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The Capacity of Finite-State Markov Channels

with Feedback

Jun Chen, Student Member, IEEE, Toby Berger†, Fellow, IEEE

Abstract

We consider a class of finite-state Markov channels with feedback. After introducing a troduce

a simplified equivalent channel model, we construct the optimal stationary and nonstationary input

processes that maximize the long-term directed mutual information. Furthermore, we give a sufficient

condition under which the channel’s Shannon capacity can be achieved by a stationary input process.

The corresponding converse coding theorem and direct coding theorem are proved.

Index Terms—Channel capacity, Markov channel, feedback, typicality.

I. INTRODUCTION

We study the capacity of a feedback channel whose state process can be affected by its input

and whose state information is available at both the transmitter and the receiver. Our channel

model is illustrated in Fig. 1. Were it not for the feedback, our channel would belong to the

family of finite-state channels. The FSC literature is vast; see, for example, [1]–[3]. In [4], Verdu

and Han gave a general capacity formula for channels without feedback. If in our model the

state process were not affected by the input, i.e., p(sk+1|xk, sk) = p(sk+1|sk), the model would

reduce to a special case in the general framework of [5] and [6].

The feedback channel coding problem goes back to early work by Shannon [7], Dobrushin

[8] and Wolfowitz [9]. Tatikonda [10] introduced a model of feedback channels which can be

viewed as a generalization of the formulation in [4], derived a general formula for the capacity of
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Fig. 1 Our Model

channels in this class, and used dynamic programming to compute the optimal input distribution.

We show that channels descirbed by our model, which is called the Markov channel in [10],

possess under certain conditions a relatively simple capacity formula and that the corresponding

optimal input distribution can be computed with markedly less complexity than in the general

case.

It’s easy to see that if we let Yk = (Vk, Sk+1) and Q(yk|xk, yk−1) = p(vk|xk, sk)p(sk+1|xk, sk),

then Fig. 1 can be simplified to the model shown in Fig. 2. Therefore, we henceforth consider

only this simplified channel model. The model in Fig. 2 was perhaps first introduced in [11],
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Fig. 2 An Equivalent Model

[12]. Ying and Berger [13] analyzed the capacity of this channel model when the output is

binary. In this paper we will give a more general treatment.

The rest of this paper is divided into eight sections. In Section II we introduce several basic

notations and definitions. In Section III we prove the converse channel coding theorem for

our model, which provides an upper bound on the achievable rate of information transmission
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through the channel. Then we give a recursive formula to calculate the maximal directed mutual

information in Section IV. In Section V we analyze the optimum stationary input distribution that

maximizes the long-term directed mutual information. We generalize in Section VI to analyze

the optimum not-necessarily-stationary input. A sufficient condition under which the optimum

stationary input is actually optimum among all the input distributions is given in Section VII. We

prove the direct channel coding theorem and suggest a coding scheme in Section VIII. Finally,

several directions to extend our results are discussed in Section IX which serves as a conclusion.

II. PRELIMINARIES

A. Notation

We assume throughout the paper that the channel input and output alphabets both are finite .

Without loss of generality, we let x ∈ {1, 2, · · · , Nx} and y ∈ {1, 2, · · · , Ny}.

B. Code Description

An (n,M, ε, y
0
) feedback code for our channel consists of

1) An encoding function f that maps the set of messages W = {1, · · · ,M} to channel input

words of blocklength n through a sequence of functions {fy
0
,k}

n
k=1 that depend only on

the message W and the channel outputs up to time k − 1, i.e.,

Xk = fy
0
,k(W,Y k−1

1 ). (1)

Although it might seem to be more general to let

Xk = f̃y
0
,k(W,Xk−1

1 , Y k−1
1 ),

this actually is equivalent to (1), as shown by the following argument:

X1 = f̃y
0
,1(W ) = fy

0
,1(W ),

X2 = f̃y
0
,2(W,X1, Y1) = f̃y

0
,2(W, f̃y

0
,1(W ), Y1) = fy

0
,2(W,Y1).

It follows easily by induction that Xk = f̃y
0
,k(W,Xk−1

1 , Y k−1
1 ) = fy

0
,k(W,Y k−1

1 ), so (1) is

of full generality.
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2) A decoding function gy
0

that maps a received sequence of n channel outputs to the message

set gy
0
: Yn

1 →W such that the average probability of decoding error satisfies

Pe ,
1

M

M∑

w=1

P (Ŵ 6= w|W = w, Y0 = y
0
) ≤ ε, where Ŵ = gy

0
(Y n
1 ). (2)

Note: The encoding function fy
0

and decoding function gy
0

both depend on the initial

channel state y
0
.

Definition 1: Ry
0

is an ε-achievable rate given the initial state y
0

if for every δ > 0 there

exists, for all sufficiently large n, an (n,M, ε, y
0
) code such that 1

n
logM ≥ Ry

0
− δ. Ry

0
is

achievable if it is ε-achievable for all ε > 0. The supremum of all achievable rates Ry
0

is defined

as the feedback capacity Cfd
y
0

given the initial state y
0
.

III. CONVERSE CHANNEL CODING THEOREM

This section is devoted to the proof of the converse channel coding theorem.

Theorem 1(converse channel coding theorem): Given the initial state y
0
, information trans-

mission with an arbitrary small expected frequency of errors is not possible if R > lim sup
n→∞

Cy
0
,n

n
.

Here

Cy
0
,n = max

p(Xn
1
)∈P∗(Xn

1
)
[I(X1;Y1|Y0 = y

0
) +

n∑

k=2

I(Xk;Yk|Yk−1)],

and P∗(Xn
1 ) is the set of input distributions on Xn

1 which consists of all the probability mass

functions that satisfy

p(Xk|X
k−1
1 , Y k−1

0 ) = p(Xk|Yk−1), k = 1, 2, · · · , n.

Proof:

In the proof we implicitly assume that P (Y0 = y
0
) = 1 and thus use Y0 instead of y

0
.

Let W be the message random variable. For any (n,M, ε, y
0
) code, by Fano’s inequality

H(W |Y n
0 ) ≤ h(Pe) + Pe logM. (3)

Since

H(W |Y n
0 ) = H(W )− I(W ;Y n

0 ) = logM − I(W ;Y n
0 ),

we have

(1− Pe) logM ≤ h(Pe) + I(W ;Y n
0 ),
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which we rewrite as

1

n
logM ≤

h(Pe) + I(W ;Y n
0 )

n(1− Pe)
. (4)

As n→∞, Pe → 0. Hence the channel capacity

Cfd
y
0
= lim sup

n→∞

1

n
logM

≤ lim sup
n→∞

max
p(Xn

1
)

1

n
I(W ;Y n

0 ). (5)

We have

I(W ;Y n
0 ) = H(Y n

0 )−H(Y n
0 |W )

=
n∑

k=1

[H(Yk|Y
k−1
0 )−H(Yk|Y

k−1
0 ,W )]

≤
n∑

k=1

[H(Yk|Yk−1)−H(Yk|Y
k−1
0 , Xk,W )]

(a)
=

n∑

k=1

[H(Yk|Yk−1)−H(Yk|Yk−1, Xk)]

=
n∑

k=1

I(Xk;Yk|Yk−1), (6)

where (a) holds because, when conditioned on the input Xk and the previous output Yk−1 (i.e.,

the current channel state), the channel output Yk becomes independent of both the message W

and the earlier outputs Y k−2
0 .

We call
n∑

k=1

I(Xk;Yk|Yk−1) the directed mutual information. The concept of directed mutual

information was introduced by Massey [14] who attributes it to Marko [15]. See [10] for a

detailed discussion of this concept. It has been shown in [13], that the maximum directed mutual

information for our channel model is attained inside P ∗(Xn
1 ); i.e., no loss of generality results

from restricting p(Xn
1 ) to P∗(Xn

1 ) when maximizing the directed information.
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So we have

Cfd
y
0
≤ lim sup

n→∞
max
p(Xn

1
)

1

n
I(W ;Y n

0 )

≤ lim sup
n→∞

max
p(Xn

1
)

1

n

n∑

k=1

I(Xk;Yk|Yk−1)

= lim sup
n→∞

max
p(Xn

1
)∈P∗(Xn

1
)

1

n

n∑

k=1

I(Xk;Yk|Yk−1)

= lim sup
n→∞

Cy
0
,n

n
¥

We remark that, although lim sup
n→∞

Cy
0
,n

n
is an upper bound on the achievable rate, it is not

always tight. Consider, for example, Fig. 3 in which the transition probability associated with

1 
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Fig. 3 Example 1

every arrow in the middle figure is 1
2
. It is apparent that

1) If Y0 = 1, we can transmit no information through this channel.

2) If Y0 = 3 or 4, we can transmit 1 bit of information per channel use.

3) If Y0 = 2, then Y1 = 1 with probability 1
2
, whereupon Yk = 1 for all k. Then half of the

time Y1 = 1, in which case Yk = 1 for all k. The other half time Y1 = 3, in which case

we can transmit 1 bit of information per channel use after that.

According to Definition 1, the capacity of the channel of Figure 3 is 0 if the initial channel

state Y0 = 2. However, one readily can compute that lim sup
n→∞

C2,n

n
= 1

2
, an equal mixture of the

channel capacity for Y0 = 1 and that for Y0 ∈ {3, 4}.

IV. RECURSIVE FORMULA FOR THE MAXIMUM DIRECTED MUTUAL INFORMATION

We mentioned in Section III that the maximum directed mutual information of our channel

model is attained inside P∗(Xn
1 ). This not only greatly simplifies the structure of the input
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distribution that maximizes the directed mutual information, but also makes the joint (input,

output) process possess a Markov structure, as described by the following lemma.

Lemma 1 [11], [13]: If we restrict the distribution of input Xn
1 to P∗(Xn

1 ), then we have

1) {Yk, k = 0, 1, · · · , n} is a first-order Markov chain,

2) {(Xk, Yk), k = 1, 2, · · · , n} also is a first-order Markov chain.

Lemma 1 evidences how the underlying Markov structure in our channel model allows us to

bring to bear on the problem at hand powerful techniques from Markov theory and dynamic

programming. This is partially reflected in the following theorem.

Theorem 2:

Ci,n = max
~pi,n
{I(~pi,n, Qi) +

Ny∑

j=1

Ti,j(~pi,n)Cj,n−1} for any i = 1, 2, · · · , Ny. (7)

where

1) ~pi,n is the distribution of the first input when i is the initial state. (The inclusion of n in the

subscript is intended to stress that this distribution generally depends on n; we emphasize

that ~pi,n is not the input distribution at time n.)

2) Ci,n = max
p(Xn

1
)∈P∗(Xn

1
)
{

n∑

k=2

I(Xk;Yk|Yk−1) + I(X1;Y1|Y0 = i)};

3) Qi is the channel transition probability matrix for state i, i.e., Qi(j, l) = Q(Yk = j|Xk =

l, Yk−1 = i);

4) Ti,j(~pi,n) =
Nx∑

l=1

~pi,n(l)Qi(j, l), where ~pi,n(l) is the lth component of the probability vector

~pi,n;

5) Ci,0 = 0 for i = 1, 2, · · · , Ny.

Proof: We prove this theorem by induction.

It’s obviously true when n = 1. (8)

Suppose it’s true when n = 1, · · · ,m− 1. (9)
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Then

Ci,m = max
p(Xm

1
)∈P∗(Xm

1
)
{I(X1;Y1|Y0 = i) +

m∑

k=2

I(Xk;Yk|Yk−1)}

= max
p(Xm

1
)∈P∗(Xm

1
)
{I(X1;Y1|Y0 = i) +

m−1∑

k=2

I(Xk;Yk|Yk−1) + I(Xm;Ym|Ym−1)}

= max
p(Xm

1
)∈P∗(Xm

1
)
{I(X1;Y1|Y0 = i) +

m−1∑

k=2

I(Xk;Yk|Yk−1)

+

Ny∑

j=1

P (Ym−1 = j)I(Xm;Ym|Ym−1 = j)}

(b)
= max

p(Xm−1

1
)∈P∗(Xm−1

1
)
{I(X1;Y1|Y0 = i) +

m−1∑

k=2

I(Xk;Yk|Yk−1) +

Ny∑

j=1

P (Ym−1 = j)Cj,1} (10)

= max
p(Xm−1

1
)∈P∗(Xm−1

1
)
{I(X1;Y1|Y0 = i) +

m−2∑

k=2

I(Xk;Yk|Yk−1)

+ I(Xm−1;Ym−1|Ym−2) +

Ny∑

j=1

P (Ym−1 = j)Cj,1}

= max
p(Xm−1

1
)∈P∗(Xm−1

1
)
{I(X1;Y1|Y0 = i) +

m−2∑

k=2

I(Xk;Yk|Yk−1)

+

Ny∑

l=1

P (Ym−2 = l)[I(Xm−1;Ym−1|Ym−2 = l) +

Ny∑

j=1

P (Ym−1 = j|Ym−2 = l)Cj,1]} (11)

(c)
= max

p(Xm−2

1
)∈P∗(Xm−2

1
)
{I(X1;Y1|Y0 = i) +

m−2∑

k=2

I(Xk;Yk|Yk−1) +

Ny∑

l=1

P (Ym−2 = l)Cl,2} (12)

= · · ·

(d)
= max

p(X1)∈P∗(X1)
{I(X1;Y1|Y0 = i) +

Ny∑

j=1

P (Y1 = j)Cj,m−1}

= max
~pi,m

{I(~pi,m, Qi) +

Ny∑

j=1

Ti,j(~pi,m)Cj,m−1},

where

(b) holds because I(Xm;Ym|Ym−1 = j) depends only on p(Xm|Ym−1 = j) and its value does not

affect the remaining part of (10), so we can maximize it greedily. The result of maximization

follows from (8).
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(c) holds because the quantity in the square brackets in (11) depends only on p(Xm−1|Ym−2 = l)

and its value does not affect the remaining part of (11), so we can maximize it greedily.

The result of said maximization follows from the induction hypothesis (9), and

(d) holds via the same line of reasoning as in (11) and (12). ¥

Theorem 2 shows that we can compute {Ci,n, i = 1, 2, · · · , Ny} in the following recursive

way:

Use (7) to find {Ci,1, i = 1, 2, · · · , Ny} and their corresponding {~p ∗
i,1, i = 1, 2, · · · , Ny}.

Put {Ci,1, i = 1, 2, · · · , Ny} into (7) to find {Ci,2, i = 1, 2, · · · , Ny} and their corresponding

{~p ∗
i,2, i = 1, 2, · · · , Ny}. Repeat until we get {Ci,n, i = 1, 2, · · · , Ny} and their corresponding

{~p ∗
i,n, i = 1, 2, · · · , Ny} (Note: The maximum value of a continuous function over a compact set

always exists, though ~p ∗
i,k, (i = 1, 2, · · · , Ny; k = 1, 2, · · · , n) need not be unique in general).

Since Qi(i = 1, 2, · · · , Ny) are fixed, for simplicity we henceforth abbreviate I(~p,Qi) as Ii(~p).

V. OPTIMUM STATIONARY INPUT DISTRIBUTION

From Theorem 2 we see that the optimum input distribution generally depends on time,

which significantly complicates the problem. In this section we restrict our attention to input

distributions that depend only on the current channel state (i.e., the previous channel output)

but do not depend on time. We call these the stationary 1 input distributions, and we let P∗∗

denote the set of such distributions. Correspondingly, P ∗ defined in Section III is the set of

nonstationary input distributions. Let ~pi denote the input distribution when the channel state is i.

Then no loss in generality results from writing an element of P ∗∗ as (~p1, ~p2, · · · , ~pNy
). It’s clear

that, if we restrict the input distribution into P ∗∗, then {Yk, k = 0, 1, · · · } is a homogeneous

Markov chain.

When the input distribution is stationary, we can easily find the following recursive formula:

Ii,n = Ii(~pi) +

Ny∑

j=1

Ti,j(~pi)Ij,n−1, (13)

1Here, the term “stationary” does not have its usual connotation in the theory of random processes. Specifically, since we

do not rule out initial conditions that cause the state process’s marginals to undergo a transient, similar transient behavior may

well be exhibited by the marginals of the input process. What motivates our use of the term ”stationary” is that, if the channel

satisfies certain conditions (which will be made clear in Section VI) and the input distribution is “stationary” under our definition,

then the joint input and output process (i.e., the joint input and state process) forms an irreducible and aperiodic homogeneous

Markov chain and thus is asymptotically mean stationary in the sense of [16], [17].
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where

1) Ti,j(~pi) =
Nx∑

l=1

~pi(l)Qi(j, l);

2) Ii,m =
m∑

k=2

I(Xk;Yk|Yk−1) + I(X1;Y1|Y0 = i) with P (Xk = j|Yk−1 = i) = ~pi(j).

It follows from (13) that

Ii,n+1 − Ii,n =

Ny∑

j=1

Ti,j(~pi)Ij,n −

Ny∑

j=1

Ti,j(~pi)Ij,n−1

=

Ny∑

j=1

Ti,j(~pi)(Ij,n − Ij,n−1). (14)

Using matrix representation, we can write (14) as









I1,n+1 − I1,n

I2,n+1 − I2,n
...

INy ,n+1 − INy ,n










= T










I1,n − I1,n−1

I2,n − I2,n−1
...

INy ,n − INy ,n−1










, (15)

where

T =










T1,1(~p1) T1,2(~p1) · · · T1,Ny
(~p1)

T2,1(~p2) T2,2(~p2) · · · T2,Ny
(~p2)

...
... . . . ...

TNy ,1(~pNy
) TNy ,2(~pNy

) · · · TNy ,Ny
(~pNy

)










is a transition matrix for the homogeneous Markov chain {Yk, k = 0, 1, · · · }. It follows easily

from (15) that









I1,n+1 − I1,n

I2,n+1 − I2,n
...

INy ,n+1 − INy ,n










= T n










I1,1

I2,1
...

INy ,1










. (16)

Since {Yk, k = 0, 1, · · · } is a homogenous Markov chain, we can divide its states into two

categories: the transient states and the recurrent states. Recurrent states can be decomposed

into disjoint irreducible closed sets. Furthermore, there are two kinds of irreducible closed sets:

aperiodic and periodic. Now we discuss them separately.

a) Aperiodic irreducible closed set (Suppose it contains states a1, a2, · · · , ai).
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Now consider the principal submatrix of T with respect to the ath1 , a
th
2 , · · · , a

th
i columns

and rows, we denote it as Ta. Clearly, we can derive from (16) that









Ia1,n+1 − Ia1,n

Ia2,n+1 − Ia2,n

...

Iai,n+1 − Iai,n










= T n
a










Ia1,1

Ia2,1

...

Iai,1










, (17)

where

Ta =










Ta1,a1
(~pa1

) Ta1,a2
(~pa1

) · · · Ta1,ai(~pa1
)

Ta2,a1
(~pa2

) Ta2,a2
(~pa2

) · · · Ta2,ai(~pa2
)

...
... . . . ...

Tai,a1
(~pai) Tai,a2

(~pai) · · · Tai,ai(~pai)










.

By the Markov convergence theorem for an aperiodic irreducible closed set (see e.g. [18]),

we have

T n
a →










πa1
πa2

· · · πai

πa1
πa2

· · · πai
...

... . . . ...

πa1
πa2

· · · πai










as n→∞, (18)

where {πa1
, · · · , πai} is the unique stationary (or equilibrium) distribution for the aperiodic

irreducible closed set {a1, · · · , ai}. So by (17) and (18),









Ia1,n+1 − Ia1,n

Ia2,n+1 − Ia2,n

...

Iai,n+1 − Iai,n










→










πa1
πa2

· · · πai

πa1
πa2

· · · πai
...

... . . . ...

πa1
πa2

· · · πai



















Ia1,1

Ia2,1

...

Iai,1










as n→∞. Thus we have

lim
n→∞

Iak,n
n

= lim
n→∞

n∑

l=1

(Iak,l − Iak,l−1)

n

= lim
n→∞

(Iak,n − Iak,n−1)

=
i∑

l=1

πalIal,1, (19)
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which is independent of k(k = 1, 2, · · · , i); that is, starting from any state in a given

aperiodic irreducible closed set, the limiting average directed mutual information is identical.

b) Periodic irreducible closed set (Suppose it contains states b1, b2, · · · , bj and suppose the

period is d. Let S0, S1, · · · , Sd−1 be the cyclic decomposition of the state space).

Now consider the principal submatrix of T with respect to the bth1 , b
th
2 , · · · , b

th
j columns and

rows, we denote it as Tb. Clearly, we can derive from (16) that










Ib1,n+1 − Ib1,n

Ib2,n+1 − Ib2,n
...

Ibj ,n+1 − Ibj ,n










= T n
b










Ib1,1

Ib2,1
...

Ibj ,1










, (20)

where

Tb =










Tb1,b1(~pb1) Tb1,b2(~pb1) · · · Tb1,bj(~pb1)

Tb2,b1(~pb2) Tb2,b2(~pb2) · · · Tb2,bj(~pb2)
...

... . . . ...

Tbj ,b1(~pbj) Tbj ,b2(~pbj) · · · Tbj ,bj(~pbj)










.

By the Markov convergence theorem for a periodic irreducible closed set (see e.g. [18]),

we have

1

n

n∑

m=1

(Tm
b )k,l → πbl

where (Tm
b )k,l is the component on the kth row and lth column of matrix Tb · Tb · · ·Tb

︸ ︷︷ ︸

m

,

{πb1 , · · · , πbj} is the unique stationary (or equilibrium) distribution for the aperiodic ir-

reducible closed set {b1, b2, · · · , bj}. More specifically, if bk ∈ S0 and bl ∈ Sr (actually

we just need the subscript of the cyclic state space that they belong to differ by r(r =

0, 1, · · · , d− 1)), then we have

lim
m→∞

(Tmd+r
b )k,l = πbld; (21)

(Tm
b )k,l = 0 for (m mod d) 6= r. (22)
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It follows by (20), (21) and (22) that

lim
n→∞

Ibk,n
n

= lim
n→∞

n∑

m=1

(Ibk,m − Ibk,m−1)

n

= lim
n→∞

n∑

m=1

j∑

l=1

[(Tm−1
b )k,lIbl,1]

n

=

j
∑

l=1

Ibl,1 lim
n→∞

n∑

m=1

(Tm−1
b )k,l

n

=

j
∑

l=1

πblIbl,1, (23)

which is independent of k(k = 1, 2, · · · , j); that is, starting from any state in a given periodic

irreducible closed set, the limiting average directed mutual information is identical.

Since the limiting average directed mutual information is seen to have the same expression

for an aperiodic irreducible closed set as for a periodic irreducible closed set, in order to find the

stationary input that maximizes the average directed mutual information given the initial state

Y0 = k, we can proceed as follows, where without loss of generality we suppose k = Ny:

i) Let P be the space containing all the Nx× 1 probability vectors. Now consider the product

space Λ = P1×P2× · · ·×PNy
, where Pi = P for all i = 1, 2, · · · , Ny. Decompose Λ into

2Ny−1 disjoint subsets such that Λ =
2Ny−1−1⋃

i=0

Λi and the Λi have the property that for any

~p1× ~p2×· · ·× ~pNy
∈ Λi, the indices of the positions that are 1 in the binary expansion of i

correspond to the states that form an irreducible closed set with state k(= Ny). For example,

let Ny = 4 and i = 3; then the binary expansion of i is 011. For any ~p1×~p2×~p3×~p4 ∈ Λ3,

states 1, 2, 4 form an irreducible closed set. For any ~p1×~p2×· · ·×~pNy
∈ Λ0, state k(= Ny)

is either a transient state or an irreducible closed set formed by itself.

ii) The maximum average directed mutual information for a stationary input distribution can

be obtained by

max
i∈{1,2,··· ,2Ny−1}

{ max
(~p1×···×~pNy )∈Λi

(
∑

l∈∆i

πlIl,1)} (24)

if the above maximization operation is feasible. Here ∆i is the set containing the indices

of the positions that are 1 in the binary expansion of i+ 2Ny−1. For the previous example,

if i = 3, then ∆i = {1, 2, 4}.
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iii) In ii), we did not consider Λ0 in the maximization. Clearly, under some stationary input

distribution (~p1, ~p2, · · · , ~pNy
), if state k forms an irreducible closed set by itself, then

lim
n→∞

Ik,n
n
= 0;

if state k is transient, then we have

lim
n→∞

Ik,n
n
=
∑

i

PiI
∗
i ,

where Pi is the probability that the Markov chain will end in the irreducible closed set i

and I∗i is the limiting average directed mutual information for this irreducible closed set as

was discussed in a) and b). The example discussed in Section III is a special case of iii).

When the initial state is transient under any input distribution, it may seem to be a good choice

to maximize the probability that the Markov chain will be absorbed in the irreducible closed

set that has the largest limiting average directed mutual information. To see that the problem

actually is much more complicated, consider the example shown in Fig. 4. If Y0 = 2, then we

1 

2 

3 

4 

1 1 

3 

2 

4 

1 

3 3 

4 

1 

2 

3 

4 

Yk−1=1 Yk−1= 2 Yk−1=3,4 

5 

6 

5 

6 

5 

6 

5 

6 

3 

1 

2 

4 

5 

6 

5 

6 

Yk−1=5,6 

1/2 

1/2 

1/2 

Fig. 4 Example 2

can let X1 = 2 or 3 (other inputs will drive the Markov chain into state 1 which is a dead end).

But if we choose X1 = 3, then with probability 1
2
, the Markov chain will be driven to state 1

and stuck there forever; also, with probability 1
2
, the Markov chain will be driven to state 3 and

we can transmit 1 bit of information per channel use after that. If we choose X1 = 2, then the

Markov chain will be driven to state 5 and we can transmit log2 5 − 2 bits of information per

channel use after that. Clearly, for this channel model, if we want to drive the Markov chain into

an irreducible closed set with highest limiting average directed mutual information – namely

DRAFT September 8, 2004



CHEN AND BERGER 15

{3, 4} – then we need to take the risk that we may actually end in the bad irreducible closed

set {1}. The feedback channel capacity introduced in Definition 1 can be roughly interpreted as

the maximal reliable communication rate in the worst case scenario. So for this channel model,

it’s easy to check that Cfd
2 = log2 5 − 2. By Example 1 and 2, we can see that, if there does

not exist a input distribution under which all the channel states form a single irreducible set,

the feedback channel capacity given in Definition 1 may not reveal the intrinsic structure of the

channel. Outage capacity seems to be a more proper concept in this context.

VI. OPTIMAL NONSTATIONARY INPUT DISTRIBUTION

Next, we study the nonstationary input distribution that maximizes the limiting average directed

mutual information. Here, “nonstationary” means the input depends both on the current channel

state (i.e., the previous channel output) and on time, whereas “stationary” (as was discussed in

Section V) means the input depends only on current channel state. As we saw in Section V, the

transition matrix of the Markov process {Yk, k = 0, 1, · · · } depends on the input distribution. If

the input is stationary, then {Yk, k = 0, 1, · · · } is a homogeneous Markov chain and we have a

simple way to determine the unique decomposition of the state space into disjoint irreducible

closed sets and transient state sets. But when the input distribution is not stationary, then {Yk, k =

0, 1, · · · } becomes an inhomogeneous Markov chain and there is no simple method to determine

whether a state is transient or recurrent. Roughly speaking, if we view a Markov chain as a

random walk on a directed graph, then the connectivity of this graph (which is determined by

the transition matrix) is fixed for a homogeneous Markov chain, while it changes with time for

an inhomogeneous Markov chain. In our case the connectivity of the graph is determined by the

input distribution, so it will change with time if the input is nonstationary. In order to make the

analysis tractable, we need to impose some restrictions on our model.

First we introduce two concepts: strong irreducibility and strong aperiodicity. Here we imitate

the definitions of irreducibility and aperiodicity in the classic Markov theory.

Definition 2 (Strong irreducibility): Let

T̃ (i, j) = min
l∈{1,··· ,Nx}

{Q(Yk = j|Xk = l, Yk−1 = i)}

We say there exists a directed edge from state i to state j if T̃ (i, j) > 0. We say a Markov chain

{Yk, k = 0, 1, · · · } is strongly irreducible if for any two states i and j (i can be equal to j), there

September 8, 2004 DRAFT
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exists a directed path from i to j. For simplicity, we just say T̃ , the Ny×Ny matrix whose (i, j)

is T̃ (i, j), is strongly irreducible, since T̃ contains all the information that determines whether

the Markov chain {Yk, k = 0, 1, · · · } is strongly irreducible or not.

Definition 3: Where the “length” of a path is the number of edges comprising the path, let

Di be the set of lengths of all the possible closed paths from state i to state i. Let di be the

greatest common divisor of Di. di is called the period of state i.

The following result says that period is a class property.

Lemma 2: If the Markov chain {Yk, k = 0, 1, · · · } is strongly irreducible, then di = dj for

any i and j.

Proof: Let K and L be the integers such that there exist a directed path of length K from

state i to state j and a directed path of length L from state j to state i. So there exists a directed

path of length K + L from state j to state j. Hence dj|(K + L).

Let m ∈ Di, by Definition 3, there exists a directed path of length K +m + L from state j

to state j. So dj|(K +m+ L), and hence dj|m. Since m ∈ Di is arbitrary, dj|di.

Interchanging the roles of j and i gives di|dj , and hence di = dj . ¥

So for a strongly irreducible Markov chain {Yk, k = 0, 1, · · · }, all the states have the same

period, which we shall denote by d.

Definition 4 (Strong aperiodicity):We say a strongly irreducible Markov chain {Yk, k =

0, 1, · · · } is strongly aperiodic if d = 1.

For simplicity, we just say that T̃ is strongly irreducible and strongly aperiodic. Clearly, our

definitions of irreducibility and aperiodicity are stronger than those in the usual sense; i.e., if

the Markov chain {Yk, k = 0, 1, · · · } is stongly irreducible and strongly aperiodic, then it’s

irreducible and aperiodic in the usual sense for any input distribution {~p1,k, ~p2,k, · · · , ~pNy ,k}
∞
k=1.

Note, however, such a Markov chain is in general inhomogeneous since {~p1,k, ~p2,k, · · · , ~pNy ,k}

may depend on k. Again, if we view the Markov process {Yk, k = 0, 1, · · · } as a random walk

on a directed graph, then strong irreducibility and strong aperiodicity assure us that this directed

graph is always strongly connected and all the states of it are of period 1 no matter what input

distribution is generating {Yk} via the channel.

We now proceed to prove a lemma which will be useful in the proof of the main theorem in

this section.

Lemma 3: If T̃ is strongly irreducible and strongly aperiodic, then there is a K such that
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(T̃ )K(i, j) > 0 for all i, j.

Proof: Since T̃ is strongly irreducible, every row of T̃ should have at least one positive element.

So we can scale every row of T̃ to make it to be a transition matrix T in which the summation

of the elements on every row is 1. Clearly, T is irreducible and aperiodic in the usual sense and

we have

T (i, j) = 0⇔ T̃ (i, j) = 0.

By [16, Ex 5.9], there exists an K such that TK(i, j) > 0 for all i, j. Since

T (i, j) = 0⇔ T̃ (i, j) = 0,

it follows that

T n(i, j) = 0⇔ T̃ n(i, j) = 0

for any positive integer n. So we can conclude that

T̃K(i, j) > 0

for all i, j. ¥

Theorem 3: If T̃ is strongly irreducible and strongly aperiodic, then lim
n→∞

Ci,n

n
exists and is

independent of i.

Proof: By Theorem 2, we have

Ci,n = Ii(~p
∗
i,n) +

Ny∑

j=1

Ti,j(~p
∗
i,n)Cj,n−1, (25)

where ~p ∗
i,n ∈ argmax

~pi,n
{Ii(~pi,n) +

Ny∑

j=1

Ti,j(~pi,n)Cj,n−1}. Similarly,

Ci,n+1 = Ii(~p
∗
i,n+1) +

Ny∑

j=1

Ti,j(~p
∗
i,n+1)Cj,n. (26)

By the definition of ~p ∗
i,n and ~p ∗

i,n+1, we have

Ci,n ≥ Ii(~p
∗
i,n+1) +

Ny∑

j=1

Ti,j(~p
∗
i,n+1)Cj,n−1, (27)

Ci,n+1 ≥ Ii(~p
∗
i,n) +

Ny∑

j=1

Ti,j(~p
∗
i,n)Cj,n. (28)
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It follows from (26) and (27) that

Ci,n+1 − Ci,n ≤

Ny∑

j=1

Ti,j(~p
∗
i,n+1)(Cj,n − Cj,n−1). (29)

Similarly, by (25) and (28) we have

Ci,n+1 − Ci,n ≥

Ny∑

j=1

Ti,j(~p
∗
i,n)(Cj,n − Cj,n−1). (30)

Using matrix representation, we can write (29) and (30) jointly as

T ∗n










C1,n − C1,n−1

C2,n − C2,n−1
...

CNy ,n − CNy ,n−1










≤










C1,n+1 − C1,n

C2,n+1 − C2,n
...

CNy ,n+1 − CNy ,n










≤ T ∗n+1










C1,n − C1,n−1

C2,n − C2,n−1
...

CNy ,n − CNy ,n−1










, (31)

where

T ∗n =










T1,1(~p
∗
1,n) T1,2(~p

∗
1,n) · · · T1,Ny

(~p ∗
1,n)

T2,1(~p
∗
2,n) T2,2(~p

∗
2,n) · · · T2,Ny

(~p ∗
2,n)

...
... . . . ...

TNy ,1(~p
∗
Ny ,n

) TNy ,2(~p
∗
Ny ,n

) · · · TNy ,Ny
(~p ∗

Ny ,n
)










.

Since T̃ is strongly irreducible and strongly aperiodic, by Lemma 3, there is a K such that

T̃K(i, j) > 0

for all i, j. From (31), we can get

(
K−1∏

i=0

T ∗n+i)










C1,n − C1,n−1

C2,n − C2,n−1
...

CNy ,n − CNy ,n−1










≤










C1,n+K − C1,n+K−1

C2,n+K − C2,n+K−1
...

CNy ,n+K − CNy ,n+K−1










≤ (
K∏

i=1

T ∗n+i)










C1,n − C1,n−1

C2,n − C2,n−1
...

CNy ,n − CNy ,n−1










.

(32)

It’s easy to see that

(
K−1∏

l=0

T ∗m+l)(i, j) ≥ T̃K(i, j)

for all positive integers i, j,m. Let

α = min
i,j
{T̃K(i, j)}.
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Clearly, we have 1
2
≥ α > 0. Let

Mn = max
i∈{1,2,··· ,Ny}

(Ci,n − Ci,n−1),

mn = min
i∈{1,2,··· ,Ny}

(Ci,n − Ci,n−1).

By (32), we can get

Mn+K ≤ (1− α)Mn + αmn,

mn+K ≥ αMn + (1− α)mn,

and thus we have

0 ≤ (Mn+K −mn+K) ≤ (1− 2α)(Mn −mn).

It follows by recursion that

0 ≤ (MnK+1 −mnK+1) ≤ (1− 2α)
n(M1 −m1), (33)

and thus

lim
n→∞

(MnK+1 −mnK+1) = 0.

By (31), it’s easy to show that Mn is monotonically decreasing, mn is monotonically increasing

and both of them are bounded, so their limits exist. Hence

lim
n→∞

(MnK+1 −mnK+1) = 0

implies

lim
n→∞

Mn = lim
n→∞

mn.

That is, lim
n→∞

(Ci,n+1 − Ci,n) exists and is independent of i. So we can conclude that

lim
n→∞

Ci,n

n
= lim

n→∞

n∑

k=1

(Ci,k − Ci,k−1)

n
= lim

n→∞
(Ci,n − Ci,n−1)

exists and is independent of i. ¥

Now we begin to analyze the convergence rate of (Cj,n+1 −Cj,n)− (Ci,n+1 −Ci,n), which is

useful for the next section.
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By (33), we have, for any i and j (i = 1, 2, · · · , Ny; j = 1, 2, · · · , Ny),

|(Cj,n − Cj,n−1)− (Ci,n − Ci,n−1)| ≤ |Mn −mn| ≤ |Mbn−1

K
cK+1 −mbn−1

K
cK+1|

≤ (1− 2α)b
n−1

K
c(M1 −m1)

≤ (1− 2α)
n−1

K
−1(M1 −m1)

= βγn, (34)

where β = (1− 2α)−
K+1

K (M1 −m1) and γ = (1− 2α)
1

K . Note: 0 ≤ γ < 1.

VII. CONVERGENCE OF NONSTATIONARY INPUT TO STATIONARY INPUT

We now show that under certain conditions the limiting maximum average directed mutual

information actually can be achieved by a stationary input. Before proving the main theorem in

this section, we need to introduce several definitions.

Definition 4 (the vector p-norms): For ~x ∈ Rn×1,

||~x||p = (|x1|
p + · · ·+ |xn|

p)
1

p , p ≥ 1.

Specifically, for p = 1, 2,∞, we have

||~x||1 = |~x(1)|+ · · ·+ |~x(n)|,

||~x||2 = (|~x(1)|2 + · · ·+ |~x(n)|2)
1

2 ,

||~x||∞ = max
1≤i≤n

|~x(i)|.

Definition 5 (the matrix p-norms): For A ∈ Rm×n,

||A||p = sup
~x6=0

||A~x||p
||~x||p

, p ≥ 1.

Specifically, for p = 1, 2,∞, we have

||A||1 = max
1≤j≤n

m∑

i=1

|A(i, j)|,

||A||2 is the square root of the largest eigenvalue of ATA,

||A||∞ = max
1≤i≤m

n∑

j=1

|A(i, j)|.

For the detailed discussion of the properties of the vector p-norms and matrix p-norms, see

[19].
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Definition 6: Let P denote the set of all Nx × 1 probability vectors. We say an Ny × Nx

channel transition probability matrix Q ∈ ΨNy×Nx
if there exists a complete subset P̃ ⊂ P such

that the following three conditions are satisfied:

(i) {Q~p : ~p ∈ P} = {Q~p : ~p ∈ P̃}.

(ii) For any ~q ∈ {Q~p : ~p ∈ P},

{arg max
~p:Q~p=~q and ~p∈P

I(~p,Q)} ∩ {arg max
~p:Q~p=~q and ~p∈P̃

I(~p,Q)} 6= ∅.

(iii) There exists a positive constant λ such that

∂I(~p2, Q)

∂~l
−
∂I(~p1, Q)

∂~l
≤ −λ||~p2 − ~p1||2

for any nonidentical ~p1, ~p2 ∈ P̃ and ~l with the direction from ~p1 to ~p2.

P̃ is called the complete subset with respect to Q.

See the appendix for the detailed discussion of Definition 6.

We also need the following lemma concerning the backward product of matrices.

Lemma 4 [13]: If
∞∑

k=1

||A− Ak||∞ <∞, then for any ε > 0, there exists a positive number

r1 such that, for all n > m > r1,
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n−m∏

k=0

An−k − An−m+1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

≤ ε,

where A,Ak(k = 1, 2, · · · ) are stochastic matrices.

Now we are ready to prove the main theorem in this section.

Theorem 4: If T̃ is strongly irreducible and strongly aperiodic and Qi ∈ ΨNy×Nx
(i =

1, 2, · · · , Ny), then

lim
n→∞

Ci,n

n
= max

(~p1,~p2,··· ,~pNy )
{

Ny∑

l=1

πlIl,1},

where (π1, π2, · · · , πNy
) is the equilibrium distribution of the channel output process induced by

the stationary input distribution (~p1, ~p2, · · · , ~pNy
).

Proof: Let P̃i be the complete subset with respect to Qi. Since

Ny∑

j=1

Ti,j(~pi,n)Cj,n−1 = ~CT
n−1Q~pi,n,
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where ~Cn−1 = [C1,n−1, · · · , CNy ,n−1]
T , Definition 6 and the discussion in the appendix assure

us that

Ci,n = max
~pi,n
{Ii(~pi,n) +

Ny∑

j=1

Ti,j(~pi,n)Cj,n−1}

is attained inside P̃i and there exists a unique ~p ∗
i,n ∈ P̃i such that

Ci,n = Ii(~p
∗
i,n) +

Ny∑

j=1

Ti,j(~p
∗
i,n)Cj,n−1.

First we derive a bound on the convergence rate of ~p ∗
i,n. Let

fi,n(~p) = Ii(~p) +

Ny∑

j=1

Ti,j(~p)(Cj,n−1 − Ci,n−1).

We have

fi,n+1(~p) = Ii(~p) +

Ny∑

j=1

Ti,j(~p)(Cj,n − Ci,n)

= fi,n(~p) +

Ny∑

j=1

Ti,j(~p)[(Cj,n − Ci,n)− (Cj,n−1 − Ci,n−1)],

and thus

∂fi,n+1

∂~l
(~p ∗

i,n+1) =
∂fi,n

∂~l
(~p ∗

i,n+1) +

Ny∑

j=1

[
∂Ti,j

∂~l
(~p ∗

i,n+1)][(Cj,n − Ci,n)− (Cj,n−1 − Ci,n−1)], (35)

where the direction of ~l is from ~p ∗
i,n to ~p ∗

i,n+1 (We temporarily suppose that ~p ∗
i,n 6= ~p ∗

i,n+1). Since

fi,n+1(~p
∗
i,n+1) is the maximum value of fi,n+1(~p) and the direction of ~l is from ~p ∗

i,n to ~p ∗
i,n+1, it

follows that
∂fi,n+1

∂~l
(~p ∗

i,n+1) ≥ 0. (36)

Since
Ny∑

j=1

Ti,j(~p)(Cj,n−1 − Ci,n−1) is linear with respect to ~p, it follows that

∂2fi,n

∂~l
(~p ∗

i,n+1)−
∂2fi,n

∂~l
(~p ∗

i,n) =
∂2Ii

∂~l
(~p ∗

i,n+1)−
∂2Ii

∂~l
(~p ∗

i,n).

Then by Definition 6, we have

∂fi,n

∂~l
(~p ∗

i,n+1)−
∂fi,n

∂~l
(~p ∗

i,n) ≤ −λi||~p
∗
i,n − ~p ∗

i,n+1||2. (37)
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Since fi,n(~p
∗
i,n) is the maximum value of fi,n(~p) and the direction of ~l is from ~p ∗

i,n to ~p ∗
i,n+1, it

follows that
∂fi,n

∂~l
(~p ∗

i,n) ≤ 0. (38)

Putting (38) into (37), we get

∂fi,n

∂~l
(~p ∗

i,n+1) ≤ −λi||~p
∗
i,n − ~p ∗

i,n+1||2. (39)

By (35), (36) and (39), we have

−λi||~p
∗
i,n − ~p ∗

i,n+1||2 +

Ny∑

j=1

[
∂Ti,j

∂~l
(~p ∗

i,n+1)][(Cj,n − Ci,n)− (Cj,n−1 − Ci,n−1)]

≥
∂fi,n

∂~l
(~p ∗

i,n+1) +

Ny∑

j=1

[
∂Ti,j

∂~l
(~p ∗

i,n+1)][(Cj,n − Ci,n)− (Cj,n−1 − Ci,n−1)]

=
∂fi,n+1

∂~l
(~p ∗

i,n+1) ≥ 0,

or equivalently

||~p ∗
i,n − ~p ∗

i,n+1||2 ≤
1

λi

Ny∑

j=1

[
∂Ti,j

∂~l
(~p ∗

i,n+1)][(Cj,n − Cj,n−1)− (Ci,n − Ci,n−1)]. (40)

It follows from (34) that

|(Cj,n − Cj,n−1)− (Ci,n − Ci,n−1)| ≤ βγn,

and it’s easy to check that
Ny∑

j=1

|
∂Ti,j

∂~l
(~p ∗

i,n+1)| ≤ NxNy.

So for any n ≥ 1 we have

||~p ∗
i,n−~p ∗

i,n+1||2 ≤
1

λi

Ny∑

j=1

|
∂Ti,j

∂~l
(~p ∗

i,n+1)||(Cj,n−Cj,n−1)− (Ci,n−Ci,n−1)| ≤
1

λi
βγnNxNy. (41)

It’s obvious that (41) also holds when ~p ∗
i,n = ~p ∗

i,n+1. Thus

||~p ∗
i,m+n − ~p ∗

i,m||2 ≤
n∑

j=1

||~p ∗
i,m+j − ~p ∗

i,m+j−1||2 ≤
βNxNy

λi

n∑

i=1

γm+i−1 ≤
βNxNyγ

m

λi(1− γ)
→ 0, (42)

for any n ≥ 1 as m→∞. Hence ~p ∗
i,n is a Cauchy sequence. Since P̃i is complete, there exists

~p ∗
i ∈ P̃i such that ~p ∗

i,n → ~p ∗
i . Clearly, this result holds for all i(i = 1, 2, · · · , Ny).
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Let En = T ∗n − T ∗, where

T ∗n =










T1,1(~p
∗
1,n) T1,2(~p

∗
1,n) · · · T1,Ny

(~p ∗
1,n)

T2,1(~p
∗
2,n) T2,2(~p

∗
2,n) · · · T2,Ny

(~p ∗
2,n)

...
... . . . ...

TNy ,1(~p
∗
Ny ,n

) TNy ,2(~p
∗
Ny ,n

) · · · TNy ,Ny
(~p ∗

Ny ,n
)










and

T ∗ =










T1,1(~p
∗
1 ) T1,2(~p

∗
1 ) · · · T1,Ny

(~p ∗
1 )

T2,1(~p
∗
2 ) T2,2(~p

∗
2 ) · · · T2,Ny

(~p ∗
2 )

...
... . . . ...

TNy ,1(~p
∗
Ny
) TNy ,2(~p

∗
Ny
) · · · TNy ,Ny

(~p ∗
Ny
)










.

By Holder’s inequality and (42),

||~p ∗
i,n − ~p ∗

i ||1 ≤
√

Nx||~p
∗
i,n − ~p ∗

i ||2 ≤
βN

3

2
x Nyγ

n

λi(1− γ)
.

Clearly, we have

||En||∞ = ||T
∗
n − T ∗||∞ ≤ NxNy max

i∈{1,2,··· ,Ny}
{||~p ∗

i,n − ~p ∗
i ||1} ≤

βN
5

2
x N2

yγ
n

λ(1− γ)
,

where λ = min{λ1, · · · , λNy
}. Hence

∞∑

n=1

||En||∞ ≤
∞∑

n=1

βN
5

2
x N2

yγ
n

λ(1− γ)
=

βN
5

2
x N2

yγ

λ(1− γ)2
<∞.

Applying Lemma 4, we deduce that for any ε > 0, there exists a positive number r1 such

that, for all n > m > r1,
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n−m∏

k=0

T ∗n−k − (T
∗)n−m+1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

≤ ε. (43)

Since ~p ∗
i,n → ~p ∗

i for every i, it follows that for any ε > 0, there exists a positive number r2

such that, for all n > r2,
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣








I1(~p
∗
1,n)− I1(~p

∗
1 )

...

INy
(~p ∗

Ny ,n
)− INy

(~p ∗
Ny
)








∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∞

≤ ε. (44)
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Let r = max(r1, r2)+1. In the remaining part of this proof, we implicitly assume P (Y0 = y
0
) =

1. Now we have

Cy
0
,n

(e)
=

n∑

k=1

I(Xk;Yk|Yk−1)

=
n∑

k=1

[P (Yk−1 = 1), · · · , P (Yk−1 = Ny)]








I1(~p
∗
1,n+1−k)

...

INy
(~p ∗

Ny ,n+1−k
)








= [P (Y0 = 1), · · · , P (Y0 = Ny)]








I1(~p
∗
1,n)

...

INy
(~p ∗

Ny ,n
)








+
n∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1,n+1−k)

...

INy
(~p ∗

Ny ,n+1−k
)







.

(e) The input distributions of X1, X2, · · · , Xn are {~p ∗
1,n, · · · , ~p

∗
Ny ,n

}, {~p ∗
1,n−1, · · · , ~p

∗
Ny ,n−1

}, · · · ,

{~p ∗
1,1, · · · , ~p

∗
Ny ,1
} respectively.

Similarly, we have

C∗y
0
,n

(f)
=

n∑

k=1

I(X∗
k ;Y

∗
k |Y

∗
k−1)

=
n∑

k=1

[P (Y ∗k−1 = 1), · · · , P (Y
∗
k−1 = Ny)]








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)








(g)
= [P (Y0 = 1), · · · , P (Y0 = Ny)]








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)







+

n∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](T
∗)k−1








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)







.

(f) All the input distributions of X∗
1 , X

∗
2 , · · · , X

∗
n are {~p ∗

1 , · · · , ~p
∗
Ny
}; (g) Y0 = Y ∗0 = y

0
. So we

have
∣
∣
∣
∣

1

n
Cn(Y0)−

1

n
C∗n(Y0)

∣
∣
∣
∣
≤ A1 + A2 + A3, (45)
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where

A1 =
1

n
[P (Y0 = 1), · · · , P (Y0 = Ny)]








I1(~p
∗
1,n)

...

INy
(~p ∗

Ny ,n
)







− [P (Y0 = 1), · · · , P (Y0 = Ny)]








I1(~p
∗
1 )

...

INy
(~p ∗

Ny







,

A2 =
1

n

n∑

k=n+2−r

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1,n+1−k)

...

INy
(~p ∗

Ny ,n+1−k
)








−
n∑

k=n+2−r

[P (Y0 = 1), · · · , P (Y0 = Ny)](T
∗)k−1








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)







,

A3 =
1

n

n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1,n+1−k)

...

INy
(~p ∗

Ny ,n+1−k
)








−
n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](T
∗)k−1








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)







.

DRAFT September 8, 2004



CHEN AND BERGER 27

Now we evaluate A1, A2 and A3 respectively:

i) lim
n→∞

A1 = lim
n→∞

1

n
[P (Y0 = 1), · · · , P (Y0 = Ny)]








I1(~p
∗
1,n)

...

INy
(~p ∗

Ny ,n
)








−[P (Y0 = 1), · · · , P (Y0 = Ny)]








I1(~p
∗
1 )

...

INy
(~p ∗

Ny







= 0. (46)

ii) lim
n→∞

A2 = lim
n→∞

1

n

n∑

k=n+2−r

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1,n+1−k)

...

INy
(~p ∗

Ny ,n+1−k
)








−
n∑

k=n+2−r

[P (Y0 = 1), · · · , P (Y0 = Ny)](T
∗)k−1








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)







= 0. (47)

iii) A3 =
1

n

n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1,n+1−k)

...

INy
(~p ∗

Ny ,n+1−k
)








−
n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](T
∗)k−1








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)








≤
1

n

n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1,n+1−k)

...

INy
(~p ∗

Ny ,n+1−k
)








−
n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)








+
1

n

n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](
k−2∏

j=0

T ∗n−j)








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)







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−
n+1−r∑

k=2

[P (Y0 = 1), · · · , P (Y0 = Ny)](T
∗)k−1








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)








≤
1

n

n+1−r∑

k=2

||[P (Y0 = 1), · · · , P (Y0 = Ny)]||∞

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

k−2∏

j=0

T ∗n−j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣








I1(~p
∗
1,n+1−k)− I1(~p

∗
1 )

...

INy
(~p ∗

Ny ,n+1−k
)− INy

(~p ∗
Ny
)








∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∞

+
1

n

n+1−r∑

k=2

||[P (Y0 = 1), · · · , P (Y0 = Ny)]||∞

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

k−2∏

j=0

T ∗n−j − (T
∗)k−1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)








∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∞

. (48)

Clearly, we have

||[P (Y0 = 1), · · · , P (Y0 = Ny)]||∞ = 1, (49)
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

k−2∏

j=0

T ∗n−j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

= 1, (50)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣








I1(~p
∗
1 )

...

INy
(~p ∗

Ny
)








∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∞

≤ logNy. (51)

By (43) ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

k−2∏

j=0

T ∗n−j − (T
∗)k−1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

≤ ε, (52)

since n+ 2− k ≥ r + 1 = max(r1, r2) + 2 > r1 if k ≤ n+ 1− r. By (44)
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣








I1(~p
∗
1,n+1−k)− I1(~p

∗
1 )

...

INy
(~p ∗

Ny ,n+1−k
)− INy

(~p ∗
Ny
)








∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∞

≤ ε, (53)

since n+ 1− k ≥ r = max(r1, r2) + 1 ≥ r2 if k ≤ n+ 1− r.

Putting (49)-(53) into (48) yields

lim sup
n→∞

A3 ≤ (logNy + 1)ε. (54)

Now put (46), (47) and (54) back into (45), obtaining

lim sup
n→∞

1

n
|Cy

0
,n − C∗y

0
,n| ≤ (logNy + 1)ε.
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Since here ε is arbitrary, it follows that

lim
n→∞

1

n
|Cy

0
,n − C∗y

0
,n| = 0. (55)

The strong irreducibility of T̃ guarantees that the output process {Yk, k = 0, 1, · · · , n} in-

duced by any stationary input distribution form an irreducible Markov chain on the state space

{1, 2, · · · , Ny}. So from the analysis in Section V, we have

lim
n→∞

C∗y
0
,n

n
=

Ny∑

l=1

π∗l Il,1(~p
∗
l ),

where (π∗1, π
∗
2, · · · , π

∗
Ny
) is the equilibrium distribution of the channel output process induced by

the stationary input distribution (~p ∗
1 , ~p

∗
2 , · · · , ~p

∗
Ny
). Hence

lim
n→∞

Cy
0
,n

n
=

Ny∑

l=1

π∗l Il,1(~p
∗
l ). (56)

It is obvious that the limiting average directed mutual information induced by the optimal input

distribution is always greater than or equal to the limiting average directed mutual information

induced by any stationary input distribution, so we have

lim
n→∞

Cy
0
,n

n
≥ max

(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

. (57)

Combining (56) and (57) and noticing the arbitrariness of y
0
, we can conclude that

lim
n→∞

Ci,n

n
= max

(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

=

Ny∑

l=1

π∗l Il,1(~p
∗
l ), (58)

for all i (i = 1, 2, · · · , Ny). ¥

Remark: The condition Qi ∈ ΨNy×Nx
(i = 1, 2, · · · , Ny) is introduced for purely technical

reasons. It enables us to prove that ~p ∗
i,n converges to ~p ∗

i exponentially fast by exploiting the strict

concavity property of mutual information function. Theorem 4 still holds when this condition is

removed. However, the proof will be less direct compared with the current one.

VIII. DIRECT CHANNEL CODING THEOREM

In this section we prove the direct channel coding theorem and suggest a coding scheme for

our channel model.
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Theorem 5 (direct channel coding theorem): If T̃ is strongly irreducible and strongly

aperiodic, then all rates less than max
(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

are achievable, where (π1, π2, · · · , πNy
)

is the equilibrium distribution of the channel output process induced by the stationary input

distribution (~p1, ~p2, · · · , ~pNy
).

Proof: We shall implicitly assume that P (Y0 = y
0
) = 1.

It has been shown in [10] that the general formula for the capacity of feedback channels is

Cfd
y
0
= sup

p(X∞
1
)∈P(X∞

1
)

I(X → Y ) = sup
p(X∞

1
)∈P(X∞

1
)

lim inf
in probability

1

n
~i(Xn;Y n),

where

1) P(X∞
1 ) = {{P (Xk|x

k−1
1 , yk−1

0
)}∞k=1} is the set of all channel input distributions;

2) ~i(Xn;Y n) = log
P (Xn

1
,Y n

1
|Y0)

P (X1|Y0)P (Y n
1
|Y0)

n∏

k=2

P (Xk|X
k−1

1
,Y k−1

0
)
;

3) The lim inf in probability of a sequence of random variables {Zn}
∞
n=1, denoted by lim inf

in probability
Zn,

is defined as the largest extended real number c such that ∀ε > 0, lim
n→∞

Pr[Zn ≤ c− ε] = 0.

Let (~p ∗
1 , ~p

∗
2 , · · · , ~p

∗
Ny
) ∈ arg max

(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

. Let P (Xk = i|Xk−1
1 , Y k−2

0 , Yk−1 =

j) = ~p ∗
j (i), for k = 1, 2, · · · ; i = 1, 2, · · · , Nx; j = 1, 2, · · · , Ny. Since T̃ is strongly irreducible

and strongly aperiodic, we can check that the joint process {Xk, Yk, Yk−1}
∞
k=1 induced by the

stationary input distribution (~p ∗
1 , ~p

∗
2 , · · · , ~p

∗
Ny
) constitutes an irreducible Markov chain with

P (Xk = i, Yk = j, Yk−1 = l) converging to π∗l ~p
∗
l (i)Ql(j|i), where (π∗1, π

∗
2, · · · , π

∗
Ny
) is the

equilibrium distribution of the channel output process induced by the stationary input distribution

(~p ∗
1 , ~p

∗
2 , · · · , ~p

∗
Ny
). Note:

1) The recurrent state space of this Markov chain maybe smaller than {1, 2, · · · , Nx} ×

{1, 2, · · · , Ny}×{1, 2, · · · , Ny}. The strong irreducibility and strong aperiodicity of T̃ only

guarantees that {Yk, k = 0, 1, · · · } induced by the stationary input distribution (~p ∗
1 , ~p

∗
2 , · · · , ~p

∗
Ny
)

form an irreducible and aperiodic Markov chain on the state space {1, 2, · · · , Ny}.

2) We assume the strong irreducibility and strong aperiodicity of T̃ only for simplicity. More

generally, we would need to decompose the state space into disjoint irreducible closed

sets, whereupon the proof would proceed along the same lines.
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Now we have

~i∗(Xn;Y n) = log
P (Xn

1 , Y
n
1 |Y0)

P (X1|Y0)P (Y n
1 |Y0)

n∏

k=2

P (Xk|X
k−1
1 , Y k−1

0 )

= log

n∏

k=1

P (Xk, Yk|Yk−1)

n∏

k=1

P (Xk|Yk−1)P (Yk|Yk−1)

=
n∑

k=1

log
P (Xk, Yk|Yk−1)

P (Xk|Yk−1)P (Yk|Yk−1)
.

Since log P (Xk,Yk|Yk−1)

P (Xk|Yk−1)P (Yk|Yk−1)
is a function of (Xk, Yk, Yk−1), and {(Xk, Yk, Yk−1)} is an ergodic

process, it follows that {log P (Xk,Yk|Yk−1)

P (Xk|Yk−1)P (Yk|Yk−1)
} is also an ergodic process. So we have

1

n
~i∗(Xn;Y n) =

1

n

n∑

k=1

log
P (Xk, Yk|Yk−1)

P (Xk|Yk−1)P (Yk|Yk−1)

→
∑

i,j,l

π∗l ~p
∗
l (i)Ql(j|i) log

Ql(j|i)
Nx∑

i=1

~p ∗
l (i)Ql(j|i)

=

Ny∑

l=1

π∗l
∑

i,j

~p ∗
l (i)Ql(j|i) log

Ql(j|i)
Nx∑

i=1

~p ∗
l (i)Ql(j|i)

=

Ny∑

l=1

π∗l I
∗
l,1

= max
(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

in probability,

which implies that

I∗(X → Y ) = lim inf
in probability

1

n
~i∗(Xn;Y n)

= max
(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

.
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Now the proof is complete since

Cfd
y
0
= sup

p(X∞
1
)∈P(X∞

1
)

I(X → Y )

≥ I∗(X → Y )

= max
(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

.

¥

Theorem 6: If T̃ is strongly irreducible and strongly aperiodic and Qi ∈ ΨNy×Nx
(i =

1, 2, · · · , Ny), then

Cfd
y
0
= max

(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

and is independent of the initial state y
0
.

Proof: By Theorem 1,

Cfd
y
0
≤ lim sup

n→∞

Cy
0
,n

n
.

If T̃ is strongly irreducible and strongly aperiodic, Qi ∈ ΨNy×Nx
(i = 1, 2, · · · , Ny), by Theorem

4,

lim
n→∞

Cy
0
,n

n
= max

(~p1,~p2,··· ,~pNy )

{
Ny∑

l=1

πlIl,1

}

.

Theorem 5 shows the tightness of this upper bound and completes the proof. ¥

In the remainder part of this section, we suggest a coding scheme for our channel model,

which also makes the meaning of the capacity formula transparent.

We first consider the channel model shown in Fig. 5, in which the state information is

 Encoder 
W

Message 

Channel 

 p(yk|xk,sk) 

Xk 
 Decoder 

W Yk 

  Estimate 
of Message 

∧ 

  State 

    p(sk) 

Sk 
Sk Sk 

Fig. 5 Finite State Channel with State Information Available at Transmitter and Receiver
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simultaneously available to both the transmitter T and the receiver R. If the state process is

stationary and ergodic, then it’s well known [9] [20] [21] that the channel capacity is

CTR =
K∑

j=1

π(sj) max
p(X|S=sj)

I(X;Y |S = sj),

where K is the number of channel states and π is the stationary distribution of the ergodic state

process {Sk}∞k=1. The following is the outline of the coding scheme for this channel [21]:

Let

CTR
j = max

p(X|S=sj)
I(X;Y |S = sj).

Fix the blocklength N . Let Nj be the number of times during the N symbols for which the

channel state is sj , i.e.,

Nj = |{k|Sk = sj, 1 ≤ k ≤ N}|.

Let N j = E[Nj]. Since the state process is stationary and ergodic, we have N j = π(sj)N and

lim
N→∞

Nj

N
= π(sj)

in probability.

A (N, 2N(CTR−δ), ε) code for this channel is constructed by multiplexing K codes (N j, 2
Nj(C

TR
j − δ

K
), ε

K
)

(j = 1, 2, · · · , K), where code (N j, 2
Nj(C

TR
j − δ

K
), ε

K
) corresponds to the channel state sj(j =

1, 2, · · · , K). By doing this, we actually decompose the channel into K memoryless channels and

the existence of these codes follows immediately from the direct coding theorem for memoryless

channels. Since Nj is not necessarily equivalent to N j , the codes are truncated if Nj < N j and

zero-filled if Nj > N j . Represent each message W as a K-dimensional vector [W1, · · · ,WK ]

with Wj ∈ {1, · · · , 2N j(C
TR
j − δ

K
)}(j = 1, 2, · · · , K) and map the jth index (i.e. Wj) into a

codeword form the jth code (i.e., the code with parameters (N j, 2
Nj(C

TR
j − δ

K
), ε

K
)), for 1 ≤ j ≤ K.

If Sk = sj , then the transmitter sends as the kth symbol the next unsent symbol of the

codeword corresponding to the jth index of the message from the jth code (k = 1, 2, · · · , N ; j =

1, 2, · · · , K).

Since the receiver knows exactly the state information that was used at the transmitter, it can

demultiplex the received stream into K separate codewords and decode them. Since the state

process is stationary and ergodic, as N →∞, the rate
K∑

j=1

Nj

N
CTR
j →

K∑

j=1

π(sj)C
TR
j = CTR
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is achievable.

It’s easy to see that the capacity formula of this channel model closely resembles ours in

that both of them can be represented as the average of mutual information over the stationary

distribution of the channel state process. This suggests that the multiplexing coding scheme may

work in our channel model as well. But we should note that in our model, the current channel

state is the previous channel output, so it will be affected by the channel input. Although we have

shown that if the input process is stationary, the output process (i.e., channel state process) is

an irreducible homogeneous Markov chain and thus is ergodic, it does not imply that the output

process induced by a specific codeword is still ergodic (or close to ergodic). The random coding

argument based on strong typicality tells us that for a discrete memoryless channel with finite

input and output alphabets, the statistics of the output process induced by a good codeword are

close to those of the output process induced by the optimal input distribution that achieves the

channel capacity. But strong typicality only guarantees that the statistics of a whole codeword

are close to the optimal input distribution, while a truncated version may not have this property.

In the multiplexing scheme, the output process is generated by several multiplexed codewords,

each of which is designed for its corresponding decomposed memoryless channel. And the length

of a multiplexed codeword is proportional to the stationary probability measure assigned on its

corresponding state. We want the statistics of the output process induced by the multiplexed

codewords to be close to the equilibrium distribution induced by the optimal stationary input.

Clearly, this depends highly on the cooperation of the multiplexed codewords. Even a small

fluctuation of the statistics in a portion of a multiplexed codeword may have a domino effect

on the transmission of the other multiplexed codewords and finally make the output process

deviate from the desired distribution. The result of the large deviation in the output process is

that the symbols in some multiplexed codewords are totally sent while many symbols in some

others of the multiplexed codewords are still unsent. So, in order to guarantee the stability of the

multiplexing scheme, we need the multiplexed codewords to behave better than those codewords

in the sense that their empirical distributions well-approximate the input distribution to which

they correspond. (Theorem 7) below shows that for a discrete memoryless channel with finite

input and output alphabets, the empirical statistics of each of the words of a good code can be

made to closely approximate the optimum input distribution even despite their being subjected

to truncation.
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Before proving Theorem 7, we need to give a definition.

We consider an information source {Xk, k ≥ 1}, where Xk are i.i.d. with distribution p(x).

Let |X | denote the cardinality of the set of values Xk may assume. Here we suppose |X | <∞

and p(x) > 0 for all x ∈ X .

Definition 7: The super-typical set T m,n
δ with respect to p(X) is the set of sequences xn1 =

(x1, x2, · · · , xn) ∈ X
n such that

∑

x∈X

|
1

r
N(x, xr1)− p(x)| ≤

δ

|X |

for all r (m ≤ r ≤ n), where N(x, xr1) is the number of occurrences of x in the sequence xr1,

and δ is an arbitrarily small positive real number. The members of T m,n
δ are called (δ,m, n)

super-typical sequences.

It’s clear that the super-typical set T m,n
δ is a subset of the strongly typical set T n

δ . But the

following lemma says that as m and n go to infinity, these two sets have no essential difference.

Lemma 5: For any ε > 0, δ > 0, there exists a positive integer M such that when n > m >

M , we have

P (Xn
1 ∈ T

m,n
δ ) > 1− ε.

Proof: We write

N(x,Xr
1) =

r∑

i=1

Bi(x),

where Bi(x) = 1{Xi=x}. Then Bi(x), i = 1, 2, · · · , r, are i.i.d. random variables with P{Bi(x) =

1} = p(x) and P{Bi(x) = 0} = 1− p(x). Note that

EBi(x) = (1− p(x)) · 0 + p(x) · 1 = p(x).

Let Ui(x) = Bi(x)− p(x). Clearly

EUi(x) = 0,

EU 2
i (x) = p(x)− p2(x),

and

EU 4
i (x) = p(x)− 4p2(x) + 6p3(x)− 3p4(x) ≤ 7.
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Let Sr(x) = U1(x) + · · ·+ Ur(x). Now

ES4r (x) = E[
r∑

i=1

Ui(x)]
4 = E[

∑

1≤i,j,k,l≤r

Ui(x)Uj(x)Uk(x)Ul(x)].

Terms in the sum of the form E[U 3
i (x)Uj(x)], E[U 2

i (x)Uj(x)Uk(x)] and E[Ui(x)Uj(x)Uk(x)Ul(x)]

are 0 (if i, j, k, l are distinct) since the expectation of the product is the product of the expecta-

tions, and in each case one of the terms has expectation 0. The only terms that do not vanish are

those of form EU 4
i (x) and E[U 2

i (x)U
2
j (x)]. There are r and 3r(r−1) of these terms, respectively.

The last observation implies

ES4r (x) = rEU 4
1 (x) + 3(r

2 − r)[EU 2
1 (x)]

2 ≤ 7r + 3r2 − 3r ≤ 7r2.

Chebyshev’s inequality gives us

P{|
1

r
N(x,Xr

1)− p(x)| >
δ

|X |2
} = P{|Sr(x)| >

rδ

|X |2
} ≤

ES4r (x)

(rδ)4
|X |8 ≤

7|X |8

r2δ4
.

Hence

P (Xn
1 6∈ T

m,n
δ ) ≤

n∑

r=m

P{
∑

x

|
1

r
N(x,Xr

1)− p(x)| >
δ

|X |
}

≤
n∑

r=m

∑

x

P{|
1

r
N(x,Xr

1)− p(x)| >
δ

|X |2
}

≤
n∑

r=m

∑

x

7|X |8

r2δ4

≤
7|X |9

δ4

∞∑

r=m

1

r2
.

Since
∞∑

r=1

1
r2
= π2

6
<∞, there exists a positive integer M , when m > M , we have 7|X|9

δ4

∞∑

r=m

1
r2
<

ε. Hence

P (Xn
1 ∈ T

m,n
δ ) = 1− P (Xn

1 ∈ T
m,n
δ ) > 1− ε.

when n > m > M . ¥

This lemma implies that no loss of generality results from restricting attention to the super-

typical set. It is obvious that the random coding argument based on strong typicality can be

translated to an argument based on super typicality without any change. So for any discrete

memoryless channel with finite input and output alphabets, there exists a good codebook, all the

codewords of which are super typical. This is summarized in Theorem 7.
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Theorem 7: Let Q(y|x) be any discrete memoryless channel with finite input and output

alphabets. For any input distribution p(x) that is consistent with Q(y|x), for any 0 < ε1, ε2, δ < 1,

there exists n0 such that for all n > m > n0, there exists a (n,M, ε1) code with average

probability of error less than ε1 and 1
n
logM > I(p,Q) − ε2. Furthermore, each of these M

codewords is(δ,m, n) super-typical with respect to p(x).

Proof: The proof is omitted since it is almost the same as the standard proof of direct coding

theorem for memoryless channel based on weak typicalicy or strong typicality; see [22]. The

only difference is that we require that the randomly generated codewords satisfy super typicality.

And Lemma 5 assures us that there is no essential difference between strong typicality and super

typicality when the alphabets are finite. ¥

We want to point out another difference between the multiplexing coding scheme for our

feedback channel and that for the channel model shown in Fig. 5. Zero filling is not a good

choice for our channel when Nj > N j , since this will make the statistics of the codeword

deviate from the corresponding input distribution and thus induce a big deviation at the output.

Instead, we will fill in the letters so as to ensure that the lengthened codewords still satisfy super

typicality and/or we will try to drive the channel into those states that still have unsent symbols.

IX. CONCLUSION

We derived a simple formula for the capacity of finite state Markov channels with feedback

when the channel transition probability satisfies certain conditions. Actually the same capacity

formula holds under much weaker conditions. It will be shown elsewhere that, based on the

classification of Markov decision processes [23], the capacity of Markov channels with feedback

can be studied in full generality.

Finally, we mention the relationship between the channel whose state process cannot be

affected by the input and the one whose state process can be affected. We assume in both

cases the realization of the state process is available both at transmitter and receiver. For the

channel whose state process cannot be affected by the input, the conventional multiplexing coding

scheme [20] [21] can be viewed as a greedy algorithm which tries to maximize the immediate

mutual information. For the channel whose state process can be affected by the input, this greedy

algorithm is not optimal since we not only want to maximize the immediate mutual information

but also want to visit the preferable states as often as possible. So the optimal coding scheme
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is a tradeoff between these two goals. From this perspective, it seems appropriate to call this

type of code an error correction and state control code in contrast with a conventional error

correction code. Since the optimal coding scheme needs to exploit the ergodicity of the state

process, however, it usually causes a long delay in decoding, especially when the state space

is big and/or the probability measures assigned to some states are close to zero. Therefore, in

some delay-limited applications, certain kinds of greedy schemes are more attractive. In this

sense a channel whose state process can be affected by the input is considerably more flexible

than one whose state process cannot be affected, since we can use “idle” periods to drive the

channel into preferable states and thereby increase the efficiency when we really need to use the

channel for information transmission. In a quite general manner of speaking, such a channel can

be “matched” to an information source in the spirit of [11]. Perhaps this is one of the reasons

why many real neural networks possess structure that subscribes to the channel models treated

in this paper.

APPENDIX

Lemma 6: For any Ny×Nx channel transition probability matrix Q, if rank(Q) = Nx, then

Q ∈ ΨNy×Nx
.

Proof: Let ~4p be an arbitrary Nx-dimensional vector with the constraint
Nx∑

i=1

~4p(i) = 0. Let

~4q = Q ~4p. We have

QT ~4q = QTQ ~4p.

If rank(Q) = Nx, then QTQ is invertible, whereupon it follows that

~4p = (QTQ)−1QT ~4q.

So
∣
∣
∣

∣
∣
∣ ~4p

∣
∣
∣

∣
∣
∣
2
≤
∣
∣
∣
∣(QTQ)−1QT

∣
∣
∣
∣
2

∣
∣
∣

∣
∣
∣ ~4q

∣
∣
∣

∣
∣
∣
2
,

which implies that

∂2H(Q~p)

∂( ~4p)2
≤

1

||(QTQ)−1QT ||22

∂2H(~q)

∂( ~4q)2
. (59)
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We have

∂2H(~q)

∂( ~4q)2
=

Ny−1∑

i=1

Ny−1∑

j=1

∂2H(~q)

∂~q(i)∂~q(j)
cosαi cosαj

= −

Ny−1∑

i=1

1

~q(i)
cos2 αi −

Ny−1∑

i=1

Ny−1∑

j=1

1

~q(Ny)
cosαi cosαj

= −

Ny−1∑

i=1

1

~q(i)
cos2 αi −

1

~q(Ny)

(
Ny−1∑

j=1

cosαj

)2

≤ −

Ny−1∑

i=1

1

~q(i)
cos2 αi

≤ −

Ny−1∑

i=1

cos2 αi = −1, (60)

where

cosαi =
~4q(i)

√
Ny−1∑

j=1

[ ~4q(j)]2

(i = 1, 2, · · · , Ny − 1).

Combining (59) and (60), we have

∂2H(Q~p)

∂( ~4p)2
≤ −

1

||(QTQ)−1QT ||22
. (61)

Since

I(~p,Q) = H(Q~p)−
Nx∑

i=1

~p(i)

Ny∑

j=1

Q(j, i) log
1

Q(j, i)
.

and
Nx∑

i=1

~p(i)
Ny∑

j=1

Q(j, i) log 1
Q(j,i)

is linear with respect to ~p, it follows that

∂2I(~p,Q)

∂( ~4p)2
=

∂2H(Q~p)

∂( ~4p)2
≤ −

1

||(QTQ)−1QT ||22
. (62)

Now let P̃ = P . It’s easy to verify the Condition (i) and (ii) in Definition 6 are trivially

satisfied. Furthermore, for any nonidentical ~p1, ~p2 ∈ P̃ and ~l with the direction from ~p1 to ~p2,

by (62), we have

∂I(~p2, Q)

∂~l
−
∂I(~p1, Q)

∂~l
=

∂2I

∂~l2
(~p1 + θ(~p2 − ~p1), Q)||~p1 − ~p2||2

≤ −
1

||(QTQ)−1QT ||22
||~p1 − ~p2||2,

where θ ∈ (0, 1). So Condition (iii) in Definition 6 is also satisfied. ¥

Now we begin to discuss the implications of three conditions in Definition 6, which immedi-

ately suggests a way to construct P̃ in the general case.
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Consider the following equivalence relation:

~p1 ∼ ~p2 if and only if ~p1 − ~p2 is in the null space of Q.

Let {Pα} be a partition of P generated by the above equivalence relation such that for any α,

~p1, ~p2 ∈ Pα if and only if ~p1 ∼ ~p2.

Condition (i) implies that P̃ ∩ Pα 6= ∅ for any α. Condition (iii) implies that for each α,

P̃ ∩Pα contains at most one element since if there exist two nonidentical ~p1, ~p2 ∈ P̃ ∩Pα, then

∂I(~p2, Q)

∂~l
−
∂I(~p1, Q)

∂~l
=

∂2I

∂~l2
(~p1 + θ(~p2 − ~p1))||~p1 − ~p2||2

=
∂2H

∂~l2
(Q(~p1 + θ(~p2 − ~p1)))||~p1 − ~p2||2

= 0,

where the last equality follows from the fact that ~l is in the null space of Q. Hence P̃ ∩ Pα

contains exactly one element.

Let ~h = [h1, · · · , hNx
]T with hi =

Ny∑

j=1

Q(j, i) log 1
Q(j,i)

(i = 1, 2, · · · , Nx). Condition (ii)

implies that

(P̃ ∩ Pα) ⊆ argmax
~p∈Pα

I(~p,Q)

= argmax
~p∈Pα

[H(Q~p)− ~hT~p]

= arg min
~p∈Pα

~hT~p

where the last equality is because H(Q~p) is a constant for ~p ∈ Pα.

Now we are ready to present the procedure of constructing P̃ .

1) Let Nx∧y = min(Nx, Ny). By singular value decomposition, there exist orthogonal matrices

U ∈ RNy×Ny and V ∈ RNx×Nx such that

Q = UΣV T ,

where

Σ = diag(σ1, · · · , σNx∧y
) ∈ RNy×Nx

with σ1 ≥ σ2 ≥ · · · ≥ σNx∧y
≥ 0.
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2) Let r = rank(Q). Then we have σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σNx∧y
. Let Σr =

diag(σ1, · · · , σr, 1, · · · , 1) ∈ R
Ny×Ny . Partition V as [ Vr

︸︷︷︸

r

Ṽr
︸︷︷︸

Nx−r

] and let V̂r = [ Vr
︸︷︷︸

r

0
︸︷︷︸

Ny−r

].

Then

~p = V̂rΣ
−1
r UT~q + Ṽr~k

∗, (63)

where ~k∗ = [k∗1, · · · , k
∗
Nx−r

]T is a solution to the following constrained optimization

problem:

argmin
~k

~hT Ṽr~k (64)

subject to (V̂rΣ−1r UT~q + Ṽr~k) ∈ P .

3)

P̃ , {V̂rΣ
−1
r UT~q + Ṽr~k

∗ : ~q ∈ QP},

where QP , {Q~p : ~p ∈ P}.

It is easy to check that the resulting P̃ satisfies Conditions (i) and (ii) in Definition 6 and we

have
∂I(~p2, Q)

∂~l
−
∂I(~p1, Q)

∂~l
< 0

for any nonidentical ~p1, ~p2 ∈ P̃ . We are unable to prove that [ ∂I(~p2,Q)
∂~l

− ∂I(~p1,Q)

∂~l
]/||~p2 − ~p1||2 is

uniformly bounded away from 0 as required in Definition 6. However we believe it is true under

fairly general conditions.

Now consider the following maximization problem:

max
~p∈P

{I(~p,Q) + ~c TQ~p }, (65)

where ~c is an arbitrary Ny×1 real vector. Suppose the maximum is attained inside Pα∗ for some

α∗. Let ~p ∗ be that unique element of P̃ ∩ Pα∗ . Now we have

max
~p∈P

{I(~p,Q) + ~c TQ~p } = max
~p∈Pα∗

{I(~p,Q) + ~c TQ~p }

= max
~p∈Pα∗

[H(Q~p)− ~hT~p+ ~c TQ~p]

(h)
= H(Q~p ∗) + ~c TQ~p ∗ − min

~p∈Pα∗

~hT~p

= H(Q~p ∗) + ~c TQ~p ∗ − ~hT~p ∗,
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where (h) follows from the fact that H(Q~p)+~c TQ~p is a constant for ~p ∈ Pα∗ . So the maximum

is attained inside P̃ . Furthermore, there exists a unique ~p ∗ ∈ P̃ that achieves this maximal value.

Since if there are nonidentical ~p ∗
1 , ~p

∗
2 ∈ P̃ such that

I(~p ∗
1 , Q) + ~c TQ~p ∗

1 = I(~p ∗
2 , Q) + ~c TQ~p ∗

2 = max
~p∈P

{I(~p,Q) + ~c TQ~p },

by taking derivative with direction ~l from ~p ∗
1 to ~p ∗

2 , we have

∂

∂~l
[I(~p ∗

1 , Q) + ~c TQ~p ∗
1 ] =

∂

∂~l
[I(~p ∗

2 , Q) + ~c TQ~p ∗
2 ] = 0,

i.e.,
∂I(~p ∗

2 , Q)

∂~l
−
∂I(~p ∗

1 , Q)

∂~l
= 0,

which is contradictory to Condition (iii) in Definition 6.
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