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Generalized Gaussian Multiterminal Source
Coding: The Symmetric Case

Jun Chen , Li Xie, Yameng Chang, Jia Wang, and Yizhong Wang

Abstract— Consider a generalized multiterminal source coding
system, where

�
�

m

�
encoders, each observing a distinct size-

m subset of � (� ≥ 2) zero-mean unit-variance exchangeable
Gaussian sources with correlation coefficient ρ, compress their
observations in such a way that a joint decoder can reconstruct
the sources within a prescribed mean squared error distortion
based on the compressed data. The optimal rate-distortion
performance of this system was previously known only for the
two extreme cases m = � (the centralized case) and m = 1 (the
distributed case), and except when ρ = 0, the centralized system
can achieve strictly lower compression rates than the distributed
system under all non-trivial distortion constraints. Somewhat
surprisingly, it is established in the present paper that the optimal
rate-distortion performance of the afore-described generalized
multiterminal source coding system with m ≥ 2 coincides
with that of the centralized system for all distortions when
ρ ≤ 0 and for distortions below an explicit positive threshold
(depending on m) when ρ > 0. Moreover, when ρ > 0,
the minimum achievable rate of generalized multiterminal source
coding subject to an arbitrary positive distortion constraint d is
shown to be within a finite gap (depending on m and d) from its
centralized counterpart in the large � limit except for possibly
the critical distortion d = 1 − ρ.

Index Terms— Gaussian source, mean squared error,
multiterminal source coding, rate-distortion, reverse water-filling.

I. INTRODUCTION

MULTITERMINAL source coding deals with the sce-
narios where (possibly) correlated data collected at

different sites are compressed in a distributed manner and
then forwarded to a fusion center for joint reconstruc-
tion. The fundamental problem here is to characterize the
optimal tradeoff between the compression rates and the
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reconstruction distortions. The lossless version of this problem
was largely solved by Slepian and Wolf in their landmark
paper [1]. Their result was later partially extended to the
lossy case by Wyner and Ziv [2] and by Berger and Tung
[3], [4]. Though a complete solution to the general lossy
multiterminal source coding problem remains out of reach,
significant progress has been made on some special cases
of this problem, most notably the quadratic Gaussian case
[5]–[11] and the logarithmic loss case [12].

In many applications, the data collected at one site may
be partially contained in those collected at another site. For
example, in a distributed video surveillance system, the scenes
captured by different cameras can potentially overlap with
each other. To model such scenarios, a so-called generalized
multiterminal source coding problem was introduced in [13].
Specifically, in generalized multiterminal source coding, sev-
eral encoders, each observing a subset of � jointly distributed
sources, compress their observations in such a way that a joint
decoder can reconstruct the sources within a prescribed dis-
tortion level based on the compressed data. It is shown in [13]
that, for Gaussian sources with mean squared error distortion
constraints, a generalized multiterminal source coding system
can achieve the same rate-distortion performance as that of the
centralized point-to-point system in the high-resolution regime
if the source-encoder bipartite graph and the probabilistic
graphical model of the source distribution satisfy a certain
condition.

In this work, we shall continue this line of research
by considering a symmetric version of the generalized
Gaussian multiterminal source coding problem. Here we have
� zero-mean unit-variance exchangeable Gaussian sources
with correlation coefficient ρ and

�
�
m

�
encoders, each of

which has access to a distinct size-m subset of these �
sources (see Fig. 1 for an illustration of the special case
(�,m) = (3, 2)); moreover, we impose a normalized mean
squared error trace distortion constraint on the joint source
reconstruction (or equivalently, identical mean squared error
distortion constraints on individual source reconstructions).
It is worth mentioning that this seemingly simple sym-
metric setting is in fact non-trivial. Indeed, the associated
rate-distortion function was previously known only for the two
extreme cases m = � (the centralized case) and m = 1 (the
distributed case). Furthermore, there are two major benefits
to study this symmetric setting. First of all, it enables us
to obtain results that are more explicit and conclusive than
those for a more generic setting in [13]. More importantly,
it is instructive to think of m as a parameter that specifies
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Fig. 1. A generalized multiterminal source coding system with
(�, m) = (3, 2).

the amount of cooperation among the encoders; as such, one
can gain a precise understanding of the value of cooperation
in terms of improving compression efficiency by investigating
the gradual transition from a distributed system to a centralized
system with m varying from 1 to �.

The rest of this paper is organized as follows. Section II
contains the problem definition and a review of the relevant
results in the literature. We state the main results in Section III.
Section IV provides a detailed discussion of the special case
(�,m) = (3, 2). The proofs of the main results can be found
in Sections V, VI, and VII. We present some numerical results
in Section VIII. Section IX contains the concluding remarks.

Notation: We use E[·], (·)T , tr(·), and det(·) to denote
the expectation operator, the transpose operator, the trace
operator, and the determinant operator, respectively. For any
random (column) vector Y and random object ω, the distortion
covariance matrix incurred by the minimum mean squared
error estimator of Y from ω (i.e., E[(Y − E[Y |ω])((Y −
E[Y |ω]))T ]) is denoted by cov(Y |ω). We use Y n as an
abbreviation of (Y (1), · · · , Y (n)). The cardinality of a set S is
denoted by |S|. An �×� diagonal matrix with the i-th diagonal
entry being ai, i = 1, · · · , �, is written as diag(a1, · · · , a�).
Throughout this paper, the base of the logarithm function is e.

II. PROBLEM DEFINITION AND KNOWN RESULTS

A. Problem Definition

Let X � (X1, · · · , X�)T be an �-dimensional (� ≥ 2)
zero-mean Gaussian random column vector with covariance
matrix

Σ(�) =

⎛
⎜⎜⎜⎜⎝

1 ρ · · · ρ

ρ
. . .

. . .
...

...
. . .

. . . ρ
ρ · · · ρ 1

⎞
⎟⎟⎟⎟⎠ .

We assume ρ ∈ [− 1
�−1 , 1] to ensure that Σ(�) is positive

semidefinite and consequently is a valid covariance matrix.
Let X(t) � (X1(t), · · · , X�(t))T , t = 1, 2, · · · , be i.i.d. copies
of X .

Definition 1: A rate r is said to be achievable by an
(�,m) generalized multiterminal source coding system under

normalized mean squared error trace distortion constraint d if,
for any � > 0, there exist encoding functions φ(n)

S : R
m×n →

C(n)
S , S ∈ I(�,m) � {S ⊆ {1, · · · , �} : |S| = m}, and a

decoding function ψ(n) :



S∈I(�,m) C(n)
S → R

�×n such that

1
n

�
S∈I(�,m)

log |C(n)
S | ≤ r + �,

1
�n

n�
t=1

tr(E[(X(t) − X̂(t))(X(t) − X̂(t))T ]) ≤ d+ �, (1)

where

X̂n � ψ(n)(φ(n)
S (Xn

i , i ∈ S),S ∈ I(�,m)).

The minimum of such r is denoted by r(�,m)(d), which will be
referred to as the rate-distortion function of (�,m) generalized
multiterminal source coding.

Remark 1: Due to the symmetry of the source distribution,
r(�,m)(d) remains the same if we replace the normalized mean
squared error trace distortion constraint on the joint source
reconstruction in (1) with identical mean squared error dis-
tortion constraints on individual source reconstructions given
below

1
n

n�
t=1

E[(Xi(t) − X̂i(t))2] ≤ d+ �, i = 1, · · · , �,

where X̂i(t) is the i-th entry of X̂(t), i = 1, · · · , �, t =
1, · · · , n.

Remark 2: It is clear that, for m = 1, · · · , �,
r(�,m)(d) = 0, d ≥ 1.

Henceforth we shall assume d ∈ (0, 1).
Remark 3: Note that an encoder that observes Xn

i , i ∈ S,
is at least as powerful as one that observes Xn

i , i ∈ S�, for
some S� ⊆ S, in the sense that the former can perform any
function that the latter can do. Given 1 ≤ m� < m ≤ �,
we can find, for any (�,m�) generalized multiterminal source
coding system, an (�,m) generalized multiterminal source
coding system such that each encoder in the (�,m�) system
is dominated (in terms of functionality) by an encoder in the
(�,m) system. Therefore, we must have r(�,m)(d) ≤ r(�,m

�)(d)
for m > m�.

Remark 4: It is easy to prove the following facts.

• For ρ = − 1
�−1 and m = 1, · · · , �,

r(�,m) =
�− 1

2
log

1
d
, d ∈ (0, 1).

• For ρ = 0 and m = 1, · · · , �,

r(�,m) =
�

2
log

1
d
, d ∈ (0, 1).

• For ρ = 1 and m = 1, · · · , �,

r(�,m) =
1
2

log
1
d
, d ∈ (0, 1).

Henceforth we shall assume ρ ∈ (− 1
�−1 , 0) ∪ (0, 1).

This work is devoted to the characterization of r(�,m)(d).
It will be seen that r(�,m)(d) (or the best known upper bound
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if the exact characterization of r(�,m)(d) is not available) can
be expressed as

1
2

log
det(Σ(�))

det(D(�,m))
, (2)

where D(�,m) is an � × � matrix with all its diagonal entries
equal to d and all its off-diagonal entries equal to θ(�,m) for
some θ(�,m), i.e.,

D(�,m) �

⎛
⎜⎜⎜⎜⎝

d θ(�,m) · · · θ(�,m)

θ(�,m) . . .
. . .

...
...

. . .
. . . θ(�,m)

θ(�,m) · · · θ(�,m) d

⎞
⎟⎟⎟⎟⎠ . (3)

Roughly speaking, D(�,m) can be interpreted as the distortion
covariance matrix induced by the best known (�,m) gener-
alized multiterminal source coding system under normalized
mean squared error trace distortion constraint d, and the
essential characteristic of such a system is reflected in its
associated θ(�,m). The expression in (2) admits an equivalent
representation in the eigenspace. Recall that any � × � real
matrix Π of the form⎛

⎜⎜⎜⎜⎝
a b · · · b

b
. . .

. . .
...

...
. . .

. . . b
b · · · b a

⎞
⎟⎟⎟⎟⎠ (4)

can be written as

Π = OΛOT ,

where O is an arbitrary � × � real unitary matrix with the
last column being ( 1√

�
, · · · , 1√

�
)T , and Λ � diag(λ1, · · · , λ�)

with

λi � a− b, i = 1, · · · , �− 1,

λ� � a+ (�− 1)b

being the eigenvalues of Π. Note that both Σ(�) and D(�,m)

are of the form shown in (4). Therefore, their eigenvalues are
given by

λ
(�)
i � 1 − ρ, i = 1, · · · , �− 1,

λ
(�)
� � 1 + (�− 1)ρ,

and

d
(�,m)
i � d− θ(�,m), i = 1, · · · , �− 1, (5)

d
(�,m)
� � d+ (�− 1)θ(�,m), (6)

respectively; moreover, we can write the expression in (2)
equivalently as

��
i=1

1
2

log
λ

(�)
i

d
(�,m)
i

. (7)

The expression in (7) naturally suggests that the best known
(�,m) system might be interpreted as performing lossy com-
pression according to a certain form of distortion allocation
in the eigenspace. Indeed, for the optimal centralized system

(i.e., m = �), this distortion allocation interpretation (referred
to as reverse water-filling) and the associated transform coding
scheme are well known. However, in an (�,m) generalized
multiterminal source coding system with m < �, each encoder
can only observe a subset of the sources; therefore, in principle
it cannot decorrelate the sources simultaneously through a
unitary transformation and perform lossy compression in the
eigenspace. Nevertheless, since Σ(�) and D(�,m) can be diag-
onalized by the same unitary matrix, one may still interpret
the effect of the best known (�,m) system and make sensible
comparisons with that of the optimal centralized system in the
eigenspace.

B. Known Results

A complete characterization of r(�,m)(d) was previously
known only for m = � and m = 1. It is instructive to
review the relevant results for these two extreme cases since
they provide the necessary background and useful motivations
for the introduction of our new results. For reasons that will
become clear soon, we define

d−c � 1 + (�− 1)ρ,

d+
c � 1 − ρ,

and refer to them as critical distortions. It can be seen that
min{λ(�)

1 , · · · , λ(�)
� } coincides with d−c for ρ ∈ (− 1

�−1 , 0) and
coincides with d+

c for ρ ∈ (0, 1).
Now consider the case m = �. The following

result is a simple consequence of the celebrated reverse
water-filling formula [14, Thm. 13.3.3]. Define D(�,�) and
d
(�,�)
i , i = 1, · · · , �, according to (3), (5), and (6) with

θ(�,�) �
�

0, d ∈ (0, d−c ),
1−d
�−1 + ρ, d ∈ [d−c , 1), ρ ∈ (− 1

�− 1
, 0), (8)

θ(�,�) �
�

0, d ∈ (0, d+
c ),

d− 1 + ρ, d ∈ [d+
c , 1). ρ ∈ (0, 1).

Proposition 1: For ρ ∈ (− 1
�−1 , 0) ∪ (0, 1),

r(�,�)(d) =
1
2

log
det(Σ(�))

det(D(�,�))
=

��
i=1

1
2

log
λ

(�)
i

d
(�,�)
i

, d ∈ (0, 1).

It is easy to show that

r(�,�) ≥ r(�)(d) � 1
2

log
(1 − ρ)�−1(1 + (�− 1)ρ)

d�
.

We shall refer to r(�)(d) as the Shannon lower bound. Note
that r(�,�)(d) coincides with r(�)(d) when d ∈ (0, d−c ] for ρ ∈
(− 1

�−1 , 0), and when d ∈ (0, d+
c ] for ρ ∈ (0, 1).

Next consider the other extreme case m = 1. The following
result was first proved in [6] for ρ ∈ (0, 1) and then in [7]
for ρ ∈ (− 1

�−1 , 1). Define D(�,1) and d
(�,1)
i , i = 1, · · · , �,

according to (3), (5), and (6) with

θ(�,1) � ρdγ(�,1)

γ(�,1) + (1 − ρ)(1 + (�− 1)ρ)
,

where

γ(�,1) � −δ +


δ2 + 4(1 − ρ)(1 + (�− 1)ρ)d(1 − d)

2(1 − d)
,

δ � (1 + (�− 1)ρ)(1 − ρ− d) − (1 − ρ)d.
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Proposition 2: For ρ ∈ (− 1
�−1 , 0) ∪ (0, 1),

r(�,1)(d) =
1
2

log
det(Σ(�))

det(D(�,1))
=

��
i=1

1
2

log
λ

(�)
i

d
(�,1)
i

, d ∈ (0, 1).

It can be verified that, for ρ ∈ (− 1
�−1 , 0) ∪ (0, 1), we have

θ(�,1) �= θ(�,�), and consequently

r(�,1)(d) > r(�,�)(d), d ∈ (0, 1). (9)

III. MAIN RESULTS

One might be inclined to expect that (9) continues to hold
with r(�,1)(d) replaced by r(�,m)(d) for any m < �. Somewhat
surprisingly, it was shown in [13] that, in the high-resolution
regime (i.e., when d is sufficiently close to zero), r(�,m)(d)
coincides with r(�,�)(d) when m ≥ 2. However, the
high-resolution condition in [13] is not explicit. Our first
main result shows that this high-resolution condition is in fact
redundant when the correlation coefficient ρ is negative.

Theorem 1: For ρ ∈ (− 1
�−1 , 0) and m = 2, · · · , �,

r(�,m)(d) = r(�,�)(d), d ∈ (0, 1).

Proof: See Section V.
For positive ρ, we have the following result, which provides

an explicit high-resolution condition under which r(�,m)(d)
(with m ≥ 2) matches r(�,�)(d).

Theorem 2: For ρ ∈ (0, 1) and m = 1, · · · , �,
r(�,m)(d) = r(�,�)(d), d ∈ (0, d(�,m)

c ],

where

d(�,m)
c � 1 − (�− 1)ρ(1 + (m− 1)ρ)

(�− 1)mρ+ (m− 1)(1 − ρ)
.

Proof: See Section VI.
Remark 5: We have d

(�,�)
c = d+

c and d
(�,1)
c = 0. The

statement of Theorem 2 is trivial when m = � and is void
when m = 1.

Remark 6: d(�,m)
c is a monotonically increasing function of

m for fixed � and is a monotonically decreasing function of �
for fixed m. Moreover, we have

lim
�→∞

d(�,m)
c = d(m)

c � (m− 1)(1 − ρ)
m

,

lim
m→∞ d(m)

c = d+
c ,

which implies that, for ρ ∈ (0, 1), r(�,m)(d) essentially
matches r(�,�)(d) (and the Shannon lower bound r(�)(d) as
well) all the way up to the critical distortion d+

c when � and
m are sufficiently large (even if the ratio m

� is close to zero).
It remains to understand the behavior of r(�,m)(d) when

d > d
(�,m)
c for ρ ∈ (0, 1) and m ≥ 2. To simplify the

analysis, we shall consider the asymptotic regime where � goes
to infinity with m fixed. Define

r
(�,m)
1 (d) � �

2
log

1 − ρ

d
+

1
2

log �+
1
2

log
ρ

1 − ρ
+O(

1
�
),

r
(�,m)
2 (d) � �

2
log

1 − ρ

d
+

1
2

log �

+
d− (m− 1)(1 − ρ− d)

2m(1 − ρ− d)

+
1
2

log
mρ(1 − ρ− d)

(1 − ρ)2
+O(

1
�
),

r
(�,m)
3 (d) �

√
�

2
√
m

+
1
4

log �+
1
2

log
√
mρ

1 − ρ

− 1 + (m− 1)ρ
4mρ

+O(
1√
�
),

r
(�,m)
4 (d) � 1

2
log

ρ

d− 1 + ρ
+

(1 − ρ)(1 − d)
2mρ(d− 1 + ρ)

+O(
1
�
),

where g(�) = O(f(�)) means the absolute value of g(�)
f(�) is

bounded for all sufficiently large �.
Theorem 3: For ρ ∈ (0, 1) and m ≥ 1,

r(�,m)(d) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r
(�,m)
1 (d), d ∈ (0, d(m)

c ],
r
(�,m)
2 (d), d ∈ (d(m)

c , d+
c ),

r
(�,m)
3 (d), d = d+

c ,

r
(�,m)
4 (d), d ∈ (d+

c , 1).

Moreover, this upper bound is tight when m = 1 or d ∈
(0, d(m)

c ].
Proof: See Section VII.

Remark 7: It follows from Proposition 1 that, for ρ ∈ (0, 1),

r(�,�)(d)

=

⎧⎪⎨
⎪⎩

�
2 log 1−ρ

d + 1
2 log �+ 1

2 log ρ
1−ρ +O(1

� ), d ∈ (0, d+
c ),

1
2 log �+ 1

2 log ρ
1−ρ +O(1

� ), d = d+
c ,

1
2 log ρ

d−1+ρ +O(1
� ), d ∈ (d+

c , 1).

(10)

Combining Theorem 3 and (10) shows that, for ρ ∈ (0, 1) and
m ≥ 1,

lim sup
�→∞

r(�,m)(d) − r(�,�)(d) ≤ δ(m)(d), d ∈ (0, 1),

where

δ(m)(d)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, d ∈ (0, d(m)
c ],

1−ρ−m(1−ρ−d)
2m(1−ρ−d) + 1

2 log m(1−ρ−d)
1−ρ , d ∈ (d(m)

c , d+
c ),

∞, d = d+
c ,

(1−ρ)(1−d)
2mρ(d−1+ρ) , d ∈ (d+

c , 1).

Note that, as a function of d (with m fixed), δ(m)(d) is
monotonically increasing for d ∈ (0, d+

c ) and monotonically
decreasing for d ∈ (d+

c , 1); moreover, it approaches infinity as
d → d+

c . For fixed d, δ(m)(d) is a monotonically decreasing
function of m and converges to zero (though not uniformly
over d) as m→ ∞ except at d = d+

c . Therefore, for ρ ∈ (0, 1),
r(�,m)(d) is within a finite gap (depending on d) from r(�,�)(d)
even in the limit of large � when d �= d+

c ; moreover, this gap
diminishes as m increases. For ρ ∈ (0, 1), the gap between
r(�,m)(d+

c ) and r(�,�)(d+
c ) can potentially approach infinity as

�→ ∞, and indeed so when m = 1.
Remark 8: In view of Theorem 3, (10), and Remark 3,

we have, for ρ ∈ (0, 1) and m ≥ 1,

lim
�→∞

1
�
r(�,m)(d) =

�
1
2 log 1−ρ

d , d ∈ (0, d+
c ),

0, d ∈ [d+
c , 1),

Authorized licensed use limited to: McMaster University. Downloaded on October 13,2020 at 18:47:01 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: GENERALIZED GAUSSIAN MULTITERMINAL SOURCE CODING 2119

which implies that the average minimum achievable rate per
encoder of an (�,m) generalized multiterminal source coding
system is essentially independent of m when � is sufficiently
large.

Remark 9: It is interesting to see that, for ρ ∈ (0, 1) and
m ≥ 1, r(�,m)(d) remains bounded (though not uniformly over
d) even in the limit of large � when d ∈ (d+

c , 1).

IV. A SPECIAL CASE: (�,m) = (3, 2)

The following result can be obtained by specializing the
well-known Berger-Tung upper bound [3], [4], [15] to our
current setting.

Proposition 3: For any Gaussian random variables/vectors
VS , S ∈ I(�,m), jointly distributed with X such that VS ↔
(Xi, i ∈ S) ↔ (Xi� , i

� ∈ {1, · · · , �}\S, VS� ,S� ∈ I(�,m)\S)
form a Markov chain for any S ∈ I(�,m), we have

r(�,m)(
1
�
tr(cov(X |VS ,S ∈ I(�,m))))

≤ 1
2

log
det(Σ(�))

det(cov(X |VS ,S ∈ I(�,m)))
.

Remark 10: In the current setting, there are
�

�
m

�
encoders,

indexed by S ∈ I(�,m). Roughly speaking, (Xi, i ∈ S) is the
observation of encoder S, and VS is the encoded version of
(Xi, i ∈ S). Note that

1
2

log
det(Σ(�))

det(cov(X |VS ,S ∈ I(�,m)))
= I(X ;VS ,S ∈ I(�,m))

= I((Xi, i ∈ S),S ∈ I(�,m);VS ,S ∈ I(�,m)),

which is the achievable sum rate of the Berger-Tung scheme,
and 1

� tr(cov(X |VS ,S ∈ I(�,m))) is the associated achievable
normalized mean squared error distortion.

It is clear that there is considerable freedom in the choice
of VS , S ∈ I(�,m). The key idea underlying the proofs of
Theorem 1 and Theorem 2 is to derive a Berger-Tung upper
bound on r(�,m)(d) for m ≥ 2 that (partially) coincides with
r(�,�)(d) through a judicious construction of VS , S ∈ I(�,m).
To illustrate this idea, we first consider the special case
(�,m) = (3, 2), which is further divided into two subcases
ρ ∈ (− 1

2 , 0) and ρ ∈ (0, 1). The complete proofs of Theorem 1
and Theorem 2 can be found in Section V and Section VI,
respectively.

A. ρ ∈ (− 1
2 , 0)

Recall that

D(3,3) �

⎛
⎝ d θ(3,3) θ(3,3)

θ(3,3) d θ(3,3)

θ(3,3) θ(3,3) d

⎞
⎠ ,

where

θ(3,3) �
�

0, d ∈ (0, d−c ),
1−d
2 + ρ, d ∈ [d−c , 1).

It suffices to construct V{1,2}, V{2,3}, V{1,3} such that
cov(X |V{1,2}, V{2,3}, V{1,3}) coincides with D(3,3), or equiv-
alently, the covariance matrix of E[X |V{1,2}, V{2,3}, V{1,3}]

coincides with Σ(3) −D(3,3). When d ∈ [d−c , 1),

Σ(3) −D(3,3) =

⎛
⎝ 1 − d d−1

2
d−1
2

d−1
2 1 − d d−1

2
d−1
2

d−1
2 1 − d

⎞
⎠ ,

which is of rank 2 (this fact can also be inferred from the
reverse water-filling solution). Inspired by this observation,
we propose the following construction. For any γ > 0, let

U−
{1,2}(γ) � X1 −X2 +

√
γN−

{1,2}, (11)

U−
{2,3}(γ) � X2 −X3 +

√
γN−

{2,3}, (12)

U−
{1,3}(γ) � X3 −X1 +

√
γN−

{1,3}, (13)

where N−
{1,2}, N

−
{2,3}, N

−
{1,3} are mutually independent

zero-mean unit-variance Gaussian random variables and are
independent of X . It can be verified that

X̂−
1 (γ) � E[X1|U−

{1,2}(γ), U−
{2,3}(γ), U−

{1,3}(γ)]

=
1 − ρ

γ + 3(1 − ρ)
(U−

{1,2}(γ) − U−
{1,3}(γ)),

X̂−
2 (γ) � E[X2|U−

{1,2}(γ), U−
{2,3}(γ), U−

{1,3}(γ)]

=
1 − ρ

γ + 3(1 − ρ)
(U−

{2,3}(γ) − U−
{1,2}(γ)),

X̂−
3 (γ) � E[X3|U−

{1,2}(γ), U−
{2,3}(γ), U−

{1,3}(γ)]

=
1 − ρ

γ + 3(1 − ρ)
(U−

{1,3}(γ) − U−
{2,3}(γ)).

The covariance matrix of (X̂−
1 (γ), X̂−

2 (γ), X̂−
3 (γ))T is

of rank 2 (note that X̂−
1 (γ) + X̂−

2 (γ) + X̂−
3 (γ) = 0).

This suggests that (U−
{1,2}(γ), U−

{2,3}(γ), U−
{1,3}(γ))

might be the right candidate for the desired
(V{1,2}, V{2,3}, V{1,3}) in the high-distortion regime
[d−c , 1). Indeed, U−

{1,2}(γ), U−
{2,3}(γ), U−

{1,3}(γ) satisfy
the Markov chain condition in Proposition 3, and
cov(X |U−

{1,2}(γ), U−
{2,3}(γ), U−

{1,3}(γ)) coincides with

D(3,3) if we set

γ =
2(1 − ρ)2

1 − d
− 3(1 − ρ), d ∈ [d−c , 1).

Note that γ is a monotonically increasing function of d,
and γ = γ

(3,2)
c � − (1−ρ)(1+2ρ)

ρ > 0 when d = d−c .
For d ∈ (0, d−c ], D(3,3) is a diagonal matrix. This special
structure implies that the desired construction for any d in the
low-distortion regime (0, d−c ) can be obtained by superimpos-
ing a simple refinement layer on the construction targeted at
the critical distortion d−c . Specifically, we can let

V{1,2} �

⎛
⎝U−

{1,2}(γ
(3,2)
c ), X1 +

�
d−c d
d−c − d

Z−
1

⎞
⎠ ,

V{2,3} �

⎛
⎝U−

{2,3}(γ
(3,2)
c ), X2 +

�
d−c d
d−c − d

Z−
2

⎞
⎠ ,

V{1,3} �

⎛
⎝U−

{1,3}(γ
(3,2)
c ), X3 +

�
d−c d
d−c − d

Z−
3

⎞
⎠ ,
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where Z−
1 , Z

−
2 , Z

−
3 are mutually independent zero-mean

unit-variance Gaussian random variables and are inde-
pendent of (X,U−

{1,2}(γ
(3,2)
c ), U−

{2,3}(γ
(3,2)
c ), U−

{1,3}(γ
(3,2)
c )).

It can be readily verified that V{1,2}, V{2,3}, V{1,3} sat-
isfy the Markov chain condition in Proposition 3, and
cov(X |V{1,2}, V{2,3}, V{1,3}) coincides with D(3,3) since

cov−1(X |V{1,2}, V{2,3}, V{1,3})

= cov−1(X |U−
{1,2}(γ

(3,2)
c ), U−

{2,3}(γ
(3,2)
c ), U−

{1,3}(γ
(3,2)
c ))

+ cov−1

⎛
⎝

�
d−c d
d−c − d

Z−
1 ,

�
d−c d
d−c − d

Z−
2 ,

�
d−c d
d−c − d

Z−
3

⎞
⎠

= diag
�

1
d−c

,
1
d−c

,
1
d−c

�
+ diag

�
d−c − d

d−c d
,
d−c − d

d−c d
,
d−c − d

d−c d

�

= diag
�

1
d
,
1
d
,
1
d

�
.

B. ρ ∈ (0, 1)

In this case, the off-diagonal entries of D(3,3) are all equal
to

θ(3,3) �
�

0, d ∈ (0, d+
c ),

d− 1 + ρ, d ∈ [d+
c , 1).

Note that Σ(3,3) −D(3,3) is of rank 3 when d ∈ (0, d+
c ), and

is of rank 1 when d ∈ [d+
c , 1). In view of (11), (12), and (13),

it is natural to consider the following construction. For any
γ > 0, let

U+
{1,2}(γ) � X1 +X2 +

√
γN+

{1,2}, (14)

U+
{2,3}(γ) � X2 +X3 +

√
γN+

{2,3}, (15)

U+
{1,3}(γ) � X1 +X3 +

√
γN+

{1,3}, (16)

where N+
{1,2}, N

+
{2,3}, N

+
{1,3} are mutually independent

zero-mean unit-variance Gaussian random variables and are
independent of X . It can be verified that

X̂+
1 (γ) � E[X1|U+

{1,2}(γ), U+
{2,3}(γ), U+

{1,3}(γ)]

=
(1 + ρ)γ + 2(1 − ρ)(1 + 2ρ)

γ2 + (5 + 7ρ)γ + 4(1 − ρ)(1 + 2ρ)
× (U+

{1,2}(γ) + U+
{1,3}(γ))

+
2ργ − 2(1 − ρ)(1 + 2ρ)

γ2 + (5 + 7ρ)γ + 4(1 − ρ)(1 + 2ρ)
U+
{2,3}(γ),

X̂+
2 (γ) � E[X2|U+

{1,2}(γ), U+
{2,3}(γ), U+

{1,3}(γ)]

=
(1 + ρ)γ + 2(1 − ρ)(1 + 2ρ)

γ2 + (5 + 7ρ)γ + 4(1 − ρ)(1 + 2ρ)
× (U+

{1,2}(γ) + U+
{2,3}(γ))

+
2ργ − 2(1 − ρ)(1 + 2ρ)

γ2 + (5 + 7ρ)γ + 4(1 − ρ)(1 + 2ρ)
U+
{1,3}(γ),

X̂+
3 (γ) � E[X3|U+

{1,2}(γ), U+
{2,3}(γ), U+

{1,3}(γ)]

=
(1 + ρ)γ + 2(1 − ρ)(1 + 2ρ)

γ2 + (5 + 7ρ)γ + 4(1 − ρ)(1 + 2ρ)
× (U+

{2,3}(γ) + U+
{1,3}(γ))

+
2ργ − 2(1 − ρ)(1 + 2ρ)

γ2 + (5 + 7ρ)γ + 4(1 − ρ)(1 + 2ρ)
U+
{1,2}(γ).

The covariance matrix of (X̂+
1 (γ), X̂+

2 (γ), X̂+
3 (γ))T is of

rank 3. This means that such a construction is not able
to achieve D(3,3) in the high-distortion regime [d+

c , 1), but
is potentially suitable for the low-distortion regime (0, d+

c ).
It turns out that cov(X |U+

{1,2}(γ), U+
{2,3}(γ), U+

{1,3}(γ)) coin-

cides with D(3,3) for a particular distortion d
(3,2)
c � 1 −

2ρ(1+ρ)
1+3ρ ∈ (0, d+

c ) at γ = (1−ρ)(1+2ρ)
ρ . Due to the diagonal

structure of the relevant D(3,3), the desired construction for
d ∈ (0, d(3,2)

c ) can be obtained by superimposing a refinement
layer on the construction targeted at d(3,2)

c .

V. PROOF OF THEOREM 1

The argument is structurally similar to that in
Section IV-A. The key step is to find a generalization
of the construction in (11), (12), and (13) for the special case
(�,m) = (3, 2). Let M be an m×m matrix given by

M �

⎛
⎜⎜⎜⎜⎝

m− 1 −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 · · · −1 m− 1

⎞
⎟⎟⎟⎟⎠ .

For any γ > 0 and S � {i1, · · · , im} ∈ I(�,m) with i1 <
· · · < im, define⎛

⎜⎜⎜⎜⎝
U−
S,1(γ)

...

...
U−
S,m(γ)

⎞
⎟⎟⎟⎟⎠ � M

⎛
⎜⎜⎜⎜⎝

Xi1
...
...

Xim

⎞
⎟⎟⎟⎟⎠ +

√
γ

⎛
⎜⎜⎜⎜⎝

N−
S,1
...
...

N−
S,m

⎞
⎟⎟⎟⎟⎠ ,

where (N−
S,1, · · · , N−

S,m)T is a Gaussian random vector with
mean zero and covariance matrix M . Moreover, we assume
that X , (N−

S,1, · · · , N−
S,m)T , S ∈ I(�,m), are mutually inde-

pendent.
Proposition 4: We have

cov(X |U−
S,1(γ), · · · , U−

S,m(γ),S ∈ I(�,m))

=

⎛
⎜⎜⎜⎜⎝

d−(γ) θ−(γ) · · · θ−(γ)

θ−(γ)
. . .

. . .
...

...
. . .

. . . θ−(γ)
θ−(γ) · · · θ−(γ) d−(γ)

⎞
⎟⎟⎟⎟⎠ ,

where

d−(γ) � 1 −
�

�−2
m−2

�
(�− 1)(1 − ρ)2

γ +
�

�−2
m−2

�
�(1 − ρ)

,

θ−(γ) � ρ+

�
�−2
m−2

�
(1 − ρ)2

γ +
�

�−2
m−2

�
�(1 − ρ)

.

Proof: See Appendix A.
Now we proceed to prove Theorem 1. It suffices to show

that

r(�,m)(d) ≤ r(�,�)(d), d ∈ (0, 1), (17)

since the other direction is trivially true (see Remark 3).
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Setting d−(γ) = d gives

γ = γ(�,m) �
�

�−2
m−2

�
(1 − ρ)((�− 1)(1 − ρ) − �(1 − d))

1 − d
.

Note that there is a one-to-one correspondence between d ∈
(d−

c

� , 1) and γ(�,m) ∈ (0,∞). Moreover,

θ−(γ(�,m)) =
1 − d

�− 1
+ ρ,

which coincides with θ(�,�) in (8) for d ∈ [d−c , 1); in particular,
θ−(γ(�,m)

c ) = 0, where

γ(�,m)
c � −

�
�−2
m−2

�
(1 − ρ)(1 + (�− 1)ρ)

ρ

is the value of γ(�,m) at d = d−c . Invoking Proposition 3
with VS � (U−

S,1(γ
(�,m)), · · · , U−

S,m(γ(�,m)))T , S ∈ I(�,m),
(which satisfy the Markov chain condition in Proposition 3)
proves (17) for d ∈ [d−c , 1).

Now consider the case d ∈ (0, d−c ). Let

W−
i (d) � Xi +

�
d−c d
d−c − d

Z−
i , i = 1, · · · , �,

where Z−
1 , · · · , Z−

� are mutually independent zero-mean unit-
variance Gaussian random variables, and are independent of
X , (N−

S,1, · · · , N−
S,m)T , S ∈ I(�,m). Construct ΩS , S ∈

I(�,m), such that 1) ΩS ⊆ S, S ∈ I(�,m), 2) ΩS ∩ ΩS� = ∅,
S �= S�, 3) ∪S∈I(�,m)ΩS = {1, · · · , �}. Such a construction
always exists. For example, we can let

ΩS �

⎧⎨
⎩

S, S = {1, · · · ,m},
{i}, S = {i−m+ 1, · · · , i}, i = m+ 1, · · · , �,
∅, otherwise.

Define VS � (U−
S,1(γ

(�,m)
c ), · · · , U−

S,m(γ(�,m)
c ),W−

i (d), i ∈
ΩS)T , S ∈ I(�,m). It is clear that such VS , S ∈ I(�,m), satisfy
the Markov chain condition in Proposition 3. Moreover,

cov−1(X |VS ,S ∈ I(�,m))

= cov−1(X |U−
S,1(γ

(�,m)
c ), · · · , U−

S,m(γ(�,m)
c ),S ∈ I(�,m))

+ cov−1

⎛
⎜⎝

⎛
⎝

�
d−c d
d−c − d

Z−
1 , · · · ,

�
d−c d
d−c − d

Z−
�

⎞
⎠

T
⎞
⎟⎠

= diag
�

1
d−c

, · · · , 1
d−c

�
+ diag

�
d−c − d

d−c d
, · · · , d

−
c − d

d−c d

�

= diag
�

1
d
, · · · , 1

d

�
,

which implies

cov(X |VS ,S ∈ I(�,m)) = diag(d, · · · , d).

Invoking Proposition 3 proves (17) for d ∈ (0, d−c ).

VI. PROOF OF THEOREM 2

The argument is structurally similar to that in Section IV-B.
The key step is to find a generalization of the construction
in (14), (15), and (16) for the special case (�,m) = (3, 2).
For any γ > 0 and S ∈ I(�,m), define

U+
S (γ) �

�
i∈S

Xi +
√
γN+

S ,

where N+
S is a zero-mean unit-variance Gaussian random

variable. Moreover, we assume that X , N+
S , S ∈ I(�,m) are

mutually independent.
Proposition 5: We have

cov(X |U+
S,1(γ), · · · , U+

S,m(γ),S ∈ I(�,m))

=

⎛
⎜⎜⎜⎜⎝

d+(γ) θ+(γ) · · · θ+(γ)

θ+(γ)
. . .

. . .
...

...
. . .

. . . θ+(γ)
θ+(γ) · · · θ+(γ) d+(γ)

⎞
⎟⎟⎟⎟⎠ ,

where

d+(γ) � 1 − η3γ + η1
γ2 + η2γ + η1

, (18)

θ+(γ) � ρ− η4γ + η1ρ

γ2 + η2γ + η1
(19)

with

η1 �
�
�− 1
m− 1

��
�− 2
m− 1

�
m(1 − ρ)(1 + (�− 1)ρ),

η2 �
�
�− 1
m− 1

�
(1 + (m− 1)ρ)

+
�
�− 2
m− 1

�
m(1 + (�− 2)ρ)

+
�
�− 2
m− 2

�
((�− 1)mρ+ (m− 1)(1 − ρ)),

η3 �
�
�− 1
m− 1

�
(1 + (m− 1)ρ) +

�
�− 2
m− 1

�
(�− 1)mρ2

+
�
�− 2
m− 2

�
(�− 1)ρ(1 + (m− 1)ρ),

η4 �
�
�− 1
m− 1

�
ρ(1 + (m− 1)ρ)

+
�
�− 2
m− 1

�
mρ(1 + (�− 2)ρ)

+
�
�− 2
m− 2

�
(1 + (�− 2)ρ)(1 + (m− 1)ρ).

Proof: See Appendix B.
Now we proceed to prove Theorem 2. It suffices to show

that

r(�,m)(d) ≤ r(�,�)(d), d ∈ (0, d(�,m)
c ]. (20)

Setting θ+(γ) = 0 gives

γ = γ(�,m)
c �

�
�−2
m−2

�
(1 − ρ)(1 + (�− 1)ρ)

ρ
.
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It can be verified that

d+(γ(�,m)
c ) = 1 − η3γ

(�,m)
c + η1

(γ(�,m)
c )2 + η2γ

(�,m)
c + η1

= 1 − η3ργ
(�,m)
c + η1ρ

η4γ
(�,m)
c + η1ρ

= d(�,m)
c .

Invoking Proposition 3 with VS � U+
S (γ(�,m)

c ), S ∈ I(�,m),
(which satisfy the Markov chain condition in Proposition 3)
proves (20) for d = d

(�,m)
c .

Now consider the case d ∈ (0, d(�,m)
c ). We will only give a

sketch of the proof here since it is similar to its counterpart
in Section V. Let

W+
i (d) � Xi +

�
d
(�,m)
c d

d
(�,m)
c − d

Z+
i , i = 1, · · · , �,

where Z+
1 , · · · , Z+

� are mutually independent zero-mean unit-
variance Gaussian random variables, and are independent of
X , N+

S , S ∈ I(�,m). Construct ΩS , S ∈ I(�,m), such
that 1) ΩS ⊆ S, S ∈ I(�,m), 2) ΩS ∩ ΩS� = ∅,
S �= S�, 3) ∪S∈I(�,m)ΩS = {1, · · · , �}. Define VS �
(U+

S (γ(�,m)
c ),W+

i (d), i ∈ ΩS)T , S ∈ I(�,m). It is clear that
such VS , S ∈ I(�,m), satisfy the Markov chain condition in
Proposition 3, and

cov(X |VS ,S ∈ I(�,m)) = diag(d, · · · , d).

Invoking Proposition 3 proves (20) for d ∈ (0, d(�,m)
c ).

Remark 11: Setting d+(γ) = d gives

γ = γ(�,m)

� η3 − η2(1 − d) +



(η2(1 − d) − η3)2 + 4η1d(1 − d)
2(1 − d)

.

Note that there is a one-to-one correspondence between d ∈
(0, 1) and γ(�,m) ∈ (0,∞). The preceding argument in fact
shows that, for ρ ∈ (0, 1) and m = 1, · · · , �,

r(�,m)(d) ≤ r(�,m)(d), d ∈ (0, 1), (21)

where

r(�,m)(d) � 1
2

log
(1 − ρ)�−1(1 + (�− 1)ρ)

(d− θ(�,m))�−1(d+ (�− 1)θ(�,m))
(22)

with

θ(�,m) �
�

0, d ∈ (0, d(�,m)
c ],

θ+(γ(�,m)), d ∈ (d(�,m)
c , 1).

The equality in (21) holds for d ∈ (0, d(�,m)
c ]. Moreover,

by defining
�
�−2
�−1

�
� 0 and

�
�−2
−1

�
� 0, one can readily verify

that r(�,m)(d) coincides with r(�,m)(d) for d ∈ (d(�,m)
c , 1)

when m = � or m = 1. However, it is still unknown whether
r(�,m)(d) = r(�,m)(d) for d ∈ (d(�,m)

c , 1) when 1 < m < �.

VII. PROOF OF THEOREM 3

In view of Remark 11, Remark 3, and (10), it suffices to
show that, for ρ ∈ (0, 1) and m ≥ 1,

r(�,m)(d) =

⎧⎪⎪⎨
⎪⎪⎩

r
(�,m)
1 (d), d ∈ (0, d(m)

c ],
r
(�,m)
2 (d), d ∈ (d(m)

c , d+
c ),

r
(�,m)
3 (d), d = d+

c ,
r
(�,m)
4 (d), d ∈ (d+

c , 1).

First consider the case d ∈ (0, d(m)
c ). When � is sufficiently

large, we have d ∈ (0, d(�,m)
c ] and consequently

r(�,m)(d) =
1
2

log
(1 − ρ)�−1(1 + (�− 1)ρ)

d�

=
�

2
log

1 − ρ

d
+

1
2

log �+
1
2

log
ρ

1 − ρ

+
1
2

log
�

1 +
1 − ρ

�ρ

�
= r

(�,m)
1 (d).

Next we shall derive a few results that are needed for
studying the remaining cases. It can be verified that

η1 = g1
�2m

((m− 1)!)2
+ h1

�2m−1

((m− 1)!)2
+O(�2m−2),

ηi = gi
�m

(m− 1)!
+ hi

�m−1

(m− 1)!
+O(�m−2), i = 2, 3, 4,

where

g1 � 0, g2 � mρ, g3 � mρ2, g4 � mρ2,

h1 � mρ(1 − ρ),

h2 � (m+ 1)(1 − ρ) +
(m+ 4)m(m− 1)ρ

2
,

h3 � h2ρ+ (1 − ρ)(1 + (m− 2)ρ),
h4 � h2ρ+ (m− 1)ρ(1 − ρ).

According to (18) and (19),

d =
(γ(�,m))2 + (η2 − η3)γ(�,m)

(γ(�,m))2 + η2γ(�,m) + η1
,

θ+(γ(�,m)) =
ρ(γ(�,m))2 + (η2ρ− η4)γ(�,m)

(γ(�,m))2 + η2γ(�,m) + η1
,

which implies

θ+(γ(�,m)) =
(ργ(�,m) + η2ρ− η4)d
γ(�,m) + η2 − η3

. (23)

Using the asymptotic expressions of η2, η3, and η4, we can
rewrite (23) as

θ+(γ(�,m)) =
ρdγ(�,m) (m−1)!

�m − (m−1)ρ(1−ρ)d
� +O( 1

�2 )

γ(�,m) (m−1)!
�m +mρ(1 − ρ) + h2−h3

� +O( 1
�2 )

.

(24)

Note that

η3 − η2(1 − d)

= mρ(d− 1 + ρ)
�m

(m− 1)!
+ (h3 − h2(1 − d))

�m−1

(m− 1)!
+O(�m−2),

(η2(1 − d) − η3)2 + 4η1d(1 − d)

= m2ρ2(1 − ρ− d)2
�2m

((m− 1)!)2
+ ζ

�2m−1

((m− 1)!)2
+O(�2m−2),
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where

ζ � 2mρ(1 − ρ− d)(h2(1 − d) − h3)
+ 4mρ(1 − ρ)d(1 − d).

As a consequence,

γ(�,m)

=
mρ(d− 1 + ρ)

2(1 − d)
�m

(m− 1)!
+
h3 − h2(1 − d)

2(1 − d)
�m−1

(m− 1)!

+

�
m2ρ2(1 − ρ− d)2 + ζ

� +O( 1
�2 )

2(1 − d)
�m

(m− 1)!
+O(�m−2). (25)

Now we are in a position to study the remaining cases.
For d ∈ (0, d+

c ) (if m = 1) or d ∈ [d(m)
c , d+

c ) (if m > 1),
we have 1 − ρ− d > 0. It follows from (25) that

γ(�,m)

=
mρ(d− 1 + ρ)

2(1 − d)
�m

(m− 1)!
+
h3 − h2(1 − d)

2(1 − d)
�m−1

(m− 1)!

+
mρ(1 − ρ− d)

�
1 + ζ

�m2ρ2(1−ρ−d)2 +O( 1
�2 )

2(1 − d)
�m

(m− 1)!
+O(�m−2)

=
mρ(d− 1 + ρ)

2(1 − d)
�m

(m− 1)!
+
h3 − h2(1 − d)

2(1 − d)
�m−1

(m− 1)!

+
mρ(1 − ρ− d)

�
1 + ζ

2�m2ρ2(1−ρ−d)2

�
2(1 − d)

�m

(m− 1)!
+O(�m−2)

=
(1 − ρ)d
1 − ρ− d

�m−1

(m− 1)!
+O(�m−2),

which, together with (24) and some simple calculation, gives

θ+(γ(�,m))

=
ρ(1−ρ)d2

�(1−ρ−d) − (m−1)ρ(1−ρ)d
� +O( 1

�2 )

mρ(1 − ρ) +O(1
� )

=
�
d(d− (m− 1)(1 − ρ− d))

�m(1 − ρ− d)
+O(

1
�2

)
� �

1 +O(
1
�
)
�

=
d(d− (m− 1)(1 − ρ− d))

�m(1 − ρ− d)
+O(

1
�2

).

One can readily verify that

r(�,m)(d)

=
�

2
log

1 − ρ

d
+

1
2

log �− �− 1
2

log
�

1 − θ+(γ(�,m))
d

�

+
1
2

log
�

ρd

1 − ρ
+
d

�

�
− 1

2
log(d+ (�− 1)θ+(γ(�,m)))

= r
(�,m)
2 (d).

For d = d+
c , we have 1 − ρ − d = 0. It follows from (25)

that

γ(�,m)

=
h3 − h2(1 − d)

2(1 − d)
�m−1

(m− 1)!

+

�
4mρ(1−ρ)d(1−d)

� +O( 1
�2 )

2(1 − d)
�m

(m− 1)!
+O(�m−2)

=
√
m(1 − ρ)

�m− 1
2

(m− 1)!
+
h3 − h2ρ

2ρ
�m−1

(m− 1)!
+O(�m− 3

2 )

=
√
m(1 − ρ)

�m− 1
2

(m− 1)!
+

(1 − ρ)(1 + (m− 2)ρ)
2ρ

�m−1

(m− 1)!

+O(�m− 3
2 ),

which, together with (24) and some simple calculation, gives

θ+(γ(�,m))

=

√
mρ(1−ρ)2√

�
+ (1−ρ)2(1+(m−2)ρ−2(m−1)ρ)

2� +O( 1
�2 )

mρ(1 − ρ) +
√

m(1−ρ)√
�

+O(1
� )

=
�

1 − ρ√
�m

+
(1 − ρ)(1 −mρ)

2�mρ
+O(

1
�2

)
�

×
�

1 − 1√
�mρ

+O(
1
�
)
�

=
1 − ρ√
�m

− (1 − ρ)(1 +mρ)
2�mρ

+O(
1
�

3
2
).

One can readily verify that

r(�,m)(d) = − �− 1
2

log
�

1 − θ+(γ(�,m))
1 − ρ

�
+

1
4

log �

+
1
2

log
�
ρ+

1 − ρ

�

�

− 1
2

log
�

1 − ρ+ (�− 1)θ+(γ(�,m))√
�

�
= r

(�,m)
3 (d).

For d ∈ (d+
c , 1), we have 1−ρ−d < 0. It follows from (25)

that

γ(�,m)

=
mρ(d− 1 + ρ)

2(1 − d)
�m

(m− 1)!
+
h3 − h2(1 − d)

2(1 − d)
�m−1

(m− 1)!

+
mρ(d− 1 + ρ)

�
1 + ζ

�m2ρ2(1−ρ−d)2 +O( 1
�2 )

2(1 − d)
�m

(m− 1)!
+O(�m−2)

=
mρ(d− 1 + ρ)

2(1 − d)
�m

(m− 1)!
+
h3 − h2(1 − d)

2(1 − d)
�m−1

(m− 1)!

+
mρ(d− 1 + ρ)

�
1 + ζ

2�m2ρ2(1−ρ−d)2

�
2(1 − d)

�m

(m− 1)!
+O(�m−2)

=
mρ(d− 1 + ρ)

1 − d

�m

(m− 1)!

+
�
h3 − h2(1 − d)

1 − d
+

(1 − ρ)d
d− 1 + ρ

�
�m−1

(m− 1)!
+O(�m−2).

(26)

Substituting (26) into (24) gives

θ+(γ(�,m)) =
d− 1 + ρ+ μ

� +O( 1
�2 )

1 + ν
� +O( 1

�2 )
,
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where

μ � h3 − h2(1 − d)
mρ

+
(1 − ρ)d(1 − d)
mρ(d− 1 + ρ)

− (m− 1)(1 − ρ)(1 − d)
mρ

,

ν � h3

mρ2
+

(1 − ρ)(1 − d)
mρ2(d− 1 + ρ)

.

Clearly, we have

θ+(γ(�,m))

=
�
d− 1 + ρ+

μ

�
+O(

1
�2

)
� �

1 − ν

�
+O(

1
�2

)
�

= d− 1 + ρ+
μ− (d− 1 + ρ)ν

�
+O(

1
�2

)

= d− 1 + ρ+
�
h3 − h2(1 − d)

�mρ
+

(1 − ρ)d(1 − d)
�mρ(d− 1 + ρ)

− (m− 1)(1 − ρ)(1 − d)
�mρ

− h3(d− 1 + ρ)
�mρ2

− (1 − ρ)(1 − d)
�mρ2

�
+O(

1
�2

)

= d− 1 + ρ+
�

(h3 − h2ρ)(1 − d)
�mρ2

+
(1 − ρ)d(1 − d)
�mρ(d− 1 + ρ)

− (m− 1)(1 − ρ)(1 − d)
�mρ

− (1 − ρ)(1 − d)
�mρ2

�

+O(
1
�2

)

= d− 1 + ρ+
�

(1 − ρ)(1 + (m− 2)ρ)(1 − d)
�mρ2

+
(1 − ρ)d(1 − d)
�mρ(d− 1 + ρ)

− (m− 1)(1 − ρ)(1 − d)
�mρ

− (1 − ρ)(1 − d)
�mρ2

�
+O(

1
�2

)

= d− 1 + ρ+
(1 − ρ)2(1 − d)
�mρ(d− 1 + ρ)

+O(
1
�2

).

One can readily verify that

r(�,m)(d) =
1
2

log
1 + (�− 1)ρ

d+ (�− 1)θ+(γ(�,m))

− �− 1
2

log
d− θ+(γ(�,m))

1 − ρ

= r
(�,m)
4 (d).

This completes the proof of Theorem 3.

VIII. NUMERICAL RESULTS

Some numerical examples will be provided in this section to
illustrate our main results. We focus on the case ρ > 0 since,
in view of Theorem 1, the relevant plots are not particularly
interesting when ρ ≤ 0.

First we compare r(�,m)(d) (the best known upper bound on
r(�,m)(d)), 1 < m < �, with r(�,�)(d) (the rate-distortion func-
tion in the centralized setting), r(�,1)(d) (the rate-distortion
function in the distributed setting), and r(�)(d) (the Shannon
lower bound). Fig. 2 illustrates the case � = 3 with ρ = 0.6.

Fig. 2. An illustration of r(3)(d), r(3,1)(d), r(3,2)(d), and r(3,3)(d) with
ρ = 0.6.

Fig. 3. An illustration of r(4)(d), r(4,1)(d), r(4,2)(d), r(4,3)(d), and
r(4,4)(d) with ρ = 0.3.

Fig. 4. An illustration of δ(1)(d), δ(2)(d), and δ(3)(d) with ρ = 0.6.

It can be seen that r(3,3)(d) coincides with r(3)(d) when
d ≤ d+

c = 0.4, and r(3,2)(d) coincides with r(3,3)(d) as well
as r(3)(d) when d ≤ d

(3,2)
c = 11

35 ≈ 0.314. On the other hand,
r(3,1)(d) is strictly above all the other curves for d ∈ (0, 1).
See a similar plot for the case � = 4 with ρ = 0.3 in Fig. 3,
where d+

c = 0.7, d(4,2) = 0.532, and d(4,3) = 133
205 ≈ 0.649.

Next we compare δ(m)(d) for different values of m. Note
that δ(m)(d) indicates the asymptotic gap between r(�,m)(d)
and r(�,�)(d) in the large � limit. Fig. 4 provides an illustration
of δ(1)(d), δ(2)(d), and δ(3)(d) with ρ = 0.6. It can be seen
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Fig. 5. An illustration of δ(1)(d), δ(2)(d), δ(3)(d), and δ(4)(d)
with ρ = 0.3.

Fig. 6. An illustration of λ
(3)
i , d

(3,1)
i , d

(3,2)
i , and d

(3,3)
i , i = 1, 2, 3, with

ρ = 0.6 and d = 0.5.

that all the curves blow up at at the critical distortion d+
c = 0.4.

Moreover, we have δ(2)(d) = 0 when d ≤ d
(2)
c = 0.2, and

δ(3)(d) = 0 when d ≤ d
(3)
c = 4

15 ≈ 0.267. On the other
hand, δ(1)(d) is strictly above zero for d ∈ (0, 1). See also
a plot of δ(1)(d), δ(2)(d), δ(3)(d), and δ(4)(d) with ρ = 0.3
in Fig. 5, where d+

c = 0.7, d(2)
c = 0.35, d(3)

c = 7
15 ≈ 0.467,

and d(4)
c = 0.525.

Finally we shall perform comparisons in the eigenspace.
In view of (22), we have

r(�,m)(d) =
1
2

log
det(Σ(�))

det(D(�,m))
=

��
i=1

1
2

log
λ

(�)
i

d
(�,m)
i

,

where D(�,m) and d(�,m)
1 , i = 1, · · · , �, are defined according

to (3), (5), and (6). The discussion at the end of Section II-A
suggests that (d(�,m)

1 , · · · , d(�,m)
� ) can be interpreted as a cer-

tain form of distortion allocation in the eigenspace. In partic-
ular, (d(�,�)

1 , · · · , d(�,�)
� ) corresponds to the celebrated reverse

water-filling solution. Fig. 6 provides an illustration of λ(3)
i ,

d
(3,1)
i , d(3,2)

i , and d(3,3)
i , i = 1, 2, 3, with ρ = 0.6 and d = 0.5.

Since d+
c = 0.4 < d, the reverse water-filling solution leaves

some dimensions uncoded; indeed, it can be seen that d(3,3)
i =

λ
(3)
i , i = 1, 2. In contrast, for m = 1 and m = 2, we have
d
(3,m)
i < λ

(3)
i , i = 1, 2, 3, and consequently all dimensions

are coded, which is suboptimal as compared to the reverse

Fig. 7. An illustration of λ
(4)
i , d

(4,1)
i , d

(4,2)
i , d

(4,3)
i , and d

(4,4)
i , i =

1, 2, 3, 4, with ρ = 0.3 and d = 0.6.

water-filling solution; nevertheless, increasing from m = 1
to m = 2 gets (d(3,m)

1 , d
(3,m)
2 , d

(3,m)
3 ) closer to the reverse

water-filling solution, resulting in an improved rate-distortion
performance. Fig. 7 depicts λ

(4)
i , d(4,1)

i , d(4,2)
i , d(4,3)

i , and
d
(4,4)
i , i = 1, 2, 3, 4, with ρ = 0.3 and d = 0.6. Since
d
(4,3)
c ≈ 0.649 > d, it follows that (d(4,3)

1 , d
(4,3)
2 , d

(4,3)
3 , d

(4,3)
4 )

coincides with (d(4,4)
1 , d

(4,4)
2 , d

(4,4)
3 , d

(4,4)
4 ). That is to say, for

such d, the encoders in a (4, 3) generalized multiterminal
source coding system can achieve the same effect as that of
the reverse water-filling solution in the centralized setting even
though they cannot fully cooperate.

IX. CONCLUSION

We have studied the rate-distortion limit of generalized
multiterminal source coding of exchangeable Gaussian
sources. Although a complete characterization of this limit has
been obtained when the correlation coefficient is non-positive,
a lot remains to be done for the positive correlation coef-
ficient case. We conjecture that the upper bound estab-
lished in the present work, i.e., r(�,m)(d), is tight even
when d is greater than d

(�,m)
c . However, a rigorous proof

of this conjecture (even in the large � limit) is likely to
be non-trivial and may require new techniques yet to be
developed.

We would like to mention that the proof of Theorems 1
and 2 was partly inspired by the consideration of the graphical
model (more precisely, the Markov network) of a symmet-
ric multivariate Gaussian distribution. It is of considerable
interest to know whether a more conceptual proof can be
constructed along that line. Moreover, probabilistic graphical
models are expected to play an essential role in identifying
the non-Gaussian counterpart of our problem and establishing
the corresponding results.

APPENDIX A
PROOF OF PROPOSITION 4

Let X̂−
i (γ) � E[Xi|U−

S,1(γ), · · · , U−
S,m(γ),S ∈ I(�,m)],

i = 1, · · · , �. We shall first prove that

X̂−
i (γ) = κ

�
S∈I(�,m):i∈S

U−
S,τ(i)(γ), i = 1, · · · , �,
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where τ(i) indicates the position of i in S when the elements
of S are arranged in ascending order, and

κ � 1 − ρ

γ +
�

�−2
m−2

�
�(1 − ρ)

.

It suffices to verify that, for any S� ∈ I(�,m) and i� ∈ S�,

E

⎡
⎣
⎛
⎝Xi − κ

�
S∈I(�,m):i∈S

U−
S,τ(i)(γ)

⎞
⎠U−

S�,τ(i�)(γ)

⎤
⎦ = 0,

i = 1, · · · , �. (27)

Note that

Xi − κ
�

S∈I(�,m):i∈S
U−
S,τ(i)(γ)

=
�

1 − κ

�
�− 2
m− 2

�
�

�
Xi + κ

�
�− 2
m− 2

� ��
j=1

Xj

− κ
√
γ

�
S∈I(�,m):i∈S

N−
S,τ(i). (28)

One can readily compute that

E[XiU
−
S�,τ(i�)(γ)] =

⎧⎨
⎩

(m− 1)(1 − ρ), i = i�,
−(1 − ρ), i ∈ S�, i �= i�,
0, i /∈ S�,

(29)
��

j=1

E[XjU
−
S�,τ(i�)(γ)] = 0, (30)

�
S∈I(�,m):i∈S

E[N−
S,τ(i)U

−
S�,τ(i�)(γ)]

=

⎧⎨
⎩

(m− 1)
√
γ, i = i�,

−√
γ, i ∈ S�, i �= i�,

0, i /∈ S�.
(31)

Combining (28), (29), (30), and (31) gives (27).
For i = 1, · · · , �,

E[(Xi − X̂−
i (γ))2]

= E[(Xi − X̂−
i (γ))Xi] − E[(Xi − X̂−

i (γ))X̂−
i (γ)]

= E[(Xi − X̂−
i (γ))Xi] (32)

=
�

1 − κ

�
�− 2
m− 2

�
�

�
E[X2

i ]

+ κ

�
�− 2
m− 2

� ��
j=1

E[XjXi]

− κ
√
γ

�
S∈I(�,m):i∈S

E[N−
S,τ(i)Xi] (33)

= 1 − κ

�
�− 2
m− 2

�
�+ κ

�
�− 2
m− 2

�
(1 + (�− 1)ρ)

= d−(γ),

where (32) and (33) are due to (27) and (28), respectively.
Moreover, for i, i� ∈ {1, · · · , �} with i �= i�,

E[(Xi − X̂−
i (γ))(Xi� − X̂−

i� (γ))]

= E[(Xi − X̂−
i (γ))Xi� ] − E[(Xi − X̂−

i (γ))X̂−
i� (γ)]

= E[(Xi − X̂−
i (γ))Xi� ] (34)

=
�

1 − κ

�
�− 2
m− 2

�
�

�
E[XiXi� ]

+ κ

�
�− 2
m− 2

� ��
j=1

E[XjXi� ]

− κ
√
γ

�
S∈I(�,m):i∈S

E[N−
S,τ(i)Xi� ] (35)

= ρ− κ

�
�− 2
m− 2

�
�ρ+ κ

�
�− 2
m− 2

�
(1 + (�− 1)ρ)

= θ−(γ),

where (34) and (35) are due to (27) and (28), respectively.
This completes the proof of Proposition 4.

APPENDIX B
PROOF OF PROPOSITION 5

Let X̂+
i (γ) � E[Xi|U+

S (γ),S ∈ I(�,m)], i = 1, · · · , �.
We shall first prove that

X̂+
i (γ) = α

�
S∈I(�,m):i∈S

U+
S (γ) + β

�
S∈I(�,m):i/∈S

U+
S (γ),

i = 1, · · · , �,
where

α �
(1 + (m− 1)ρ)γ +

�
�−2
m−1

�
m(1 − ρ)(1 + (�− 1)ρ)

γ2 + η2γ + η1
,

β �
mργ − �

�−2
m−2

�
m(1 − ρ)(1 + (�− 1)ρ)

γ2 + η2γ + η1
.

It suffices to verify that, for any S� ∈ I(�,m),

E

⎡
⎣

⎛
⎝Xi − α

�
S∈I(�,m):i∈S

U+
S (γ)

−β
�

S∈I(�,m):i/∈S
U+
S (γ)

⎞
⎠U+

S�(γ)

⎤
⎦ = 0, i = 1, · · · , �.

(36)

Note that

Xi − α
�

S∈I(�,m):i∈S
U+
S (γ) − β

�
S∈I(�,m):i/∈S

U+
S (γ)

=
�

1 − α

�
�− 1
m− 1

�
+ α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

��
Xi

−
�
α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

�� ��
j=1

Xj

− (α− β)
√
γ

�
S∈I(�,m):i∈S

N+
S

− β
√
γ

�
S∈I(�,m)

N+
S . (37)

One can readily compute that

E[XiU
+
S�(γ)] =

�
1 + (m− 1)ρ, i ∈ S�,
mρ, i /∈ S�, (38)
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��
j=1

E[XjU
+
S�(γ)] = m(1 + (�− 1)ρ), (39)

�
S∈I(�,m):i∈S

E[N+
S U

+
S�(γ)] =

� √
γ, i ∈ S�,

0, i /∈ S�, (40)

�
S∈I(�,m)

E[N+
S U

+
S�(γ)] =

√
γ. (41)

Combining (37), (38), (39), (40), and (41) gives (36).
For i = 1, · · · , �,

E[(Xi − X̂+
i (γ))2]

= E[(Xi − X̂+
i (γ))Xi] − E[(Xi − X̂+

i (γ))X̂+
i (γ)]

= E[(Xi − X̂+
i (γ))Xi] (42)

=
�

1 − α

�
�− 1
m− 1

�
+ α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

��
E[X2

i ]

−
�
α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

�� ��
j=1

E[XjXi]

− (α− β)
√
γ

�
S∈I(�,m):i∈S

E[N+
S Xi]

− β
√
γ

�
S∈I(�,m)

E[N+
S Xi] (43)

= 1 − α

�
�− 1
m− 1

�
+ α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

�

−
�
α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

��
(1 + (�− 1)ρ)

= d+(γ),

where (42) and (43) are due to (36) and (37), respectively.
Moreover, for i, i� ∈ {1, · · · , �} with i �= i�,

E[(Xi − X̂+
i (γ))(Xi� − X̂+

i� (γ))]

= E[(Xi − X̂+
i (γ))Xi� ] − E[(Xi − X̂+

i (γ))X̂+
i� (γ)]

= E[(Xi − X̂+
i (γ))Xi� ] (44)

=
�

1 − α

�
�− 1
m− 1

�
+ α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

��
E[XiXi� ]

−
�
α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

�� ��
j=1

E[XjXi� ]

− (α− β)
√
γ

�
S∈I(�,m):i∈S

E[N+
S Xi� ]

− β
√
γ

�
S∈I(�,m)

E[N+
S Xi� ] (45)

= ρ− α

�
�− 1
m− 1

�
ρ+ α

�
�− 2
m− 2

�
ρ+ β

�
�− 2
m− 1

�
ρ

−
�
α

�
�− 2
m− 2

�
+ β

�
�− 2
m− 1

��
(1 + (�− 1)ρ)

= θ+(γ),

where (44) and (45) are due to (36) and (37), respectively.
This completes the proof of Proposition 5.
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