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Abstract—Discrete-time Poisson (DTP) channels exist in many
scenarios including space laser communication systems which
operate over long distances and which can be corrupted by
reflected and scattered light. Through simulation, binary-input
distributions have been observed to be optimal in many cases,
however, little analytical work exists on conditions for optimality
or the form of optimal signalling.

In this second part, the general properties of Part I are
extended to the case of DTP channels where binary-inputs are
optimal. Necessary and sufficient conditions on the optimality
of binary (i.e. two mass point) distributions are presented by
leveraging the general properties of DTP capacity-achieving
distributions. Closed-form expressions of the capacity-achieving
distributions are derived in several important special cases
including zero dark current and for high dark current. Numerical
results are presented to elucidate the developed analytical work.

Index Terms—Discrete-time Poisson channel, capacity-
achieving distributions, binary inputs.

I. INTRODUCTION

FEW analytical results exist for optimal signalling on
discrete-time Poisson (DTP) channels. The only analyti-

cally derived capacity-achieving distribution for the DTP chan-
nel is given by Shamai [1], where a binary input distribution
is shown to be optimal in the case of zero dark current
and background light and with only a peak power constraint
(A < 3.3679). A majority of results derive analytical upper
and lower bounds on the DTP channel under peak and average
constraints [2], [3], [4], [5], however, no insights on optimal
signalling design can be drawn from such approaches.

In this continuation of our earlier paper [6], we place
particular emphasis on binary signalling in the DTP chan-
nel. This is motivated primarily by the need for a better
understanding of the long range optical channels, which exists
in long-range optical communications such as intersatellite
laser links that operate over ranges of tens of thousands
kilometres with limited transmit power. Simulation results
show that, in the low power regime, the capacity-achieving
distributions typically consist of two mass points [6], [7]. To
gain a theoretical understanding of this phenomenon, using the
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general results of Part I, necessary and sufficient conditions on
the optimality of binary distributions are derived and closed-
form expressions of the capacity-achieving distributions are
presented in several special cases.

The paper is organized as follows. For completeness, Sec. II
briefly reviews the channel model. Necessary and sufficient
conditions on the optimality of binary distributions are es-
tablished in Sec. III. These conditions are used to derive a
closed-form expression of the capacity-achieving distributions
in several special cases, i.e., when there is no dark current and
when the dark current is relatively large compared with the
peak power constraint. To provide context for the theoretical
results, some numerical results are presented in Sec. IV.
Section V contains concluding remarks and directions for
future work.

II. CHANNEL MODEL

In the DTP channel, the data are represented by modulating
the output intensity of an optical source, x [photons/second]. It
is assumed that the intensity is fixed in discrete time intervals,
which, without loss of generality, are taken to be of unity
duration. At the receiver, a photon counting detector is used
which outputs a measurement, y [photons], impinging on the
detector in any time interval which is Poisson distributed. Note
that the received count is corrupted by background light as
well as dark current of the detector, modelled by a rate λ
[photons/second]. The channel law of the DTP channel is thus,

PY |X(y|x) = (x+ λ)y

y!
e−(x+λ), x ∈ R

+, y ∈ Z
+. (1)

Two fundamental constraints on the emitted intensity are
imposed due to practical issues in implementation. An average
intensity constraint

E(X) ≤ ε, [Average Power Constraint], (2)

arises due to the limited energy storage on spacecraft while a
peak optical intensity constraint

0 ≤ X ≤ A, [Peak Power Constraint], (3)

is required due to limitations in the laser and driving electron-
ics. For the balance of the paper, it is assumed that 0 ≤ ε ≤ A
for finite ε and A.

As illustrated by Shamai [1], the optimal input distribu-
tion is discrete with a finite number of mass points (with
peak constraint). The input distribution is defined by the
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constellation of amplitude points ψx = {x1, x2, . . . , xn},
0 ≤ x1 < x2 < . . . < xn ≤ A, with accompanying
probabilities ψp = {p1, p2, · · · , pn} yielding the distribution,

dFx = p1δ(x − x1) + p2δ(x− x2) + . . .+ pnδ(x− xn),

where δ(·) denotes the Dirac impulse functional. By con-
vention, the optimal inputs under peak constraint A and
mean ε are ψ∗

x(A, ε), ψ
∗
p(A, ε) and F ∗

x (A, ε). Following the
convention in [8], define

i(x, Fx) � −
∞∑
y=0

PY |X(y|x) log PY (y)

PY |X(y|x)

= (x+ λ) log(x+ λ)− x−
∞∑
y=0

e−(x+λ) (x+ λ)y

y!

× log

⎛
⎝ n∑

j=1

pje
−xj(xj + λ)y

⎞
⎠ , (4)

where the mutual information induced by input Fx takes the
form

I(Fx) =

∫ A

0

i(x, Fx)dFx =

n∑
j=1

pji(xj , Fx).

III. BINARY CAPACITY-ACHIEVING DISTRIBUTIONS

Intuition from earlier simulation studies [6], [7] suggests
that binary signalling is often optimal for low-power DTP
channels. In order to further study the nature of these optimal
distributions, for completeness, consider the following general
properties of all capacity-achieving distributions for the DTP
channel.

Corollary 1 (Mass point at zero [6]). Under average and
peak power constraints, the capacity-achieving distribution for
the DTP channel always contains a point at zero, i.e., 0 ∈
ψ∗
x(A, ε).

Corollary 2 (Point at peak amplitude [6]). The capacity-
achieving distribution for a DTP channel with only peak
power constraint always contains a mass point at A, i.e.,
A ∈ ψ∗

x(A,A).

In this section, the general results of Corollary 1 and Corol-
lary 2 are applied to binary signalling to develop necessary and
sufficient conditions on the optimality of binary distributions
and to derive analytical capacity-achieving distributions in
several special cases.

Theorem 3 (Conditions for the capacity-achieving distribution
being binary). For a DTP channel with peak and average
power constraints, the capacity-achieving distribution dF ∗

x

is binary, i.e. |ψ∗
x(A, ε)| = 2, iff one of the following two

conditions holds:

1) [Average power constraint active] There exists a B ∈
(0, A] such that, for all x ∈ [0, A],
x

B
(i(B,F ∗

x )− i(0, F ∗
x )) + i(0, F ∗

x )− i(x, F ∗
x ) ≥ 0,

(5)

and
i(B,F ∗

x )− i(0, F ∗
x ) ≥ 0, (6)

where

dF ∗
x =

(
1− ε

B

)
δ(x) +

ε

B
δ(x−B). (7)

2) [Slack in average power constraint] For all x ∈ [0, A],

i(0, F ∗
x )− i(x, F ∗

x ) ≥ 0, (8)

and
i(0, F ∗

x ) = i(A,F ∗
x ), (9)

where

dF ∗
x = (1 − β)δ(x) + βδ(x−A). (10)

In this case, β is the solution of
∞∑
y=0

(
e−λλ

y

y!
− e−(λ+A) (λ+A)y

y!

)

× log
(
(1− β)λy + βe−A(λ+A)y

)
= λ logλ− (A+ λ) log(A+ λ) +A. (11)

Proof: This theorem follows from the KKT conditions
[6, Theorem 5] and Corollaries 1 and 2. Note that Corollary
1 implies the existence of a mass point at 0. Now consider
a binary input distribution dFx = (1− β) δ(x) + βδ(x −B),
0 < B ≤ A and 0 < β < 1. If dFx satisfies the KKT
conditions, then dF ∗

x = dFx. According to [6, Theorem 5]
this can happen in two possible ways depending on whether
the average power constraint is active:

• EFx{X} = ε implies μ ≥ 0, where μ is the Lagrange
multiplier defined in [6, Eq. (10)]. This further implies
β = ε/B. Equations (5) and (6) follow directly from [6,
Theorem 5].

• EFx{X} < ε (i.e., there is slack in the average constraint)
implies μ = 0. Thus, if Fx is optimal, B = A by
Corollary 2. Now invoking [6, Theorem 5] yields (8) and
(9). The optimal β is the solution of (9), which can be
expanded to (11).

Theorem 3 can be used to determine whether a binary
distribution is capacity-achieving. If none of the conditions are
satisfied then the optimal distribution is not binary. In general,
it is difficult to use Theorem 3 to obtain a closed-form solution
for the binary capacity-achieving distribution for a general λ.
In what follows, we consider several special cases in which
more explicit results can be obtained.

A. When λ = 0

In the case of λ = 0, Theorem 3 can be simplified to yield
some insights. This condition corresponds to the case when
there is no background illumination falling on the receiver and
the dark current is zero. The λ = 0 condition models cases
when the satellite receiver aperture is pointed away from light
scatters, has narrow band optical filters, and the photoreceiver
is at low temperature making the dark current negligible [9,
pp.96-7].

Theorem 4 (Conditions for |ψ∗
x(A, ε)| = 2 when λ = 0).

When λ = 0, the capacity-achieving distribution is binary iff
the values of ε and A satisfy one of the following conditions:
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1) (Peak power constraint active only) 0 < A < 3.3679
and

ε > f1(A) �
A

e
A

eA−1 + 1− e−A
. (12)

In this case, the capacity achieving distribution is given
by (10).

2) (Peak and average power constraints active)

ε ≤ f1(A), (13)

and for all x ∈ [0, A],

η(A, x) ≥ 0, (14)

where

η(A, x) =
( x
A

− 1− x

A
e−A + e−x

)
log

1− ε
A + ε

Ae
−A

ε
Ae

−A

− x− x log
x

eA
. (15)

In this case, the capacity-achieving distribution is given
by (7) with B = A.

3) (Average power constraint active only) There exists B ∈
(ε, A) such that

ε = f2(B) � B
/(

e
B2+B

eB−B−1 − e−B + 1

)
, (16)

and for all x ∈ [0, A],

η(B, x) ≥ 0. (17)

In this case, the capacity-achieving distribution is given
by (7).

Remark: Cond. 1 of Theorem 4 corresponds to Cond. 2
of Theorem 3 while Cond. 2 and Cond. 3 of Theorem 4
correspond to Cond. 1 of Theorem 3.

Proof: Note that for λ = 0 and dF ∗
x = (1 − β)δ(x) +

βδ(x −B) for some β ∈ (0, 1) and B ∈ (0, A], we have

i(x,F
∗
x ) = x log

x

eB
− e−x log

(
1− β + βe−B

)
− (1− e−x) log

(
βe−B

)
.

Also note that η(A, x) in (15) is simply the multiplier function
in [6, (6)] with λ = 0.

1) The first condition has been treated in [1] and corre-
sponds to Cond. 2 in Theorem 3. With λ = 0 and
with peak power constraint only, Shamai proved that
the capacity-achieving distribution is (10) with β−1 =

e
A

eA−1 +1−e−A when A < 3.3679 and correspondingly
the average power is bounded as (12).

2) The second condition follows from Cond. 1 in Theo-
rem 3 with B = A. Rearranging (6) with λ = 0 gives
the first inequality while substituting λ = 0 into (5)
yields the second.

3) The third condition also follows from Cond. 1 in
Theorem 3, however, with B < A. In particular, the
inequality corresponds to (5) in Theorem 3. Note that
x
B (i(B,F ∗

x )− i(0, F ∗
x )) + i(0, F ∗

x )− i(x, F ∗
x ) must at-

tain the minimum at x = B. As a consequence, we have

∂

∂x

( x

B
(i(B,F ∗

x )− i(0, F ∗
x )) + i(0, F ∗

x )− i(x,F ∗
x )
)∣∣∣∣

x=B

= 0,

which gives

ε = B
/(

e
B2+B

eB−B−1 − e−B + 1

)
= f(B). (18)

It can be verified that (18) implies (6).

B. When λ is large

Consider the case where there is intense shot-noise as a
result of background illumination, i.e., λ large. This situa-
tion can physically arise in intersatellite communication links
when high intensity background light from solar irradiation
can cause large λ. When λ is large, high intensity Poisson
approaches a Gaussian distribution. For this reason, the use
of a Gaussian channel law in this regime is popular in the
literature on optical wireless communications (see, e.g., [10],
[11]).

The binary distribution which satisfies both the average and
the peak power constraints with equality, i.e.,

dF †
x =

(
1− ε

A

)
δ(x) +

ε

A
δ(x −A), (19)

has been shown numerically to be capacity-achieving in the
optical intensity channel with Gaussian noise in the low signal-
to-noise regime [10]. Note that (19) is in fact the binary
maxentropic distribution [6, Eq. (26)] introduced in Part I
when A ≥ 2ε. It has also been shown numerically that (19) is
capacity-achieving in DTP channel when the input power is
small enough. Here, Theorem 3 is leveraged to give a rigorous
proof of the optimality of (19) when λ is large enough.

Theorem 5 (Capacity-achieving distribution when λ is large).
For a DTP channel with ε < A/2, the capacity-achieving
distribution dF ∗

x = dF †
x given by (19) when λ is sufficiently

large.

Proof: It suffices to show that the distribution dF †
x in (19)

satisfies (5) and (6) in Theorem 3 when λ is sufficiently large.
By definition,

i(x, dF †
x) = (x+ λ) log(x+ λ)− x− (x+ λ) log λ

−
( ∞∑

y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 + A/λ)y

)

− log(1 + r)
)
,

M(μ, x,F †
x ) =

x

A

(
i(A,F †

x)− i(0, F †
x)
)
+ i(0, F †

x)− i(x, F †
x),

where r � ε/A
1−ε/A and M(·) is the multiplier function defined

in [6, (6)] and corresponds to left-hand side of (5). Note that
r < 1 when ε < A/2.

To stress the dependence of i(x, F †
x) and M(μ, x, F †

x) on λ,
denote them by i(x, F †

x , λ) and M(μ, x, F †
x , λ), respectively.

Let z = 1
λ and define M̂(μ, x, F †

x , z) � M(μ, x, F †
x , λ) and

M̂ ′(μ, x, F †
x , z) � ∂

∂xM(μ, x, F †
x , λ).
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For any z̃ > 0, it follows from Taylor’s theorem that

M̂(μ, x, F †
x , z̃) = M̂(μ, x, F †

x , 0) +
∂

∂z
M̂(μ, x, F †

x , z)
∣∣∣
z=0

z̃

+

∂2

∂z2 M̂(μ, x, F †
x , z)

∣∣∣
z=θz̃

2
z̃2,

M̂ ′(μ, x, F †
x , z̃) = M̂ ′(μ, x, F †

x , 0) +
∂

∂z
M̂ ′(μ, x, F †

x , z)
∣∣∣
z=0

z̃

+

∂2

∂z2 M̂
′(μ, x, F †

x , z)
∣∣∣
z=θ′

z̃

2
z̃2,

where θz̃ ∈ [0, z̃] and θ′z̃ ∈ [0, z̃]. It can be shown that

M̂(μ, x, F †
x , 0) = 0, (20)

∂

∂z
M̂(μ, x, F †

x , z)
∣∣∣
z=0

=
x(A− x)

2
, (21)

M̂ ′(μ, x, F †
x , 0) = 0, (22)

∂

∂z
M̂ ′(μ, x, F †

x , z)
∣∣∣
z=0

=
A

2
− x, (23)

where derivation details are presented in Appendices A–D
respectively.

Let δ be an arbitrary number in the interval (0, A2 ). Note
that

∂

∂z
M̂(μ, x, F †

x , z)
∣∣∣
z=0

≥ δ(A− δ)

2
, x ∈ [δ, A− δ],

∂

∂z
M̂ ′(μ, x, F †

x , z)
∣∣∣
z=0

≥ A

2
− δ, x ∈ [0, δ],

∂

∂z
M̂ ′(μ, x, F †

x , z)
∣∣∣
z=0

≤ −A
2
+ δ, x ∈ [A− δ, A].

In view of the fact that ∂2

∂z2 M̂(μ, x, F †
x , z) and

∂2

∂z2 M̂
′(μ, x, F †

x , z) are continuous functions of (x, z) over
the compact set [0, A]× [0, 1], there exists a constant Γ such
that | ∂2

∂z2 M̂(μ, x, F †
x , z)| ≤ Γ and | ∂2

∂z2 M̂
′(μ, x, F †

x , z)| ≤ Γ.
As a consequence, one can readily show that

M̂(μ, x, F †
x , z̃) > 0, x ∈ [δ, A− δ],

M̂ ′(μ, x, F †
x , z̃) > 0, x ∈ [0, δ],

M̂ ′(μ, x, F †
x , z̃) < 0, x ∈ [A− δ, A],

when z̃ is sufficiently close to 0. These inequalities together
with the fact that M̂(μ, 0, F †

x , z̃) = M̂(μ,A, F †
x , z̃) = 0 imply

that

M̂(μ, x, F †
x , z̃) ≥ 0, x ∈ [0, A],

when z̃ is sufficiently close to 0. This means (5) is satisfied
for sufficiently large λ.

To complete the proof, it remains to verify that the distri-
bution F †

x given by (19) satisfies (6) in Theorem 3 when λ is
sufficiently large. For z = 1/λ, define

μ̂(z) =
i(A,F †

x , λ)− i(0, F †
x , λ)

A
.

For any z̃ > 0, it follows from Taylor’s theorem that

μ̂(z̃) = μ̂(0) +
∂

∂z
μ̂(z)

∣∣∣
z=0

z̃ +

∂2

∂z2 μ̂(z)
∣∣∣
z=θz̃

2
z̃2,

where θz̃ ∈ [0, z̃]. In view of (24) in Appendix A, μ̂(0) = 0.
Moreover, it can be shown that

∂

∂z
μ̂(z)

∣∣∣
z=0

= lim
λ→∞

((
1 +

λ

A

)
log

(
1 +

A

λ

)
− 1

)
λ

+
(Λ(0)− Λ(A))

A

=
A

2
− r

1 + r
A

> 0,

where the last inequality is due to the fact that r < 1 and

Λ(x) � lim
λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!
log
(
1 + re−A(1 + A/λ)y

)

− log(1 + r)

}
λ

=

(
Ax− A2

2

)
r

1 + r
+

A2

2

r

(1 + r)2

through (37) in Appendix B.
Since ∂2

∂z2 μ̂(z) is a continuous function of z over the interval
[0, 1], there exists a constant Υ such that | ∂2

∂z2 μ̂(z)| < Υ for
all z ∈ [0, 1]. Now one can readily see that μ̂(z̃) must be non-
negative when z̃ is sufficiently close to 0 (i.e, i(A,F †

x , λ) −
i(0, F †

x , λ) ≥ 0 when λ is sufficiently large). This completes
the proof.

Theorem 5 shows that under the high background light
condition the optimal signalling is binary and satisfies both
peak and average power constraints.

IV. NUMERICAL EXAMPLES

In order to provide some insight on the analytical results,
several numerical examples are presented in this section.

Figure 1 considers DTP channels with λ = 0 and visualizes
regions where the capacity-achieving distribution is binary. In
addition, following the three conditions in Theorem 4, areas
where each constraint is active are clearly shown. Note that
by [6, Lemma 3], stretching the constellation at the input of
a DTP channel increases mutual information. Thus, at least
one of peak or average constraint must hold in the capacity-
achieving distribution.

According to Cond. 1 of Theorem 4, the horizontal hatched
region in Fig. 1 bounded between A < 3.3679, ε = A, and
f1(A) in (12) corresponds to the set of all DTP channels which
have binary capacity-achieving distributions where the average
constraint is inactive. The vertical hatched region including
the boundaries corresponds to the set of DTP channels in
which Cond. 2 holds. Both of the constraints are active in this
condition and the optimal distribution is binary. This region
was plotted by sampling points (A, ε) and repeatedly verifying
the inequalities (13) and (14). An interesting observation from
Fig. 1 is that, for λ = 0, if the capacity-achieving distribution
is binary with mass point at A, then A < 3.3679. This nu-
merical observation complements Shamai’s earlier analytical
results [1] for DTP channels with only peak constraint. The
solid filled region in Fig. 1 corresponds to the set of DTP
channels (λ = 0) in which Cond. 3 of Theorem 4 is satisfied,
i.e., inactive peak constraint. Notice that A > B = f−1

2 (ε)
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0.1581 1 2 3 3.3679 4 5 5.54 6
0.0594

0.5

1

1.5

2

2.5

3

3.5

A

ε

ε = A

Ternary [1]

ε ′1 = 1.4148

ε ′2 = 1.1971

Cond. 1
[ε inactive]

Cond. 2
[ε, A active]

Cond. 3
[A inactive]

ε ′3 = 0.1738f2(A)

f1(A)

Fig. 1. Regions of (A, ε) where binary distributions are capacity-achieving
for λ = 0. Areas corresponding to the activity of peak and average constraints
are highlighted and defined in Theorem 4.

in (16), also plotted in Fig. 1, is covered by Cond. 3 in
Theorem 4. This region is obtained by sampling in ε and
computing the corresponding B via (16). Then, Cond. (17)
is checked by plotting η(B, x) for x ∈ [0, A]. As mentioned
earlier, an inactive peak constraint in the capacity-achieving
distribution implies that the mean constraint is active.

For DTP channels in the area outside the highlighted regions
in Fig. 1, the capacity-achieving distribution is non-binary. In
particular, Shamai [1] showed that, for a DTP channel with
peak power constraint only, A = 3.3679 is the transition point
between the capacity-achieving distribution being binary and
ternary.

Using Fig. 1, the example in [6, Fig. 2] can be expanded by
observing the behaviour of the capacity-achieving distribution
for λ = 0, fixed ε = 0.0594 and increasing A. When
ε ≤ A < f−1

1 (ε) = 0.1581, Cond. 1 of Theorem 4 is
satisfied and the optimal input distribution is binary and the
average constraint is inactive. In [6, Fig. 2], the same interval
of A for inactive mean is found numerically. For larger A,
i.e., f−1

1 (ε) ≤ A ≤ f−1
2 (ε) = 1, Cond. 2 Theorem 4 is

satisfied and the capacity-achieving distributions are binary
with both constraints active. Notice that the same conclusion
is found in [6, Fig. 2] through numerical computation. Cond.
3 of Theorem 4 is satisfied for f−1

2 (ε) = 1 < A ≤ 5.54
and the capacity-achieving distribution is binary with inactive
peak power constraint, as in [6, Fig. 2] . For A > 5.54, none
of the conditions of Theorem 4 are satisfied and the resulting
capacity-achieving distribution is non-binary. Our numerical
study [6, Fig. 2] shows that the optimal distribution is in fact
ternary. Thus, our results in Fig. 1 describe the phenomenon
of oscillating activity of peak constraint observed numerically
in [6, Fig. 2]. In this example, using Theorem 4, the corner
points for the transition of inactivity of the constraints are
described analytically via f1(A) and f2(A).

Figure 2 visualizes the results in Fig. 1 in a different
way. Here regions of binary capacity-achieving distributions
are plotted on a peak-to-average ratio (A/ε) versus average
constraint axis. This visualization is particularly useful in
cases where A/ε is fixed, say on a launched spacecraft,
while the mean power ε can change due to varying range.

0.0594 0.5 1 1.5 2 2.5 3 3.3679
0

2

4

6

8

10

12

14

16

18

20

ε

A
/
ε
d
B

A = 1

A = 5.54

Ternary [1]

A = 0.1581

Cond. 2
[ε, A active]

Cond. 3
[A inactive]

ε ′1 = 1.4148, A = 3)

(ε ′2 = 1.1971, A = 3) Cond. 1
[ε inactive]

A = 3.3679

(ε ′3 = 0.1738, A = 3)

Fig. 2. Identical results to Figure 1, plotted for peak-to-average ratio (A/ε)
versus ε (λ = 0).

Roughly speaking, for A/ε less than about 4 dB for binary
capacity-achieving distributions the peak constraint is solely
active. However, for larger peak-to-average ratios, binary
capacity-achieving distributions satisfy both peak and average
constraints. For the largest values of A/ε, only the average
constraint is active for binary capacity-achieving signalling.

Figure 3 plots the capacity-achieving distributions for fixed
A = 3, λ = 0 and increasing ε. The capacity-achieving
distributions of the DTP channel are computed using the deter-
ministic annealing algorithm described in [6, Sec. IV.A]. The
behaviour of the constraints can be understood by following
the vertical line A = 3 in Fig. 1. For ε < ε′3 = 0.1738
or equivalently −7.5 dB, it is evident from Fig. 3 that the
capacity-achieving distribution is binary with inactive peak-
constraint. Notice in Fig. 1, that this corresponds to the
region where Cond. 3 of Theorem 4 is satisfied. Increasing
ε yields a region where the capacity-achieving distribution is
ternary and none of the conditions of Theorem 4 are satisfied.
Further increase in ε′2 = 1.1971 ≤ ε ≤ ε′1 yields a return
to binary capacity-achieving distributions, however, now with
active peak and average constraints, i.e., Cond. 2 of Theorem 4
is satisfied. For ε′1 = 1.4148 < ε ≤ A the capacity-achieving
distribution is binary with inactive average constraint (Cond.
1 in Theorem 4). This threshold can also be observed in Fig. 1
and can be computed as ε′1 = f1(3).

Figure 4 illustrates the capacity-achieving distributions with
fixed ε and A, ε/A < 1/2, and increasing λ. Theorem. 5 states
that for λ large enough the capacity achieving distribution is

dF ∗
x = dF †

x =
3

4
δ(x) +

1

4
δ(x− 10).

Notice that in Fig. 4, for λ ≥ 5.525 that the computed
capacity-achieving distribution corresponds to dF ∗

x and is
fixed for larger λ.

V. CONCLUSIONS

The DTP channel has been widely used in modelling many
channels such as long range space optical systems. This paper
provides insight into the capacity-achieving distributions for
DTP channels, especially in the low power regime where
binary signalling is often optimal. Necessary and sufficient
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Fig. 3. Capacity-achieving distributions for fixed A = 3, λ = 0 and
increasing ε: (a) distributions and (b) position of mass points. The values
for thresholds ε′1, ε′2 and ε′3 can be visualized in Fig. 1.

conditions on the optimality of binary distributions are es-
tablished, which are further leveraged to obtain closed-form
expressions of the capacity-achieving distributions in several
special cases.

In particular, for λ = 0, three conditions on ε and A,
corresponding to the activity of peak and average constraints,
are given and corresponding forms of capacity-achieving dis-
tributions are provided. In the case of shot-noise limited DTP
channels, we show that the binary maxentropic distribution
is in fact capacity-achieving for λ large enough. Numerical
simulations are provided to verify the analytical claims and
provide insight on their application.

The motivation for this work is to gain insight not only
into the capacity of DTP channels but also on signalling
strategies to approach the capacity. Our ongoing work centres
on the design of non-uniform signalling and efficient encod-
ing/decoding structures suitable for multi-gigabit per second
long-range optical intersatellite links.
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Fig. 4. Capacity-achieving distributions for fixed A = 10, ε = 2.5 with
increasing λ: (a) distributions and (b) positions of mass points.

APPENDIX A
PROOF OF (20)

We shall show that

lim
λ→∞

i(x, F †
x , λ) = 0, x ∈ [0, A], (24)

from which (20) follows immediately.
It is easy to verify that

lim
λ→∞

(x+ λ) log(x+ λ)− x− (x + λ) logλ = 0.

Therefore, it suffices to show

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!
log
(
1 + re−A(1 +A/λ)y

)
= log(1 + r). (25)

Let L be some positive odd integer. Based on Taylor’s theo-
rem,

log
(
1 + re−A(1 +A/λ)y

)
=

l=L∑
l=1

(−1)(l+1) r
le−lA(1 +A/λ)yl

l
− ξL+1

(L+ 1)(1 + θξ)(L+1)
,
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where

ξ � re−A(1 +A/λ)y (26)

and θξ ∈ [0, ξ]. Note that

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!
log
(
1 + re−A(1 + A/λ)y

)

= lim
L→∞(L odd)

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!(
l=L∑
l=1

(−1)(l+1) r
le−lA(1 + A/λ)yl

l
− ξL+1

(L+ 1)(1 + θξ)(L+1)

)

= lim
L→∞(L odd)

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl

−
∞∑

y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

= lim
L→∞(L odd)

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
e

lAx
λ

+(λ+x)

(
(l2)

A2

λ2 +···+Al

λl

)

−
∞∑

y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

= lim
L→∞(L odd)

l=L∑
l=1

(−1)(l+1) r
l

l

− lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

= log(1 + r)

− lim
L→∞(L odd)

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)
. (27)

Since θξ ≥ 0, it follows that

lim
L→∞(L odd)

lim
λ→∞

∣∣∣∣∣
∞∑

y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

∣∣∣∣∣
≤ lim

L→∞(L odd)
lim

λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

L+ 1

= lim
L→∞(L odd)

lim
λ→∞

rL+1

L+ 1
e−(L+1)Ae−(x+λ)e

(λ+x)(λ+A)L+1

λL+1

= lim
L→∞(L odd)

rL+1

L+ 1

= 0. (28)

Therefore, we have

lim
L→∞(L odd)

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

= 0,

which together with (27) proves (25).

APPENDIX B
PROOF OF (21)

Note that

∂

∂z
M̂(μ, x, F †

x , z)
∣∣∣
z=0

= lim
z→0

M̂(μ, x, F †
x , z)− M̂(μ, x, F †

x , 0)

z
= lim

λ→∞
M(μ, x, F †

x , λ)λ

= lim
λ→∞

xλ

((
1 +

λ

A

)
log

(
1 +

A

λ

)

−
(
1 +

λ

x

)
log
(
1 +

x

λ

))

+ Λ(x)− Λ(0) +
x

A
(Λ(0)− Λ(A)) , (29)

where

Λ(x)

� lim
λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!
log
(
1 + re−A(1 +A/λ)y

)

− log(1 + r)

}
λ.

It is easy to prove that

lim
λ→∞

x

((
1 +

λ

A

)
log

(
1 +

A

λ

)
−
(
1 +

λ

x

)
log
(
1 +

x

λ

))
λ

=
x(A− x)

2
. (30)

Let

L � 2� logλ+ 1

2
� − 1.

Invoking Taylor’s theorem and changing the order of summa-
tion gives

Λ(x)

= lim
λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!

l=L∑
l=1

(−1)(l+1) r
le−lA(1 +A/λ)yl

l

−
l=L∑
l=1

(−1)(l+1) r
l

l

}
λ− lim

λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!(
ξL+1

(L+ 1)(1 + θξ)(L+1)
− rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

= lim
λ→∞

{
l=L∑
l=1

(−1)(l+1) r
l

l
λ

(
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl − 1

)}

− lim
λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

(L+ 1)(1 + θξ)(L+1)

− rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ, (31)

where θr ∈ [0, r].
Now consider the first limit in (31). Let

φ � lAx

λ
+
l(l− 1)A2

2λ
+
l(l − 1)A2x

2λ2

+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
. (32)

We have

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λ

(
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl − 1

)
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= lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λ
(
eφ − 1

)

= lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λ
(
1 + φ+ θφφ

2 − 1
)

(33)

= lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l

(
lAx+

l(l− 1)A2

2

)

+ lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λ

(
l(l− 1)A2x

2λ2

+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

)

=

(
Ax − A2

2

)
r

1 + r
+
A2

2

r

(1 + r)2

+ lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λ

(
l(l− 1)A2x

2λ2

+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

)
, (34)

where (33) is due to Taylor’s theorem and θφ = 1
2e

φ′
for some

φ′ ∈ [0, φ]. For l ∈ (3, L],(
l

i

)
Ai

λi
< li

Ai

λi
≤
(
A logλ

λ

)i

≤
(
A logλ

λ

)3

, i = 3, . . . , l,

when λ is sufficiently large. Therefore,

φ ≤ Ax log λ

λ
+

logλ(log λ− 1)A2

2λ

+
logλ(log λ− 1)A2x

2λ2
+
A3(log λ)4(λ+ x)

λ3

for large λ. As a consequence, φ→ 0 and θφ → 1
2 uniformly

for l ∈ [3, L] and x ∈ [0, A] as λ→ ∞. Furthermore, we have

lim
λ→∞

∣∣∣∣∣
l=L∑
l=1

(−1)(l+1) r
l

l
λ

(
l(l − 1)A2x

2λ2

+ (λ + x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

)∣∣∣∣∣
≤ lim

λ→∞

l=L∑
l=1

rl

l
λ

(
l(l − 1)A2x

2λ2

+ (λ + x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

)

≤ lim
λ→∞

l=L∑
l=1

rl

l
λ

(
l(l − 1)A2x

2λ2

+ (λ + x)

(
A logλ

λ

)3

(logλ− 2) + θφφ
2

)

≤ lim
λ→∞

l=L∑
l=1

rl

l
λ

(
l(l − 1)A2x

2λ2
+
A3(logλ)4

λ2
+ θφφ

2

)

≤ lim
λ→∞

l=L∑
l=1

(
(logλ− 1)A2x

2λ
+
A3(logλ)4

λ
+ λθφφ

2

)

= lim
λ→∞

logλ

(
(logλ− 1)A2x

2λ
+
A3(logλ)4

λ

+
λ

2

(
Ax logλ

λ
+

logλ(log λ− 1)A2

2λ

+
logλ(logλ− 1)A2x

2λ2
+
A3(logλ)4(λ+ x)

λ3

)2)

= 0,

which together with (34) implies

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λ

(
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl − 1

)

=

(
Ax− A2

2

)
r

1 + r
+
A2

2

r

(1 + r)2
. (35)

Next consider the second limit in (31). We have

lim
λ→∞

∣∣∣∣∣
{ ∞∑

y=0

e−(λ+x) (λ + x)y

y!

(
ξL+1

(L+ 1)(1 + θξ)(L+1)

− rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

∣∣∣∣∣
≤ lim

λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

(L+ 1)(1 + θξ)(L+1)

+
rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

≤ lim
λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

L+ 1

+
rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

= lim
λ→∞

{
rL+1

L+ 1
e−(L+1)Ae−(x+λ)e

(λ+x)(λ+A)L+1

λL+1

+
rL+1

(L+ 1)(1 + θr)(L+1)

}
λ

= lim
λ→∞

rL+1λ

L+ 1

{
e

(L+1)Ax
λ +(λ+x)

(
(L+1

2 )A2

λ2 +(L+1
3 )A3

λ3 +···+AL+1

λL+1

)

+
1

(1 + θr)(L+1)

}

≤ lim
λ→∞

rL+1λ

L+ 1

{
e

(L+1)Ax
λ +(λ+x)(L+1)2 A2

λ2 L

+
1

(1 + θr)(L+1)

}

= lim
λ→∞

rlog λ+1λ

logλ+ 1

{
e

(log λ+1)Ax
λ +(λ+x)(log λ+1)2 A2

λ2 log λ

+
1

(1 + θr)(log λ+1)

}

= 0. (36)
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Combining (35) and (36) with (31) gives

Λ(x) =

(
Ax− A2

2

)
r

1 + r
+
A2

2

r

(1 + r)2
. (37)

Substitute (30) and (37) into (29) proves (21).

APPENDIX C
PROOF OF (22)

Note that

M̂ ′(μ, x, F †
x , z)

=
∂M(μ, x, F †

x , λ)

∂x

= −∂i(x, F
†
x , λ)

∂x
+

1

A
(i(A,F †

x , λ)− i(0, F †
x , λ))

= − log(x + λ) +
∂S(x, F †

x , λ)

∂x

+
1

A
(i(A,F †

x , λ)− i(0, F †
x , λ)), (38)

where

S(x, F †
x , λ)

=

∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
(1 − ε

A
)λy +

ε

A
e−A(A+ λ)y

)
.

It can be verified that

∂S(x, F †
x , λ)

∂x
= −e−(x+λ)

∞∑
y=0

(x+ λ)y−1(x+ λ− y)

y![
− log(1 + r) + y logλ+ log

(
1 + re−A(1 +A/λ)y

) ]
.

One can readily prove that

e−(x+λ)
∞∑
y=0

(x+ λ)y−1(x+ λ− y)

y!
log(1 + r) = 0,

− e−(x+λ)
∞∑
y=0

(x+ λ)y−1(x + λ− y)

y!
y logλ = logλ.

Thus,

∂S(x, F †
x , λ)

∂x

= logλ− e−(x+λ)
∞∑
y=0

(x+ λ)y−1(x+ λ− y)

y!

log
(
1 + re−A(1 +A/λ)y

)
= logλ−

∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 +A/λ)y

)

+

∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 +A/λ)y

)
.

Following the derivation of (25), one can show that

lim
λ→∞

∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 +A/λ)y

)
= log(1 + r),

which together with (24) and (25) proves (22).

APPENDIX D
PROOF OF (23)

Note that
∂

∂z
M̂ ′(μ, x, F †

x , z)
∣∣∣
z=0

= lim
z→0

M̂ ′(μ, x, F †
x , z)− M̂ ′(μ, x, F †

x , 0)

z

= lim
λ→∞

∂

∂x
M(μ, x, F †

x , λ)λ

= lim
λ→∞

((
1 +

λ

A

)
log

(
1 +

A

λ

)
− log

(
1 +

x

λ

)
− 1

)
λ

− 1

A
(Λ(A)− Λ(0))

− lim
λ→∞

{ ∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 +A/λ)y

)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 +A/λ)y

)}
λ.

(39)

It can be easily verified that

lim
λ→∞

((
1 +

λ

A

)
log

(
1 +

A

λ

)
− log

(
1 +

x

λ

)
− 1

)
λ

=
A

2
− x, (40)

lim
λ→∞

1

A
(Λ(A)− Λ(0)) =

Ar

1 + r
. (41)

Let ξ be defined according to (26). By Taylor’s theorem, we
have

lim
λ→∞

{ ∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 +A/λ)y

)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 +A/λ)y

)}
λ

= lim
L→∞,L odd

lim
λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!(
l=L∑
l=1

(−1)(l+1) r
le−lA(1 +A/λ)yl

l
− ξL+1

(L + 1)(1 + θξ)(L+1)

)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!

(
l=L∑
l=1

(−1)(l+1) r
le−lA(1 +A/λ)yl

l

− ξL+1

(L+ 1)(1 + θξ)(L+1)

)}
λ

= lim
L→∞,L odd

lim
λ→∞

{
l=L∑
l=1

(−1)(l+1) r
l

l
λe−(λ+x+lA)e

(λ+x)(λ+A)l

λl

−
l=L∑
l=1

(−1)(l+1) r
l

l
λ

(
1 +

A

λ

)l

e−(λ+x+lA)e
(λ+x)(λ+A)l

λl

}

− lim
L→∞,L odd

lim
λ→∞

{ ∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!

ξL+1

(L+ 1)(1 + θξ)(L+1)

}
λ,
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where θξ ∈ [0, ξ]. Let φ be defined according to (32). It is
easy to see that

lim
L→∞,L odd

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λe−(λ+x+lA)e

(λ+x)(λ+A)l

λl

[
1−

(
1 +

A

λ

)l
]

= lim
L→∞,L odd

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λeφ

[
1−

(
1 +

A

λ

)l
]

= lim
L→∞,L odd

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λ
(
1 + θ′φφ

)
(
1− 1−

(
lA

λ
+

(
l

2

)
A2

λ2
+ · · ·+ Al

λl

))

= lim
L→∞,L odd

lim
λ→∞

l=L∑
l=1

(−1)(l+2) r
l

l

(
1 + θ′φφ

)
(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)

= lim
L→∞,L odd

lim
λ→∞

l=L∑
l=1

(−1)l
rl

l[
θ′φφ

(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)

+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

]

+ lim
L→∞,L odd

l=L∑
l=1

(−1)lrlA

=
−Ar
1 + r

+ lim
L→∞,L odd

lim
λ→∞

l=L∑
l=1

(−1)l
rl

l[
θ′φφ

(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)

+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

]
,

where θ′φ = eφ
′

for some φ′ ∈ [0, φ] and θ′φ → 1 uniformly
for l ∈ [1, L] and x ∈ [0, A] as λ → ∞. One can readily
verify that

lim
λ→∞

∣∣∣∣∣
l=L∑
l=1

(−1)l
rl

l

(
θφφ

(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)

+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)∣∣∣∣∣
≤ lim

λ→∞

l=L∑
l=1

rl

l

[
θφ

(
lA

λ
+ l2

A2

λ2
(l − 1)

)
(
lA+ l2

A2

λ
(l − 1)

)
+ l2

A2

λ
(l − 1)

]

≤ lim
λ→∞

L

[(
LA

λ
+ L2A

2

λ2
(L− 1)

)
(
LA+ L2A

2

λ
(L − 1)

)
+ L2A

2

λ
(L− 1)

]

= 0

Therefore, we have

lim
L→∞,L odd

lim
λ→∞

l=L∑
l=1

(−1)(l+1) r
l

l
λe−(λ+x+lA)e

(λ+x)(λ+A)l

λl

[
1−

(
1 +

A

λ

)l
]
=

−Ar
1 + r

.

Moreover, following the derivation of (28), one can show that

lim
L→∞,L odd

lim
λ→∞

∣∣∣∣∣
{ ∞∑

y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!

ξL+1

(L+ 1)(1 + θξ)(L+1)

}
λ

∣∣∣∣∣
= 0.

As a consequence, we have

lim
λ→∞

{ ∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 +A/λ)y

)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 +A/λ)y

)}
λ

=
−Ar
1 + r

. (42)

Substituting (40), (41), and (42) into (39) proves (23).
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