Tutorial 1
1 The Geometric Random Variable

Suppose that independent trials, each having probability p of being a success, are performed until a success
occurs. If we let X be the number of trials required until the first success, then X is said to be a geometric

random variable with parameter p. Its probability mass function is given by
pn)=P{X=n}=0—-p)" p, n=1,2---.

Note that
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Expectation of a Geometric Random Variable:
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where ¢ = 1 — p.

Intuitively, the expected number of independent trials we need to perform until we obtain our first success

equals the reciprocal of the probability that any one trial results in a success.

2 The Poisson Random Variable

A random variable X, taking on one of the values 0,1,2,---, is said to be a Poisson random variable with

parameter ), if for some A > 0,
)\i
p(i)=P{X =i} =e*Z, i=0,1,---.
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An important property of the Poisson random variable is that it may be used to approximate a binomial random

variable when the binomial parameter n is large and p is small. To see this, suppose that X is a binomial

random variable with parameters (1, p), and let A = np, i.e. p = 2. Then from the definition of the PMF of the

n

binomial random variable
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Now, for n large and p small
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Hence, for n large and p small

Expectation of a Poisson random variable:




The moment generating function of a Poisson distribution with parameter \.
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= exp{A(e’ — 1)}

Differentiating yield

¢'(t) = e’ exp{A(e’ — 1)},
#"(t) = (Ne!)? exp{A(e’ — 1)} + Ael exp{A(ef — 1)}
and so
E[X]=¢(0) = A,
E[X?] = ¢"(0) = A + ),
Var[X] = E[X?] — (E[X])? = \.

3 Exponential Random Variables
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Figure 1: An exponential random variable with parameter \ = 2

A continuous random variable whose probability density function is given, for some A > 0, by f(z) = Ae™?,

if x>0 and f(z) =0if £ < 0 is said to be an exponential random variable with parameter A. Note that the
cumulative distribution function F' is given by

F(G)ZP(X<a):/ A Mdr=1—e ¢>0.
0



Note that F(c0) = [;° Ae ™ dz = 1.

The moment generating function of a exponential distribution with parameter .
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Note by the preceding derivation that, for exponential distribution, ¢(t) is only defined for value of ¢ less than
A (otherwise ¢(t) = o0). Differentiating of ¢(t) yields
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The variance is thus given by

4 Properties of Covariance

For any random variables X, Y, Z and constant c,

Cov(X,X) = Var( )s

Cov(X,c) =

Cov(cX,Y) = cCov(Y X),
(

Cov(X,Y + Z) = Cov(X,Y) + Cov(X, Z).

Ll

5 Take-home Exercise

Suppose we have random variables X ~ Bern(1) and Y ~ Bern(1), while X are Y are independent. Let us
define a random variable Z as Z = X @Y. Show that X, Y and Z are pairwise independent.

Proof:

We will first show that X and Z are independent, and a similar conclusion is straightforward due to the

symmetry of this problem.



Note that
1 1
P(X:O):P(le):§, P(Y:O|Y:0):§

According to the definition of Z, the possible values of Z are 0 and 1. Since X and Y are independent, we

have
1
P(Z=0,X=0)=P(Y =0,X =0)= P(Y =0)P(X = 0) = _,
1
PZ=0,X=1)=PY=1,X=1)=PY=1)PX=1)= 7
P@:szm:PW:LX:m:pwznmxzm:i
1
P(Z=1,X=1)=P(Y =0.X =1)= P(Y =0)P(X = 1) = .
Thus, we have
1
Z=0=F PE=0X ==
1
P(Z=1) = PZ=1,X=2)=-.
Z=D=YPz=1X=n=,
So we have
1
P(Z=0,X=0)=P(Z=0)P(X =0) = 7
Pw:QX:D:P@:mHX:U:i
1
P(Z=1,X=0)=P(Z=1)P(X =0) = 1,
1
P(Z=1,X=1)=P(Z=1)P(X=1)=.
Therefore, we have shown that X and Y are independent. O
6 Exercises
1. Suppose that X1, -- , X, are i.i.d random variables with expected value ;1 and variance 0. Let us define the

sample mean as X = | X;/n. Show that

Proof:



Cov(X, X; — X) = Cov(X, X;) — Cov(X, X
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2. Suppose we know that the number of items produced in a factory during a week is a random variable with

mean 500.
(a) What is the probability that this week’s production will be at least 1000?

(b) If the variance of a week's production is known to equal 100, then what can be said about the probability that
this week’s production will between 400 and 600?

Solution:
Let X be the number of items that will be produced in a week.

(a) By Markov’s inequality,

P(X >1000) < —— = =_.
(b) By Chebyshev’s inequality,

P(lX —500] >100) < —5 = —.
( 2 )_1002 100



Hence,

1 99
P(lX — <1 >1 - — =
( 500] < 100) = 100 100
and so the probability that this week’s production will be between 400 and 600 is at least 0.99. O

Notes:

a. (Markov’s Inequality) If X is a random variable that takes only nonnegative values, then for any value a > 0,
P(X >a) < 22X

b. (Chebyshev’s Inequality) If X is a random variable with mean x and variance o2, then, for any value k& > 0,
P(X -yl > k) < .

3. Let X1, Xo, - -+, X10 be independent random variables, each being uniformly distributed over (0,1). Estimate
PO X > 7).

Solution:
Since E[X;] = 3, Var(X;) = 15, we have by the central limit theorem that
10 10
P(ZXi>7> :1—P<ZXZ-§7>
1 1
L _p P’ Xi—10(3) _ 7-5
VI0(&) /10 ()
~1—9(2.2)
=0.0139
Notes:
a. For a uniform random variable over (a, b), the mean is aTer, and its variance is %.
b. (Central Limit Theorem) Let X;, X5, --- be a sequence of ii.d. random variables, each with mean y and

variance o2. Then the distribution of 22tXet+Xu=np ton4q to the standard normal as n — co. That is

ovn
P <X1+X2Jg'\}gx’z_w < a) — ®(a) as n — oo.

4. The lifetime of a special type of battery is a random variable with mean 40 hours and standard deviation 20
hours. A battery is used until it fails, at which point it is replaced by a new one. Assuming a stockpile of 25 such
batteries, the lifetime of which are independent, approximate the probability that over 1100 hours of use can be

obtained.
Solution:

If we let X; denote the lifetime of the ith battery to be put in use, then we desire p = P(X1+- - -+ X25 > 1100),



which is approximated as follows:

p:P(X1+'--+X25>1100)
:1—P(X1++X25§1100)
X1+ -+ Xo5 — 25 x40 < 1100 — 40 x 25

=1-P

( 20/25 - 20/25 )
~1—-9(1)
~ 0.1587



