

σ̃ 2
z

)

= 1

2
log

(
1 − (1 − σ̃ 2

z )ρ2

σ̃ 2
z

)

. (171)

The value of σ̃ 2
z will be specified in the sequel.

For the analysis of the burst erasure channel model observe
that the decoder at anytime t , when the channel output ft is
not erased, recovers ut . Thus the reconstruction at time t =
τ + B + W , following an erasure burst in [τ, τ + B − 1] is

x̂t = ρtu0 + ρt−1u1 + . . . + ρB+W+1uτ−1

+ ρW uτ+B + ρW−1uτ+B+1 + . . . + uτ+B+W .
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One can show that this corresponds to the worst case distortion
which is

E
[
(xt − x̂t )

2
]
|t=τ+B+W � �PC(σ 2

e )

= σ̃ 2
z + σ 2

u

W+B∑

k=W+1

ρ2k

= σ̃ 2
z + σ 2

u ρ2(W+1) 1 − ρ2B

1 − ρ2

= σ̃ 2
z + (1 − σ̃ 2

z )ρ2(W+1)(1 − ρ2B).

By setting �PC(σ 2
e ) = D, we have

σ̃ 2
z = D − ρ2(W+1)(1 − ρ2B)

1 − ρ2(W+1)(1 − ρ2B)
,

for D ≥ ρ2(W+1)(1 − ρ2B). By replacing σ̃ 2
z into the rate

expression (171), we can observe that, for D ≥ ρ2(W+1)

(1 − ρ2B), any rate R satisfying

R ≥ R+
PC(B, W, D)

� 1

2
log

(
1 − ρ2(W+1)(1 − ρ2B) − (1 − D)ρ2

D − ρ2(W+1)(1 − ρ2B)

)

is achievable.

APPENDIX I
MEMORYLESS QUANTIZATION-AND-BINNING SCHEME

A. Proof of Corollary 5

The memoryless quantization-and-binning scheme can be
viewed as the special case of hybrid coding scheme with
Aw = IT . Therefore the achievability result of Theorem 1 also
holds for this scheme. In particular from (69), the rate

R ≥ lim
τ→∞ max

M⊆LτM�=φ

1

|M|h([u]M|[u]τ−1
1 , [u]M̄)− 1

2
log(2πeσ 2

z )

(172)

is achievable, where Lτ is defined in (65), and the test channel
is defined as ui = si + zi . Recall that zi ∼ N (0, σ 2

z ) and the
test channel noise σ 2

z satisfies the distortion constraint in (70).
In order to prove Theorem 5, it suffices to show that the sum-
rate constraint is the dominant constraint of (172), i.e., as
τ → ∞, we have

arg max
M⊆LτM�=φ

1

|M|h([u]M|[u]τ−1
1 .[u]M̄) = Lτ . (173)

We prove the (173) through the following steps.
Step 1: We first show that, for any fixed

m ∈ {1, . . . , W + 1}, among all M ⊆ Lτ such that
|M| = m, the maximum rate is attained by the subset
{τ + B + W − m + 1, . . . , τ + B + W }, i.e.,

arg max
M⊆Lτ|M|=m

1

|M|h([u]M|[u]τ−1
1 , [u]M̄)

= {τ + B + W − m + 1, . . . , τ + B + W }. (174)

Fig. 17. Example of Lemma 10 with B = 2, W = 4, τ = 7. In this
case k = 3, Lτ = {9, 10, 11, 12, 13} and K� = {9, 10, 11}. According to
Lemma 10, among any subset of Lτ with size k = 3, differential entropy of
[u]K� give [u]τ−1

1 is the minimum.

To show (174) note that, for any M ⊆ Lτ such that
|M| = m, we have

h ([u]M|[u]τ−1
0 , [u]M̄)

= h([u]M , [u]M̄|[u]τ−1
0 ) − h([u]M̄|[u]τ−1

0 )

= h([u]τ+B+W
τ+B |[u]τ−1

0 ) − h([u]M̄|[u]τ−1
0 ). (175)

The first term in (175) is independent of M. Thus we are
looking for the set M ⊆ Lτ of size m that minimizes
the second term in (175). Consider the following lemma.

Lemma 10: For any set K ⊆ Lτ such that |K| = k,
we have:

h([u]K|[u]τ−1
1 ) ≥ h([u]K� |[u]τ−1

1 ) (176)

where K� � {τ + B. . . . , τ + B + k − 1}.
Fig 17 schematically illustrates an example of Lemma 10.

The proof follows from the application of [13, Lemma. 8] and
is omitted here. According to Lemma 10, we have

arg min
M⊆LτM�=φ

h([u]M̄|[u]τ−1
0 )

= {τ + B + W − m + 1, . . . , τ + B + W },
as required in (174). According to step 1,

max
M⊆LτM�=φ

1

|M|h([u]M|[u]τ−1
1 , [u]M̄)

= h([u]τ+B+W
τ+B+W−m+1|[u]τ−1

0 , [u]τ+B+W−m
τ+B ). (177)

It remains to show that the term in (177) is an increasing
function of m.

Step 2: For τ → ∞ and any m ≤ W ,

1

m + 1
h([u]τ+B+W

τ+B+W−m|[u]τ−1
0 , [u]τ+B+W−m−1

τ+B )

≥ 1

m
h([u]τ+B+W

τ+B+W−m+1|[u]τ−1
0 , [u]τ+B+W−m

τ+B ). (178)

To show (178), it suffices to show that

mh([u]τ+B+W
τ+B+W−m|[u]τ−1

0 , [u]τ+B+W−m−1
τ+B )

≥ (m + 1)h([u]τ+B+W
τ+B+W−m+1|[u]τ−1

0 , [u]τ+B+W−m
τ+B ),

or equivalently,

mh(uτ+B+W−m|[u]τ−1
0 , [u]τ+B+W−m−1

τ+B )

≥ h([u]τ+B+W
τ+B+W−m+1|[u]τ−1

0 , [u]τ+B+W−m
τ+B ). (179)
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To show (179), note that

h([u]τ+B+W
τ+B+W−m+1|[u]τ−1

0 , [u]τ+B+W−m
τ+B )

=
m−1∑

k=0

h(uτ+B+W−m+k+1|[u]τ−1
0 , [u]τ+B+W−m+k

τ+B )

=
m−1∑

k=0

h(uτ+B+W−m |[u]τ−k−2
0 , [u]τ+B+W−m−1

τ+B−k−1 ) (180)

≤ mh(uτ+B+W−m |[u]τ−1
0 , [u]τ+B+W−m−1

τ+B ), (181)

where (180) follows from the time invariant property among
the random variables at steady state when τ → ∞, (181) again
follows from the application of [13, Lemma 8]. According to
this lemma if the random variables u with indices closer to
a particular time are erased, the conditional entropy is the
largest.

According to step 2, (177) is an increasing function of m,
thus is maximized with m = W . This proves (173) as
required.

B. High Resolution Regime: Proof of Corollary 6

In order to analyze the high resolution behavior of the
memoryless quantization-and-binning scheme, it suffices to
study the rate expression in (53), in the limit D → 0.
In particular we need to show that,

lim
D→0

{
R+

QB(B, W, D) − 1

2
log

(
1 − ρ2

D

)}

= 1

2(W + 1)
log

(
1 − ρ2(B+1)

1 − ρ2

)

+ o(D), (182)

where limD→0 o(D) = 0. First we set σ 2
z = D, which satisfies

the distortion constraint , i.e.,

Var(st+W |[u]t+W
t , s̃t−B) ≤ Var(st+W |ut+W )

= D

1 + D
≤ D.

Note that when σ 2
z = D → 0, random variable ut becomes

asymptotically close to st . Thus the Markov property among
the sources st approximately holds among ut . Based on this
observation, the high resolution limit of the first differential
entropy term in (53) can be calculated as

lim
D→0

lim
τ→∞ h([u]τ+B+W

τ+B |[u]τ−1
1 ) = lim

τ→∞ h([s]τ+B+W
τ+B |[s]τ−1

1 )

= h([s]B+W+2
B+2 |s1)

= 1

2
log

(
(2πe)W+1(1 − ρ2(B+1))(1 − ρ2)W

)
. (183)

Finally by replacing (183) into (53) with σ 2
z = D, the expres-

sion in (182) is derived. This completes the proof.

APPENDIX J
GOP-BASED CODING: PROOF OF THEOREM 5

The GOP-Based coding scheme for the zero-delay stream-
ing setup periodically transmits the I-frames as the intra-coded
pictures that can be decoded at the decoder without the use of
any other frame. Between the two consecutive I-frames, the

P-frames as the predicted pictures are transmitted which
require the use of previous frames to be decoded at the
decoder.

According to the problem setup, in case of burst erasure
of the channel, the decoder is required to start decoding the
source vectors at most W +1 times after the erasure ends. It is
not hard to observe that in the GOP-based scheme the worst
erasure pattern erases the I-frame and reveals the packets right
after the I-frame. This suggests that in order to guarantee the
recovery after W + 1 times, the I-frames have to be sent at
least with a period of W + 1.

Let us define vt as the quantization of the source vector st as
the I-frame. Using the Gaussian test channel, the quantization
can be modeled as

st = vt + zt .

Note that zt ∼ N (0, D) which guarantees the average dis-
tortion constraint. The decoder succeeds in reconstructing the
source by only using the encoder output at time t if the rate
satisfies

Rt ≥ 1

2
log

(
1

D

)
. (184)

For the time interval [t +1 : t + W ] the encoder sends ut as
the output of the predictive encoder, i.e., the P-frame. Using
the similar notation for the predictive coding it is not hard to
observe that the source si for any i ∈ [t + 1 : t + W ] can be
represented as

si = ρi−t vt + ρi−t−1ut+1 + . . . + ρui−1 + ui + zi .

At each time i ∈ [t + 1 : t + W ], the decoder succeeds in
recovering ui if the rate satisfies

Ri ≥ 1

2
log

(
1 − ρ2

D
+ ρ2

)
. (185)

From (184) and (185) it can be observed that the scheme
requires the average rate

R̄GOP(W, D) = 1

W + 1

t+W∑

i=t

Ri

= 1

2
log

(
1 − ρ2

D
+ ρ2

)

+ 1

2(W + 1)
log

(
1

1 − (1 − D)ρ2

)
. (186)

Note that the rate expression in (186) is independent of the
burst length B .
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