
Tutorial 2

1 Exercises

1. A fair coin is flipped until the first head occurs. Let X denote the number of flips required. Find the entropy

H(X) in bits. The following expressions may be useful.

∞∑
n=0

rn =
1

1− r
,

∞∑
n=0

nrn =
r

(1− r)2
for r < 1.

Solution: The number X of tosses til the first head has the geometric distribution with the parameter

p = 1/2, where P (X = n) = (1− p)n−1p, n ∈ {1, 2, · · · }. Hence the entropy of X is

H(X) =−
∞∑
n=1

(1− p)n−1p log((1− p)n−1p)

=−

[ ∞∑
n=1

(1− p)n−1p log p+
∞∑
n=1

(1− p)n−1p log(1− p)n−1
]

=−

[ ∞∑
m=0

(1− p)mp log p+
∞∑
m=0

m(1− p)mp log(1− p)

]

=
−p log 0

1− (1− p)
− p(1− p) log(1− p)

p2

=
−p log p− (1− p)log(1− p)

p

=
H(p)

p
bits.

If p = 1/2, then H(X) = 2 bits. �

2. Let X be a random variable taking on a finite number of values. What is the general inequality relationship

of H(X) and H(Y ) if

(a) Y = 2X ?

(b) Y = cosX?

Solution: Let y = g(x). Then

p(y) =
∑

x:y=g(x)

p(x).

Consider any set of x′s that map onto a single y. For this set

p(y) =
∑

x:y=g(x)

p(x) log p(x) ≤ p(y) =
∑

x:y=g(x)

p(x) log p(y) = p(y) log p(u),
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since log is a monotone increasing function and p(x) ≤
∑

x:y=g(x)

p(x) = p(y). Extending this argument

to the entire range of X and Y , we obtain

H(X) =−
∑
x

p(x) log p(x)

=−
∑
y

∑
x:y=g(x)

p(x) log p(x)

≥−
∑
y

p(y) log p(y)

=H(Y ),

with equality i� g is one-to-one with probability one.

(a) Y = 2X is one-to-one and hence the entropy doesn’t change, i.e., H(X) = H(Y ).

(b) Y = cosX is not necessarily one-to-one. Hence all that we can say is that H(X) ≥ H(Y ), with

equality if cosine is one-to-one on the range of X . �

3. Let X1 → X2 → · · · → Xn form a Markov chain in this order; i.e. let

p(x1, x2, · · · , xn) = p(x1)p(x2|x1) · · · p(xn|xn−1).

Reduce I(X1;X2, · · · , Xn) to its simplest form.

Solution: By the chain rule for mutual information,

I(X1;X2, · · · , Xn) = I(X1;X2) + I(X1;X3|X2) + · · ·+ I(X1;Xn|X2, · · · , Xn−1)

Note that the mutual information between two independent random variables is zero. By the Markov

property, the past and the future are conditionally independent given the present and hence all term

except the first are zero. Therefore,

I(X1;X2, · · · , Xn) = I(X1;X2)

�

4. Let X , Y and Z be joint random variables. Prove the following inequalities ad find conditions for equality.

(a) H(X,Y |Z) ≥ H(X|Z).

(b) I(X,Y ;Z) ≥ I(X;Z).

(c) H(X,Y, Z)−H(X,Y ) ≤ H(X,Z)−H(X).

(b) I(X;Z|Y ) ≥ I(Z;Y |X)− I(Z;Y ) + I(X;Z).

Solution:

(a) Using the chain rule for conditional entropy,

H(X,Y |Z) = H(X|Z) +H(Y |X,Z) ≥ H(X|Z)

with the equality i� H(Y |X,Z) = 0, that is when Y is a function of X and Z .
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(b) Using the chain rule of mutual information,

I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) ≥ I(X;Z),

with the equality i� I(Y ;Z|X) = 0, that is, when Y and Z are conditionally independent given X .

(c) Using first the chain rule for entropy and then the definition of conditional mutual information,

H(X,Y, Z)−H(X,Y ) =H(Z|X,Y )

=H(Z|X)− I(Y ;Z|X)

≤H(Z|X)

=H(X,Z)−H(X),

with the equality i� I(Y ;Z|X) = 0, that is, when Y and Z are conditionally independent given X .

(d) Using the chain rule of mutual information,

I(X;Z|Y ) + I(Z;Y ) = I(X,Y ;Z) = I(Z;Y |X) + I(X;Z),

and therefore

I(X;Z|Y ) = I(Z;Y |X) + I(X;Z)− I(Z;Y ).

We see that this inequality is actually an equality in all cases.

�

5. Let P (X = i) = pi, i = 1, 2, · · · ,m and let p1 ≥ p2 ≥ p3 ≥ · · · pm. The minimal probability of error

predictor of X is X̂ = 1, with resulting probability of error Pe = 1− p1. Maximize H(X) subject to the

constraint 1− p1 = Pe to find a bound on Pe in terms of H .

Solution: The minimal probability of error predictor when there is no information is X̂ = 1, the most

probable value. The probability of error in this case is Pe = 1 − p1. Hence if we fix Pe, we fix p1. We

maximize the entropy of X for a given Pe to obtain an upper bound on the entropy for a given Pe. The

entropy is as follows.

H(X) =−
m∑
i=1

pi log pi

=− p1 log p1 −
m∑
i=2

pi log pi

=− p1 log p1 −
m∑
i=2

Pe
pi
Pe

log
pi
Pe
Pe

=− p1 log p1 −
m∑
i=2

Pe
pi
Pe

log
pi
Pe
−

m∑
i=2

Pe
pi
Pe

logPe

=− p1 log p1 − Pe
m∑
i=2

pi
Pe

log
pi
Pe
−

m∑
i=2

pi logPe
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Since
∑m

i=2 pi = 1− p1 = Pe,
∑m

i=2
pi
Pe

= 1. And p2
Pe
, p3Pe , · · · ,

pm
Pe

is actually a distribution. Then we can

rewrite H(X) as

H(X) =− p1 log p1 − Pe logPe + PeH(
p2
Pe
,
p3
Pe
, · · · , pm

Pe
)

=H(Pe) + PeH(
p2
Pe
,
p3
Pe
, · · · , pm

Pe
)

≤ H(Pe) + Pe log(m− 1)

since the maximum of H( p2Pe ,
p3
Pe
, · · · , pmPe ) is attained by an uniform distribution. Hence any X that can

be predicted with a probability of error Pe must satisfy

H(X) ≤ H(Pe) + Pe log(m− 1)

This is the unconditional form of Fano’s inequality. We can weaken this inequality to obtain an explicit

lower bound for Pe,

Pe ≥
H(X)− 1

log(m− 1)
.

�

Note: Fano’s inequality: Suppose we wish to estimate a random variable X with a distribution p(x). We

observe a random variable Y which is related to X by the conditional distribution p(x|y). From Y , we

calculate a function g(Y ) = X̂ , which is an estimate of X . We wish to bound the probability that X̂ = X .

We observe that X − Y − X̂ forms a Markov chain. Define the probability of error Pe = P{X̂ 6= X}.
Then H(Pe)+Pe log(|X |−1) ≥ H(X|Y ). This inequality can be weaken to 1+Pe log |X | ≥ H(X|Y ).

6. How much information does the length of a sequence give about the content of a sequence? Suppose we

consider a Bernoulli (1/2) process {Xi}.

Stop the process when the first 1 appears. Let N designate this stopping time. Thus XN is an element

of the set of all finite length binary sequences {0, 1}∗ = {0, 1, 00, 01, 10, · · · }.

(a) Find I(N ;XN ).

(b) Find H(XN |N).

(c) Find H(XN ).

Let’s now consider a di�erent stopping time. For this part, again assume Xi ∼Bernoulli (1/2) but stop at

time N = 6, with probability 1/3 and stop at time N = 12 with probability 2/3. Let this stopping time

be independent of sequence X1X2 · · ·X12.

(d) Find I(N ;XN ).

(e) Find I(N ;XN ).

(f) Find I(N ;XN ).

Solution:
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(a)

I(N ;XN ) =H(N)−H(N |XN )

=H(N)− 0

Note that the entropy of a geometric random variable X with parameter p is H(X) = H(p)
p . Since

N is under a geometric distribution with parameter 1/2, we have

I(N ;XN ) = H(N) =
H(1/2)

1/2
= 2.

(b) Since given N we know that Xi = 0 for all i < N and XN = 1,

H(XN |N) = 0.

(c)

H(XN ) =I(XN ;N) +H(XN |N)

=I(XN ;N) + 0

=2

(d)

I(N ;XN ) =H(N)−H(N |XN )

=H(N)− 0

=HB(1/3)

=
1

3
log 3 +

2

3
log

3

2

=0.92

(e)

H(XN |N) =
1

3
H(X6|N = 6) +

2

3
H(X12|N = 12)

=
1

3
H(X6) +

2

3
H(X12)

=
1

3
6 +

2

3
12

=10.

(f)

H(XN ) =I(XN ;N) +H(XN |N)

=I(XN ;N) + 10

=HB(1/3) + 10

=0.92 + 10

=10.92

�
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2 The Properties of Typical Sequences

Definition 1 For X ∼ p(x) and ε ∈ (0, 1), define the typical set as

T (n)
ε (X) = {xn : |π(x|xn)− p(x)| ≤ εp(x)forallx ∈ X}.

Lemma 1 Typical Average Lemma: Let xn ∈ T (n)
ε . Then for any nonnegative function g(x) on X ,

(1− ε)E(g(x)) ≤ 1

n

n∑
i=1

g(xi) ≤ (1 + ε)E(g(x)).

Typical sequences satisfy the following properties:

(a) Let p(xn) =
∏n
i=1 pX(xi). Then for each xn ∈ T (n)

ε (X),

2−n(H(X)+δ(ε)) ≤ p(xn) ≤ 2−n(H(X)−δ(ε)),

where δ(ε) = εH(X).

(b) The cardinality of the typical set is upper bounded as∣∣∣T (n)
ε

∣∣∣ ≤ 2n(H(X)+δ(ε)).

(c) If X1, X2, · · · are i.i.d. with Xi ∼ pX(xi), then by the LLN,

lim
n→∞

P{Xn ∈ T (n)
ε } = 1.

(d) The cardinality of the typical set is lower bounded as∣∣∣T (n)
ε

∣∣∣ ≥ (1− ε)2n(H(X)−δ(ε))

for n su�ciently large.

Proof:

(a) Let’s define a nonnegative function g(x) as g(x) = − log p(x) due to p(x) ∈ [0, 1]. According to

typical average lemma, we have

(1− ε)E(− log p(x)) ≤ 1

n

n∑
i=1

− log p(xi) ≤ (1 + ε)E(− log p(x))

Note that E(− log p(x)) = −
∑

x∈X p(x) log p(x) = H(X), and
∑n

i=1 log p(xi) = log
∏n
i=1 p(xi) =

log p(xn) because p(xn) =
∏n
i=1 pX(xi). We have

(1− ε)H(X) ≤ − 1

n
log p(xn) ≤ (1 + ε)H(X)

−n(H(X) + εH(X)) ≤ log p(xn) ≤ −n(H(X)− εH(X))

2−n(H(X)+δ(ε)) ≤ p(xn) ≤ 2−n(H(X)−δ(ε))

where δ(ε) = εH(X).
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(b) Note that T (n)
ε ⊂ X n.

1 =
∑

xn∈Xn
p(xn)

≥
∑

xn∈T (n)
ε

p(xn)

≥
∑

xn∈T (n)
ε

2−n(H(X)+δ(ε))

=
∣∣∣T (n)
ε

∣∣∣ 2−n(H(X)+δ(ε))

Thus,
∣∣∣T (n)
ε

∣∣∣ ≤ 2n(H(X)+δ(ε)).

(c) According to the definition of typical set, to show that lim
n→∞

P{Xn ∈ T (n)
ε } = 1 is equivalent to

show that lim
n→∞

P {|π(x|xn)− p(x)| ≥ ε} = 0 for all x ∈ X .
For any x ∈ X , let us define Yi as Yi = Ix(Xi), where Ix is the indicator function of x. Then we

have

π(x|xn) = Y1 + Y2 + · · ·+ Yn
n

and

µY = E[Y ] = p(x)Ix(X = x) + (1− p(x))Ix(X 6= x) = p(x).

According to LLN,

lim
n→∞

P {|π(x|xn)− p(x)| ≥ ε} = lim
n→∞

P

{∣∣∣∣Y1 + Y2 + · · ·+ Yn
n

− µY
∣∣∣∣ ≥ ε} = 0

(d) According to property 3, there exists some ε > 0 such that P{Xn ∈ T (n)
ε } = 1 − ε when n is

su�ciently large. Note that for each xn ∈ T (n)
ε , p(xn) ≤ 2−n(H(X)−δ(ε)). We have

1− ε =P{Xn ∈ T (n)
ε }

=
∑

xn∈Xn
p(xn)

≤
∑

xn∈Xn
2−n(H(X)−δ(ε))

=
∣∣∣T (n)
ε

∣∣∣ 2−n(H(X)−δ(ε))

Thus,
∣∣∣T (n)
ε

∣∣∣ ≥ (1− ε)2n(H(X)−δ(ε)).
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