
Tutorial 4

1 Exercises on Di�erential Entropy

1. Evaluate the di�erential entropy h(X) = −
∫
f ln f for the following:

(a) The uniform distribution, f(x) = 1
b−a .

(b) The exponential density, f(x) = λe−λx, x ≥ 0.

(c) The Laplace density, f(x) = 1
2λe
−λ|x|.

(d) The sum of X1 and X2, where X1 and X2 are independent normal random variables with mean µi
and variance σ2i , i = 1, 2.

Solution:

(a) Uniform Distribution

h(f) = −
∫ b

a

1

b− a
ln

1

b− a
dx

= ln(b− a) nats

= log(b− a) bits

(b) Exponential distribution.

h(f) = −
∫ ∞
0

λe−λx lnλe−λxdx

= −
∫ ∞
0

λe−λx[lnλ− λxdx

= − lnλ+ 1 nats

= log
e

λ
bits

(c) Laplace density.

h(f) = −
∫ ∞
−∞

1

2
λe−λ|x| ln

1

2
λe−λ|x|dx

= −
∫ ∞
−∞

1

2
λe−λ|x|[ln

1

2
+ lnλ− λ|x|]dx

= − ln
1

2
− lnλ+ 1

= ln
2e

λ
nats

= log
2e

λ
bits

(d) The sum of two normal distributions.

The sum of two normal random variables is also normal, so applying the result derived the class for

the normal distribution, since X1 +X2 ∼ N (µ1 + µ2, σ
2
1 + σ22),

h(f) =
1

2
log 2πe(σ21 + σ22) bits.

Remark: If X ∼ N (µ, σ2), then h(X) = 1
2 log(2πeσ

2). �
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2. Consider X is a continuous random variable defined over interval [a, b].

(a) What is the maximum value of h(X)?

(b) What is the corresponding distribution of X?

Solution:

Let u(x) = 1
b−a be the uniform probability density function over [a, b], and and let p(x) be the probability

mass function for X. Then

D(p||u) =
∫ b

a
p(x) log

p(x)

u(x)
dx

=

∫ b

a
p(x) log p(x)dx−

∫ b

a
p(x) log u(x)dx

= −h(X)−
∫ b

a
p(x) log

1

b− a
dx

= log(b− a)− h(X)

Since D(p||u) ≥ 0,

h(X) ≤ log(b− a)

where the equality holds when p(x) is the uniform probability density function over [a, b]. �

3. Consider a additive channel whose input alphabet X = {0,±1,±2}, and whose output Y = X + Z ,

where Z is uniformly distributed over the interval [−1, 1]. Thus the input of the channel is a discrete

random variable, while the output is continuous. Calculate the capacity C = maxp(x) I(X;Y ) of the

channel.

Solution:

We can expand the mutual information

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(Z)

and h(Z) = log 2, since Z ∼ U(−1, 1).

The output Y is a sum of a discrete and a continuous random variable, and if the probability of X

are p−2, p−1, · · · , p2, then the output distribution of Y has a uniform distribution with weight p−2

2 for

−3 ≤ Y ≤ −1 when X = −2, uniform with weight p−1

2 for −2 ≤ Y ≤ 0 when X = −1, uniform with

weight p0
2 for −1 ≤ Y ≤ 1 when X = 0, uniform with weight p1

2 for 0 ≤ Y ≤ 2 when X = 1, and

uniform with weight p22 for 1 ≤ Y ≤ 3 when X = 2. Thus we have the density function of Y as follows

pY (y) =



p−2

2 y ∈ [−3,−2)
p−2+p−1

2 y ∈ [−2,−1)
p−1+p0

2 y ∈ [−1, 0)
p0+p1

2 y ∈ [0, 1)
p1+p2

2 y ∈ [1, 2)
p2
2 y ∈ [2, 3)
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Given that Y ranges from [−3, 3], the maximum entropy that it can have is an uniform over this range.

This can be achieved if the distribution of X is (1/3, 0, 1/3, 0, 1/3). Then h(Y ) = log 6 and the capacity

of this channel is C = log 6− log 2 = log 3 bits. �

4. Suppose that (X;Y ;Z) are jointly Gaussian and that X → Y → Z forms a Markov chain. Let X and Y

have correlation coe�cient ρxy and let Y and Z have correlation coe�cient ρyz . Find I(X;Z).

Solution:

Note that for a constant a, h(a+X) = h(X). Thus, without loss of generality, we assume that the means

of X , Y and Z are zero. Let

Λ =

(
σ2x σxσzρxz

σxσzρxz σ2z

)
be the covariance matrix of X and Z where ρxz is the correlation coe�cient between X and Z . Then

we have

I(X;Z) = h(X) + h(Z)− h(X,Z)

Since (X,Y, Z) are jointly Gaussian, X and Z are individually marginally Gaussian, and (X,Z) is jointly

Gaussian. Thus, we have

I(X;Z) = h(X) + h(Z)− h(X,Z)

=
1

2
log(2πeσ2x) +

1

2
log(2πeσ2z)−

1

2
log(2πe|Λ|)

= −1

2
log(1− ρ2xz)

Now,

ρxz =
E[XZ]

σxσz

=
E[E[XZ|Y ]]

σxσz

=
E[E[X|Y ]E[Z|Y ]]

σxσz

=
E[

σxρxy
σy

Y ]E[
σzρyz
σy

Y ]

σxσz

=
E[

σxσzρxyρyz
σ2
y

Y 2]

σxσz

=

σxσzρxyρyz
σ2
y

E[Y 2]

σxσz

=

σxσzρxyρyz
σ2
y

Var(Y )

σxσz

=ρxyρyz

We can conclude that

I(X;Y ) = −1

2
log(1− ρ2xyρ2yz)
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Remark: If (X,Y ) is jointly Gaussian, the conditional distribution of X given Y = y is as follows.

X|Y = y ∼ N
(
µx +

σx
σy
ρxy(y − µy), (1− ρ2xy)σ2x

)
�

2 Exercises on Gaussian Channel

1. Let Y1 and Y2 be conditionally independent and conditionally identically distributed given X .

(a) Show I(X;Y1, Y2) = 2I(X;Y1)− I(Y1;Y2).

(b) Conclude that the capacity of the channel X −→ (Y1, Y2) is less than twice the capacity of the

channel X −→ Y1.

Solution:

(a)

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X)

= H(Y1) +H(Y2)− I(Y1;Y2)− (H(Y1|X) +H(Y2|X,Y1))

= H(Y1) +H(Y2)− I(Y1;Y2)−H(Y1|X)−H(Y2|X)

= H(Y1)−H(Y1|X) +H(Y2)−H(Y2|X)− I(Y1;Y2)

= I(X;Y1) + I(X;Y2)− I(Y1;Y2)

= 2I(X;Y1)− I(Y1;Y2)

(b) The capacity of the single look channel X −→ Y1 is

C1 = max
p(x)

I(X;Y1)

The capacity of the channel X −→ (Y1, Y2) is

C2 =max
p(x)

I(X;Y1, Y2)

=max
p(x)

2I(X;Y1)− I(Y1;Y2)

≤max
p(x)

2I(X;Y1)

=2C1

Hence, the two independent looks cannot be more than twice as good as one look. �

2. Consider the ordinary Gaussian channel with two correlated looks at X , i.e., Y = (Y1, Y2), where

Y1 = X + Z1

Y2 = X + Z2
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with a power constraint P on X , and (Z1, Z2) ∼ N2(0,K), where

K =

[
N Nρ

Nρ N

]
.

Find the capacity C for

(a) ρ = 1

(b) ρ = 0

(c) ρ = −1

Solution:

It is clear that the input distribution that maximizes the capacity is X ∼ N (0, P ). Evaluating the mutual

information for the distribution,

C = max I(X;Y1, Y2)

= h(Y1, Y2)− h(Y1, Y2|X)

= h(Y1, Y2)− h(Z1, Z2|X)

= h(Y1, Y2)− h(Z1, Z2)

Now since

(Z1, Z2) ∼ N

(
0,

[
N Nρ

Nρ N

])
,

we have

h(Z1, Z2) =
1

2
log(2πe)2|K| = 1

2
log(2πe)2N2(1− ρ2).

Since Y1 = X + Z1 and Y2 = X + Z2, we have

(Y1, Y2) ∼ N

(
0,

[
P +N P +Nρ

P +Nρ P +N

])
,

and

h(Y1, Y2) =
1

2
log(2πe)2|K| = 1

2
log(2πe)2(N2(1− ρ2) + 2PN(1− ρ)).

Hence the capacity is

C = h(Y1, Y2)− h(Z1, Z2)

=
1

2
log

(
1 +

2P

N(1 + ρ)

)
.

(a) ρ = 1. In this case, C = 1
2 log(1 +

P
N ), which is the capacity of a single look channel. This is not

surprising, since in this case Y1 = Y2.

(b) ρ = 0. In this case,

C =
1

2
log

(
1 +

2P

N

)
,

which corresponds to using twice the power in a single look. The capacity is the same as the

capacity of the channel X −→ (Y1 + Y2).
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(c) ρ = 0. In this case, C = ∞, which is not surprising since if we add Y1 and Y2, we can recover X

exactly.

Remark: The capacity of the above channel in all cases is the same as the capacity f the channel

X −→ (Y1 + Y2). �

3. Output power constraint. Consider an additive white Gaussian noise channel with an expected output

power constraint P . Thus Y = X + Z , Z ∼ N (0, N), Z is independent of X , and E[Y 2] ≤ P . Find

the channel capacity.

Solution:

C = max
p(X):E[(X+Z)2]≤P

I(X;Y )

= max
p(X):E[(X+Z)2]≤P

h(Y )− h(Y |X)

= max
p(X):E[(X+Z)2]≤P

h(Y )− h(Z|X)

= max
p(X):E[(X+Z)2]≤P

h(Y )− h(Z)

Given a constraint on the output power of Y , the maximum di�erential entropy is achieved by a normal

distribution, and we can achieve this by have X ∼ N (0, P −N), and in this case,

C =
1

2
log 2πeP − 1

2
log 2πeN =

1

2
log

P

N
.

�

4. Fading Channel. Consider an additive fading channel

Y = XV + Z,

where Z is additive noise, V is a random variable representing fading, and Z and V are independent of

each other and of X . Argue that knowledge of the fading factor V improves capacity by showing

I(X;Y |V ) ≥ I(X;Y ).

Solution:

Expanding I(X;Y, V ) in two ways, we get

I(X;Y, V ) =I(X;V ) + I(X;Y |V )

=I(X;Y ) + I(X;V |Y )

i.e.

I(X;V ) + I(X;Y |V ) =I(X;Y ) + I(X;V |Y )

I(X;Y |V ) =I(X;Y ) + I(X;V |Y )

I(X;Y |V ) ≥I(X;Y )

�
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5. Consider the additive whiter Gaussian channel Yi = Xi + Zi where Zi ∼ N (0, N), and the input signal

has average power constraint P .

(a) Suppose we use all power at time 1, i.e. E[X2
1 ] = nP and E[X2

i ] = 0 for i = 2, 3, · · · , n. Find

max
p(xn)

I(Xn;Y n)

n

where the maximization is over all distributions p(xn) subject to the constraint E[X2
1 ] = nP and

E[X2
i ] = 0 for i = 2, 3, · · · , n.

(b) Find

max
E[ 1

n

∑n
i X

2
i ]≤P

I(Xn;Y n)

n

and compare to part (a).

Solution:

(a)

max
p(xn)

I(Xn;Y n)

n
=max
p(xn)

I(X1;Y1)

n

=
1
2 log

(
1 + nP

N

)
n

where the first equality comes from the constraint that all our power, nP , be used at time 1, and

the second equality comes from that fact that given Gaussian noise and a power constraint nP ,

I(X;Y ) ≤ 1
2 log(1 +

nP
N ).

(b)

max
p(xn)

I(Xn;Y n)

n
=max
p(xn)

nI(X;Y )

n

=max
p(xn)

I(X;Y )

=
1

2
log

(
1 +

P

N

)
where the first equality comes from the fact that the channel is memoryless. Notice that the quantity

in part (a) goes to 0 as n→∞ while the quantity in part (b) stays constant.

Remark: The impulse scheme is suboptimal. �
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