
Tutorial 1

1 The Geometric Random Variable

Suppose that independent trials, each having probability p of being a success, are performed until a success

occurs. If we let X be the number of trials required until the first success, then X is said to be a geometric

random variable with parameter p. Its probability mass function is given by

p(n) = P{X = n} = (1− p)n−1p, n = 1, 2, · · · .

Note that
∞∑
n=1

p(n) = p
∞∑
n=1

(1− p)n−1 = lim
n→∞

p
1− (1− p)n

1− (1− p)
= 1.

Expectation of a Geometric Random Variable:

E[X] =

∞∑
n=1

np(1− p)n−1

= p

∞∑
n=1

nqn−1

= p
∞∑
n=1

d

dq
(qn)

= p
d

dq

( ∞∑
n=1

qn

)

= p
d

dq

(
q

1− q

)
=

p

(1− q)2

=
1

p

where q = 1− p.

Intuitively, the expected number of independent trials we need to perform until we obtain our first success

equals the reciprocal of the probability that any one trial results in a success.

2 The Poisson Random Variable

A random variable X , taking on one of the values 0, 1, 2, · · · , is said to be a Poisson random variable with

parameter λ, if for some λ > 0,

p(i) = P{X = i} = e−λλ
i

i!
, i = 0, 1, · · · .

Note that
∞∑
i=0

p(i) = e−λ
∞∑
i=0

λi

i!
= e−λeλ = 1.
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due to that the Taylor expansion of ex at xo = 0 is ex =
∞∑
n=0

x
n! .

An important property of the Poisson random variable is that it may be used to approximate a binomial random

variable when the binomial parameter n is large and p is small. To see this, suppose that X is a binomial

random variable with parameters (n, p), and let λ = np, i.e. p = λ
n . Then from the definition of the PMF of the

binomial random variable

P{X = i} =
n!

(n− i)!i!
pi(1− p)n−i

=
n!

(n− i)!i!

(
λ

n

)i(
1− λ

n

)n−i

=
n(n− 1) · · · (n− i+ 1)

i!

λi

ni

(1− λ/n)n

(1− λ/n)i

=
n(n− 1) · · · (n− i+ 1)

ni

λi

i!

(1− λ/n)n

(1− λ/n)i

Now, for n large and p small

(1− λ

n
)n ≈ e−λ,

n(n− 1) · · · (n− i+ 1)

ni
≈ 1, (1− λ

n
)i ≈ 1.

Hence, for n large and p small

P{X = i} ≈ e−λλ
i

i!
.

Expectation of a Poisson random variable:

E[X] =

∞∑
i=0

ie−λλ
i

i!

=
∞∑
i=1

ie−λλ
i

i!

=
∞∑
i=1

e−λλi

(i− 1)!

= e−λλ

∞∑
i=1

λi−1

(i− 1)!

= e−λλ

∞∑
k=0

λk

k!

= e−λλeλ

= λ
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The moment generating function of a Poisson distribution with parameter λ.

ϕ(t) = E
[
etX
]

=

∞∑
n=0

etne−λλn

n!

= e−λ
∞∑
n=0

(etλ)n

n!

= e−λeλe
t

= exp{λ(et − 1)}

Differentiating yield

ϕ′(t) = λet exp{λ(et − 1)},

ϕ′′(t) = (λet)2 exp{λ(et − 1)}+ λet exp{λ(et − 1)}

and so

E[X] = ϕ′(0) = λ,

E[X2] = ϕ′′(0) = λ2 + λ,

Var[X] = E[X2]− (E[X])2 = λ.

3 Exponential Random Variables
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Figure 1: An exponential random variable with parameter λ = 2

A continuous random variable whose probability density function is given, for some λ > 0, by f(x) = λe−λx,

if x ≥ 0 and f(x) = 0 if x < 0 is said to be an exponential random variable with parameter λ. Note that the

cumulative distribution function F is given by

F (a) = P (X ≤ a) =

∫ a

0
λe−λxdx = 1− e−λa, a ≥ 0.
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Note that F (∞) =
∫∞
0 λe−λxdx = 1.

The moment generating function of a exponential distribution with parameter λ.

ϕ(t) = E[etX ]

=

∫ ∞

0
etxλe−λxdx

= λ

∫ ∞

0
e−(λ−t)xdx

=
λ

λ− t
t < λ.

Note by the preceding derivation that, for exponential distribution, ϕ(t) is only defined for value of t less than

λ (otherwise ϕ(t) = ∞). Differentiating of ϕ(t) yields

ϕ′(t) =
λ

(λ− t)2

ϕ′′(t) =
2λ

(λ− t)3

Hence

E[X] = ϕ′(0) =
1

λ
E[X2] = ϕ′′(0) =

2

λ2
.

The variance is thus given by

Var(X) = E[X2]− (E[X])2 =
1

λ2
.

4 Properties of Covariance

For any random variables X , Y , Z and constant c,

1. Cov(X,X) = Var(X),

2. Cov(X, c) = 0,

3. Cov(cX, Y ) = cCov(Y,X),

4. Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z).

5 Take-home Exercise

Suppose we have random variables X ∼ Bern(12) and Y ∼ Bern(12), while X are Y are independent. Let us

define a random variable Z as Z = X ⊕ Y . Show that X , Y and Z are pairwise independent.

Proof:

We will first show that X and Z are independent, and a similar conclusion is straightforward due to the

symmetry of this problem.
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Note that

P (X = 0) = P (X = 1) =
1

2
, P (Y = 0|Y = 0) =

1

2

According to the definition of Z , the possible values of Z are 0 and 1. Since X and Y are independent, we

have

P (Z = 0, X = 0) = P (Y = 0, X = 0) = P (Y = 0)P (X = 0) =
1

4
,

P (Z = 0, X = 1) = P (Y = 1, X = 1) = P (Y = 1)P (X = 1) =
1

4
,

P (Z = 1, X = 0) = P (Y = 1, X = 0) = P (Y = 1)P (X = 0) =
1

4
,

P (Z = 1, X = 1) = P (Y = 0, X = 1) = P (Y = 0)P (X = 1) =
1

4
.

Thus, we have

P (Z = 0) =
∑
x

P (Z = 0, X = x) =
1

2
,

P (Z = 1) =
∑
x

P (Z = 1, X = x) =
1

2
.

So we have

P (Z = 0, X = 0) = P (Z = 0)P (X = 0) =
1

4
,

P (Z = 0, X = 1) = P (Z = 0)P (X = 1) =
1

4
,

P (Z = 1, X = 0) = P (Z = 1)P (X = 0) =
1

4
,

P (Z = 1, X = 1) = P (Z = 1)P (X = 1) =
1

4
.

Therefore, we have shown that X and Y are independent. �

6 Exercises

1. Suppose that X1, · · · , Xn are i.i.d random variables with expected value µ and variance σ2. Let us define the

sample mean as X̄ =
∑n

i=1Xi/n. Show that

(a) E[X̄] = µ.

(b) Var(X̄) =
σ2

n
.

(c) Cov(X̄,Xi − X̄) = 0, i = 1, · · · , n.

Proof:
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(a)

E[X̄] = E

[
n∑

i=1

Xi

n

]
=

1

n

n∑
i=1

E [Xi] =
nµ

n
= µ

(b)

Var(X̄) = Var

(
n∑

i=1

Xi

n

)
=

(
1

n

)2

Var

(
n∑

i=1

Xi

)
=

(
1

n

)2 n∑
i=1

Var (Xi) =
nσ2

n2
=

σ2

n

(c)

Cov(X̄,Xi − X̄) = Cov(X̄,Xi)− Cov(X̄, X̄)

= Cov

Xi +
∑
j ̸=i

Xj

n
,Xi

−Var(X̄)

=
1

n
Cov

Xi +
∑
j ̸=i

Xj , Xi

− σ2

n

=
1

n
Cov (Xi, Xi) +

1

n
Cov

∑
j ̸=i

Xj , Xi

− σ2

n

=
1

n
Var(Xi) +

1

n

∑
j ̸=i

Cov (Xi, Xj)−
σ2

n

=
σ2

n
− 0− σ2

n

= 0

�

2. Suppose we know that the number of items produced in a factory during a week is a random variable with

mean 500.

(a) What is the probability that this week’s production will be at least 1000?

(b) If the variance of a week’s production is known to equal 100, then what can be said about the probability that

this week’s production will between 400 and 600?

Solution:

Let X be the number of items that will be produced in a week.

(a) By Markov’s inequality,

P (X ≥ 1000) ≤ E[X]

1000
=

500

1000
=

1

2
.

(b) By Chebyshev’s inequality,

P (|X − 500| ≥ 100) ≤ σ2

1002
=

1

100
.
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Hence,

P (|X − 500| ≤ 100) ≥ 1− 1

100
=

99

100

and so the probability that this week’s production will be between 400 and 600 is at least 0.99. �

Notes:

a. (Markov’s Inequality) If X is a random variable that takes only nonnegative values, then for any value a > 0,

P (X ≥ a) ≤ E[X]
a .

b. (Chebyshev’s Inequality) If X is a random variable with mean µ and variance σ2, then, for any value k > 0,

P (|X − µ| ≥ k) ≤ σ2

k2
.

3. Let X1, X2, · · · , X10 be independent random variables, each being uniformly distributed over (0, 1). Estimate

P (
∑10

1 Xi > 7).

Solution:

Since E[Xi] =
1
2 , Var(Xi) =

1
12 , we have by the central limit theorem that

P

(
10∑
1

Xi > 7

)
= 1− P

(
10∑
1

Xi ≤ 7

)

= 1− P

∑10
1 Xi − 10

(
1
2

)√
10
(

1
12

) ≤ 7− 5√
10
(

1
12

)


≈ 1− Φ(2.2)

= 0.0139

Notes:

a. For a uniform random variable over (a, b), the mean is a+b
2 , and its variance is (b−a)2

12 .

b. (Central Limit Theorem) Let X1, X2, · · · be a sequence of i.i.d. random variables, each with mean µ and

variance σ2. Then the distribution of X1+X2+···+Xn−nµ
σ
√
n

tends to the standard normal as n → ∞. That is

P
(
X1+X2+···+Xn−nµ

σ
√
n

≤ a
)
→ Φ(a) as n → ∞.

4. The lifetime of a special type of battery is a random variable with mean 40 hours and standard deviation 20

hours. A battery is used until it fails, at which point it is replaced by a new one. Assuming a stockpile of 25 such

batteries, the lifetime of which are independent, approximate the probability that over 1100 hours of use can be

obtained.

Solution:

If we let Xi denote the lifetime of the ith battery to be put in use, then we desire p = P (X1+· · ·+X25 > 1100),
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which is approximated as follows:

p = P (X1 + · · ·+X25 > 1100)

= 1− P (X1 + · · ·+X25 ≤ 1100)

= 1− P (
X1 + · · ·+X25 − 25× 40

20
√
25

≤ 1100− 40× 25

20
√
25

)

≈ 1− Φ(1)

≈ 0.1587

�
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