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Abstract: Consider a symmetric multivariate Gaussian source with ` components, which are
corrupted by independent and identically distributed Gaussian noises; these noisy components
are compressed at a certain rate, and the compressed version is leveraged to reconstruct the source
subject to a mean squared error distortion constraint. The rate-distortion analysis is performed for
two scenarios: centralized encoding (where the noisy source components are jointly compressed) and
distributed encoding (where the noisy source components are separately compressed). It is shown,
among other things, that the gap between the rate-distortion functions associated with these two
scenarios admits a simple characterization in the large ` limit.

Keywords: CEO problem; mean squared error; multiterminal source coding; rate-distortion; remote
source coding

1. Introduction

Many applications involve collection and transmission of potentially noise-corrupted data. It is
often necessary to compress the collected data to reduce the transmission cost. The remote source
coding problem aims to characterize the optimal scheme for such compression and the relevant
information-theoretic limit. In this work we study a quadratic Gaussian version of the remote source
coding problem, where compression is performed on the noise-corrupted components of a symmetric
multivariate Gaussian source. A prescribed mean squared error distortion constraint is imposed on
the reconstruction of the noise-free source components; moreover, it is assumed that the noises across
different source components are independent and obey the same Gaussian distribution. Two scenarios
are considered: centralized encoding (see Figure 1) and distributed encoding (see Figure 2). It is worth
noting that the distributed encoding scenario is closely related to the CEO problem, which has been
studied extensively [1–18].

The present paper is primarily devoted to the comparison of the rate-distortion functions
associated with the aforementioned two scenarios. We are particularly interested in understanding
how the rate penalty for distributed encoding (relative to centralized encoding) depends on the target
distortion as well as the parameters of source and noise models. Although the information-theoretic
results needed for this comparison are available in the literature or can be derived in a relatively
straightforward manner, the relevant expressions are too unwieldy to analyze. For this reason, we
focus on the asymptotic regime where the number of source components, denoted by `, is sufficiently
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large. Indeed, it will be seen that the gap between the two rate-distortion functions admits a simple
characterization in the large ` limit, yielding useful insights into the fundamental difference between
centralized encoding and distributed coding, which are hard to obtain otherwise.

The rest of this paper is organized as follows. We state the problem definitions and the main
results in Section 2. The proofs are provided in Section 3. We conclude the paper in Section 4.

Figure 1. Symmetric remote Gaussian source coding with centralized encoding.

Figure 2. Symmetric remote Gaussian source coding with distributed encoding.

Notation: The expectation operator and the transpose operator are denoted by E[·] and (·)T ,
respectively. An `-dimensional all-one row vector is written as 1`. We use Wn as an abbreviation of
(W(1), · · · , W(n)). The cardinality of a set C is denoted by |C|. We write g(`) = O( f (`)) if the absolute
value of g(`)

f (`) is bounded for all sufficiently large `. Throughout this paper, the base of the logarithm

function is e, and log+ x , max{log x, 0}.
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2. Problem Definitions and Main Results

Let S , (S1, · · · , S`)
T be the sum of two mutually independent `-dimensional (` ≥ 2) zero-mean

Gaussian random vectors, source X , (X1, · · · , X`)
T and noise Z , (Z1, · · · , Z`)

T , with

E[XiXj] =

{
γX , i = j,
ρXγX , i 6= j,

E[ZiZj] =

{
γZ, i = j,
0, i 6= j,

where γX > 0, ρX ∈ [ 1
`−1 , 1], and γZ ≥ 0. Moreover, let {(X(t), Z(t), S(t))}∞

t=1 be i.i.d. copies of
(X, Z, S).

Definition 1 (Centralized encoding). A rate-distortion pair (r, d) is said to be achievable with centralized
encoding if, for any ε > 0, there exists an encoding function φ(n) : R`×n → C(n) such that

1
n

log |C(n)| ≤ r + ε,

1
`n

`

∑
i=1

n

∑
t=1

E[(Xi(t)− X̂i(t))2] ≤ d + ε,

where X̂i(t) , E[Xi(t)|(φ(n)(Sn))]. For a given d, we denote by r(d) the minimum r such that (r, d) is
achievable with centralized encoding.

Definition 2 (Distributed encoding). A rate-distortion pair (r, d) is said to be achievable with distributed
encoding if, for any ε > 0, there exist encoding functions φ

(n)
i : Rn → C(n)i , i = 1, · · · , `, such that

1
n

`

∑
i=1

log |C(n)i | ≤ r + ε,

1
`n

`

∑
i=1

n

∑
t=1

E[(Xi(t)− X̂i(t))2] ≤ d + ε,

where X̂i(t) , E[Xi(t)|(φ
(n)
1 (Sn

1 ), · · · , φ
(n)
` (Sn

` ))]. For a given d, we denote by r(d) the minimum r such that
(r, d) is achievable with distributed encoding.

We will refer to r(d) as the rate-distortion function of symmetric remote Gaussian source coding
with centralized encoding, and r(d) as the rate-distortion function of symmetric remote Gaussian
source coding with distributed encoding. It is clear that r(d) ≤ r(d) for any d since distributed
encoding can be simulated by centralized encoding. Moreover, it is easy to show that r(d) = r(d) = 0
for d ≥ γX (since the distortion constraint is trivially satisfied with the reconstruction set to be zero)
and r(d) = r(d) = ∞ for d ≤ dmin (since dmin is the minimum achievable distortion when {S(t)}∞

t=1 is
directly available at the decoder), where (see Section 3.1 for a detailed derivation)

dmin ,
1
`
E[(X−E[X|S])T(X−E[X|S])] =


(`−1)γXγZ

`γX+(`−1)γZ
, ρX = − 1

`−1 ,
(`ρXγX+λX)γZ

`(`ρXγX+λX+γZ)
+ (`−1)λXγZ

`(λX+γZ)
, ρX ∈ (− 1

`−1 , 1),
γXγZ

`γX+γZ
, ρX = 1,

with λX , (1− ρX)γX . Henceforth we shall focus on the case d ∈ (dmin, γX).



Entropy 2019, 21, 213 4 of 14

Lemma 1. For d ∈ (dmin, γX),

r(d) =


`−1

2 log `(`−1)γ2
X

(`γX+(`−1)γZ)((`−1)d−γX)
, ρX = − 1

`−1 ,
1
2 log+ (`ρXγX+λX)

2

(`ρXγX+λX+γZ)ξ
+ `−1

2 log+ λ2
X

(λX+γZ)ξ
, ρX ∈ (− 1

`−1 , 1),
1
2 log `γ2

X
(`γX+γZ)d−γXγZ

, ρX = 1,

where

ξ ,


d− dmin, d ≤ min{ (`ρXγX+λX)

2

`ρXγX+λX+γZ
, λ2

X
λX+γZ

}+ dmin,
`(d−dmin)

`−1 − (`ρXγX+λX)
2

(`−1)(`ρXγX+λX+γZ)
, d > (`ρXγX+λX)

2

`ρXγX+λX+γZ
+ dmin,

`(d− dmin)−
(`−1)λ2

X
λX+γZ

, d >
λ2

X
λX+γZ

+ dmin.

Proof. See Section 3.1.

The following result can be deduced from ([19] Theorem 1) (see also [11,15]).

Lemma 2. For d ∈ (dmin, γX),

r(d) =
1
2

log
`ρXγX + λX + γZ + λQ

λQ
+

`− 1
2

log
λX + γZ + λQ

λQ
,

where

λQ ,
−b +

√
b2 − 4ac

2a

with

a , `(γX − d),

b , (`ρXγX + λX)(λX + 2γZ) + (`− 1)λX(`ρXγX + λX + 2γZ)− `(`ρXγX + 2λX + 2γZ)d,

c , `(`ρXγX + λX + γZ)(λX + γZ)(dmin − d).

The expressions of r(d) and r(d) as shown in Lemmas 1 and 2 are quite complicated, rendering
it difficult to make analytical comparisons. Fortunately, they become significantly simplified in the
asymptotic regime where ` → ∞ (with d fixed). To perform this asymptotic analysis, it is necessary
to restrict attention to the case ρX ∈ [0, 1]; moreover, without loss of generality, we assume d ∈
(d(∞)

min, γX), where

d(∞)
min , lim

`→∞
dmin =

{
λXγZ

λX+γZ
, ρX ∈ [0, 1),

0, ρX = 1.

Theorem 1 (Centralized encoding).

1. ρX = 0: For d ∈ (d(∞)
min, γX),

r(d) =
`

2
log

γ2
X

(γX + γZ)d− γXγZ
.
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2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min, γX),

r(d) =


`
2 log λ2

X
(λX+γZ)d−λXγZ

+ 1
2 log `+ α + O( 1

` ), d < λX ,
1
2 log `+ 1

2 log ρXγX(λX+γZ)

λ2
X

+
γ2

Z
2λ2

X
+ O( 1

` ), d = λX ,
1
2 log ρXγX

d−λX
+ O( 1

` ), d > λX ,

where

α ,
1
2

log
ρXγX(λX + γZ)

λ2
X

+
γ2

Z
2((λX + γZ)d− λXγZ)

.

Proof. See Section 3.2.

Theorem 2 (Distributed encoding).

1. ρX = 0: For d ∈ (d(∞)
min, γX),

r(d) =
`

2
log

γ2
X

(γX + γZ)d− γXγZ
.

2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min, γX),

r(d) =


`
2 log λ2

X
(λX+γZ)d−λXγZ

+ 1
2 log `+ α + O( 1

` ), d < λX ,
(λX+γZ)

√
`

2λX
+ 1

4 log `+ 1
2 log ρX

1−ρX
− (λX+γZ)(λX−ρXγZ)

4ρXλ2
X

+ O( 1√
`
), d = λX ,

1
2 log ρXγX

d−λX
+ (λX+γZ)(γX−d)

2ρXγX(d−λX)
+ O( 1

` ), d > λX ,

where

α ,
1
2

log
ρXγX(λX − d)

λ2
X

+
(λX + γZ)d2

2(λX − d)((λX + γZ)d− λXγZ)
.

Proof. See Section 3.3.

Remark 1. One can readily recover ([20] Theorem 3) for the case m = 1 (see [20] for the definition of parameter
m) and Oohama’s celebrated result for the quadratic Gaussian CEO problem ([3] Corollary 1) by setting γZ = 0
and ρX = 1, respectively, in Theorem 2.

The following result is a simple corollary of Theorems 1 and 2.

Corollary 1 (Asymptotic gap).

1. ρX = 0: For d ∈ (d(∞)
min, γX),

r(d)− r(d) = 0.

2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min, γX),

lim
`→∞

r(d)− r(d) = ψ(d) ,


1
2 log λX−d

λX+γZ
+ γZ+d

2(λX−d) , d < λX ,

∞, d = λX ,
(λX+γZ)(γX−d)

2ρXγX(d−λX)
, d > λX .
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Remark 2. When ρX = 0, we have ψ(d) = γZ(γX−d)
2γXd , which is a monotonically decreasing function over

(0, γX), converging to ∞ (here we assume γZ > 0) and 0 as d→ 0 and γX , respectively. When ρX ∈ (0, 1), it is
clear that the function ψ(d) is monotonically decreasing over (λX , γX), converging to ∞ and 0 as d→ λX and
γX , respectively; moreover, since ψ′(d) = γZ+d

2(λX−d)2 > 0 for d ∈ (d(∞)
min, λX), the function ψ(d) is monotonically

increasing over (d(∞)
min, λX), converging to τ(γZ) ,

1
2 log λ2

X
(λX+γZ)2 +

2λXγZ+γ2
Z

2λ2
X

and ∞ as d→ d(∞)
min and λX ,

respectively. Note that τ′(γZ) =
2λXγZ+γ2

Z
λ2

X(λX+γZ)
≥ 0 for γZ ∈ [0, ∞); therefore, the minimum value of τ(γZ) over

[0, ∞) is 0, which is attained at γZ = 0. See Figures 3 and 4 for some graphical illustrations of ψ(d).
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Figure 3. Illustration of ψ(d) with γX = 1 and γZ = 0.1 for different ρX .
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Figure 4. Illustration of ψ(d) with γX = 1 and ρX = 0.5 for different γZ.
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3. Proofs

3.1. Proof of Lemma 1

It is known [21] that r(d) is given by the solution to the following optimization problem:

(P1) min
pX̂|S

I(S; X̂)

subject to E[(X− X̂)T(X− X̂)] ≤ `d,

X ↔ S↔ X̂ form a Markov chain.

Let X̃ , ΘX, Z̃ , ΘZ, and S̃ , ΘS, where Θ is an arbitrary (real) unitary matrix with the first
row being 1√

`
1`. Since unitary transformations are invertible and preserve the Euclidean norm, we can

write (P1) equivalently as

(P2) min
pX̂|S̃

I(S̃; X̂)

subject to E[(X̃− X̂)T(X̃− X̂)] ≤ `d,

X̃ ↔ S̃↔ X̂ form a Markov chain.

For the same reason, we have

`dmin = E[(X̃−E[X̃|S̃])T(X̃−E[X̃|S̃])]. (1)

Denote the i-th components of X̃, Z̃, and S̃ by X̃i, Z̃i, and S̃i, respectively, i = 1, · · · , `. Clearly,
S̃i = X̃i + Z̃i, i = 1, · · · , `. Moreover, it can be verified that X̃1, · · · , X̃`, Z̃1, · · · , Z̃` are independent
zero-mean Gaussian random variables with

E[(X̃1)
2] = `ρXγX + λX , (2)

E[(X̃i)
2] = λX , i = 2, · · · , `, (3)

E[(Z̃1)
2] = γZ, i = 1, · · · , `.

Now denote the i-th component of Ŝ , E[X̃|S̃] by Ŝi, i = 1, · · · , `. We have

Ŝi = E[X̃i|S̃i], i = 1, · · · , `,

and

E[(Ŝ1)
2] =

{
0, ρX = − 1

`−1 ,
(`ρXγX+λX)

2

`ρXγX+λX+γZ
, ρX ∈ (− 1

`−1 , 1],
(4)

E[(Ŝi)
2] =

{
λ2

X
λX+γZ

, ρ ∈ [− 1
`−1 , 1),

0, ρX = 1,
i = 2, · · · , `. (5)

Note that

E[(X̃− Ŝ)T(X̃− Ŝ)] =
`

∑
i=1

E[(X̃i)
2]−

`

∑
i=1

E[(Ŝi)
2],
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which, together with (1)–(5), proves

dmin =
1
`
E[(X̃− Ŝ)T(X̃− Ŝ)] =


(`−1)γXγZ

`γX+(`−1)γZ
, ρX = − 1

`−1 ,
(`ρXγX+λX)γZ

`(`ρXγX+λX+γZ)
+ (`−1)λXγZ

`(λX+γZ)
, ρX ∈ (− 1

`−1 , 1),
γXγZ

`γX+γZ
, ρX = 1.

Clearly, Ŝ is determined by S̃; moreover, for any `-dimensional random vector X̂ jointly distributed
with (X̃, S̃) such that X̃ ↔ S̃↔ X̂ form a Markov chain, we have

E[(X̃− X̂)T(X̃− X̂)] = E[(Ŝ− X̂)T(Ŝ− X̂)2] +E[(X̃− Ŝ)T(X̃− Ŝ)2]

= E[(Ŝ− X̂)T(Ŝ− X̂)2] + `dmin.

Therefore, (P2) is equivalent to

(P3) min
pX̂|Ŝ

I(Ŝ; X̂)

subject to E[(Ŝ− X̂)T(Ŝ− X̂)] ≤ `(d− dmin).

One can readily complete the proof of Lemma 1 by recognizing that the solution to (P3) is given
by the well-known reverse water-filling formula ([22] Theorem 13.3.3).

3.2. Proof of Theorem 1

Setting ρX = 0 in Lemma 1 gives

r(d) =
`

2
log

γ2
X

(γX + γZ)d− γXγZ

for d ∈ ( γXγZ
γX+γZ

, γX). Setting ρX = 1 in Lemma 1 gives

r(d) =
1
2

log
`2γ2

X
`(`γX + γZ)d− γXγZ

for d ∈ ( γXγZ
`γX+γZ

, γX); moreover, we have

1
2

log
`2γ2

X
`(`γX + γZ)d− γXγZ

=
1
2

log
γX
d

+ O(
1
`
),

and γXγZ
`γX+γZ

→ 0 as `→ ∞.
It remains to treat the case ρX ∈ (0, 1). In this case, it can be deduced from Lemma 1 that

r(d) =


1
2 log (`ρXγX+λX)

2(λX+γZ)

λ2
X(`ρXγX+λX+γZ)

+ `
2 log λ2

X
(λX+γZ)(d−dmin)

, d ∈ (dmin, λ2
X

λX+γZ
+ dmin],

1
2 log (`ρXγX+λX)

2(λX+γZ)

(`ρXγX+λX+γZ)(`(λX+γZ)(d−dmin)−(`−1)λ2
X)

, d ∈ (
λ2

X
λX+γZ

+ dmin, γX),

and we have

dmin =
(`ρXγX + λX)γZ

`(`ρXγX + λX + γZ)
+

(`− 1)λXγZ
`(λX + γZ)

=
λXγZ

λX + γZ
+

ρXγXγ2
Z

(`ρXγX + λX + γZ)(λX + γZ)
(6)

=
λXγZ

λX + γZ
+

γ2
Z

(λX + γZ)`
+ O(

1
`2 ). (7)
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Consider the following two subcases separately.

• d ∈ ( λXγZ
λX+γZ

, λX ]

It can be seen from (6) that dmin is a monotonically decreasing function of ` and converges to
λXγZ

λX+γZ
as `→ ∞. Therefore, we have d ∈ (dmin, λ2

X
λX+γZ

+ dmin] and consequently

r(d) =
1
2

log
(`ρXγX + λX)

2(λX + γZ)

λ2
X(`ρXγX + λX + γZ)

+
`

2
log

λ2
X

(λX + γZ)(d− dmin)
, (8)

when ` is sufficiently large. Note that

1
2

log
(`ρXγX + λX)

2

`ρXγX + λX + γZ
=

1
2

log `+
1
2

log(ρXγX) + O(
1
`
) (9)

and

1
2

log(d− dmin) =
1
2

log

(
d− λXγZ

λX + γZ
−

γ2
Z

(λX + γZ)`
−O(

1
`2 )

)
(10)

=
1
2

log
(λX + γZ)d− λXγZ

λX + γZ
−

γ2
Z

2((λX + γZ)d− λXγZ)`
+ O(

1
`2 ), (11)

where (10) is due to (7). Substituting (9) and (11) into (8) gives

r(d) =
`

2
log

λ2
X

(λX + γZ)d− λXγZ
+

1
2

log `+
1
2

log
ρXγX(λX + γZ)

λ2
X

+
γ2

Z
2((λX + γZ)d− λXγZ)

+ O(
1
`
).

In particular, we have

r(λX) =
1
2

log `+
1
2

log
ρXγX(λX + γZ)

λ2
X

+
γ2

Z
2λ2

X
+ O(

1
`
).

• d ∈ (λX , γX)

Since dmin converges to λXγZ
λX+γZ

as `→ ∞, it follows that d ∈ (
λ2

X
λX+γZ

+ dmin, γX) and consequently

r(d) =
1
2

log
(`ρXγX + λX)

2(λX + γZ)

(`ρXγX + λX + γZ)(`(λX + γZ)(d− dmin)− (`− 1)λ2
X)

(12)

when ` is sufficiently large. One can readily verify that

1
2

log
(`ρXγX + λX)

2

(`ρXγX + λX + γZ)(`(λX + γZ)(d− dmin)− (`− 1)λ2
X)

=
1
2

log
ρXγX

(λX + γZ)(d− λX)
+ O(

1
`
). (13)

Substituting (13) into (12) gives

r(d) =
1
2

log
ρXγX

d− λX
+ O(

1
`
).
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This completes the proof of Theorem 1.

3.3. Proof of Theorem 2

One can readily prove part one of Theorem 2 by setting ρX = 0 in Lemma 2. So only part two of
Theorem 2 remains to be proved. Note that

b = g1`
2 + g2`,

c = h1`
2 + h2`,

where

g1 , ρXγX(λX − d),

g2 , λ2
X + 2γXγZ − 2(λX + γZ)d,

h1 , ρXγX(λX + γZ)(d
(∞)
min − d),

h2 , ρXγXγ2
Z + λXγZ(λX + γZ)− (λX + γZ)

2d.

We shall consider the following three cases separately.

• d < λX

In this case g1 > 0 and consequently

λQ =
−b + b

√
1− 4ac

b2

2a
(14)

when ` is sufficiently large. Note that√
1− 4ac

b2 = 1− 2ac
b2 −

2a2c2

b4 + O(
1
`3 ). (15)

Substituting (15) into (14) gives

λQ = − c
b
− ac2

b3 + O(
1
`2 ). (16)

It is easy to show that

− c
b
= − h1

g1
− g1h2 − g2h1

g2
1`

+ O(
1
`2 ), (17)

− ac2

b3 = −
(γX − d)h2

1
g3

1`
+ O(

1
`2 ). (18)

Combining (16), (17) and (18) yields

λQ = η1 +
η2

`
+ O(

1
`2 ),
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where

η1 , − h1

g1
,

η2 , −
g2

1h2 − g1g2h1 + (γX − d)h2
1

g3
1

.

Moreover, it can be verified via algebraic manipulations that

η1 =
(λX + γZ)d− λXγZ

λX − d
,

η2 = −
λ2

Xd2

(λX − d)3 .

Now we write r(d) equivalently as

r(d) =
1
2

log
`ρXγX + λX + γZ + λQ

λX + γZ + λQ
+

`

2
log

λX + γZ + λQ

λQ
. (19)

Note that

1
2

log
`ρXγX + λX + γZ + λQ

λX + γZ + λQ
=

1
2

log `+
1
2

log
ρXγX

λX + γZ + η1
+ O(

1
`
)

=
1
2

log `+
1
2

log
ρXγX(λX − d)

λ2
X

+ O(
1
`
) (20)

and

1
2

log
λX + γZ + λQ

λQ

=
1
2

log
λX + γZ + η1

η1
− (λX + γZ)η2

2(λX + γZ + η1)η1`
+ O(

1
`2 )

=
1
2

log
λ2

X
(λX + γZ)d− λXγZ

+
(λX + γZ)d2

2(λX − d)((λX + γX)d− λXγZ)`
+ O(

1
`2 ). (21)

Substituting (20) and (21) into (19) gives

r(d) =
`

2
log

λ2
X

(λX + γZ)d− λXγZ
+

1
2

log `+
1
2

log
ρXγX(λX − d)

λ2
X

+
(λX + γZ)d2

2(λX − d)((λX + γX)d− λXγZ)
+ O(

1
`
).

• d = λX

In this case g1 = 0 and consequently

λQ =
−g2 +

√
g2

2 − 4(γX − λX)(h1`+ h2)

2(γX − λX)
. (22)



Entropy 2019, 21, 213 12 of 14

Note that √
g2

2 − 4(γX − λX)(h1`+ h2) =
√
−4(γX − λX)h1`+ O(

1√
`
). (23)

Substituting (23) into (22) gives

λQ = µ1
√
`+ µ2 + O(

1√
`
),

where

µ1 ,

√
− h1

γX − λX
,

µ2 , − g2

2(γX − λX)
.

Moreover, it can be verified via algebraic manipulations that

µ1 = λX ,

µ2 =
(1− ρX)

2γX − 2ρXγZ
2ρX

.

Now we proceed to derive an asymptotic expression of r(d). Note that

1
2

log
`ρXγX + λX + γZ + λQ

λX + γZ + λQ
=

1
4

log `+
1
2

log
ρXγX

µ1
+ O(

1√
`
)

=
1
4

log `+
1
2

log
ρX

1− ρX
+ O(

1√
`
) (24)

and

1
2

log
λX + γZ + λQ

λQ
=

λX + γZ
2λQ

− (λX + γZ)
2

4λ2
Q

+ O(
1

`
3
2
)

=
λX + γZ

2µ1
√
`
− (λX + γZ)(λX + γZ + 2µ2)

4µ2
1`

+ O(
1

`
3
2
)

=
λX + γZ

2λX
√
`
− (λX + γZ)(λX − ρXγZ)

4ρXλ2
X`

+ O(
1

`
3
2
). (25)

Substituting (24) and (25) into (19) gives

r(λX) =
(λX + γZ)

√
`

2λX
+

1
4

log `+
1
2

log
ρX

1− ρX
− (λX + γZ)(λX − ρXγZ)

4ρXλ2
X

+ O(
1√
`
).

• d > λX

In this case g1 < 0 and consequently

λQ =
−b− b

√
1− 4ac

b2

2a
(26)
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when ` is sufficiently large. Note that√
1− 4ac

b2 = 1 + O(
1
`
). (27)

Substituting (27) into (26) gives

λQ = − b
a
+ O(1). (28)

It is easy to show that

− b
a
=

ρXγX(d− λX)`

γX − d
+ O(1). (29)

Combining (28) and (29) yields

λQ =
ρXγX(d− λX)`

γX − d
+ O(1).

Now we proceed to derive an asymptotic expression of r(d). Note that

1
2

log
`ρXγX + λX + γZ + λQ

λX + γZ + λQ
=

1
2

log
ρXγX

d− λX
+ O(

1
`
) (30)

and

1
2

log
λX + γZ + λQ

λQ
=

λX + γZ
2λQ

+ O(
1
`2 )

=
(λX + γZ)(γX − d)

2ρXγX(d− λX)`
+ O(

1
`2 ). (31)

Substituting (30) and (31) into (19) gives

r(d) =
1
2

log
ρXγX

d− λX
+

(λX + γZ)(γX − d)
2ρXγX(d− λX)

+ O(
1
`
).

This completes the proof of Theorem 2.

4. Conclusions

We have studied the problem of symmetric remote Gaussian source coding and made a systematic
comparison of centralized encoding and distributed encoding in terms of the asymptotic rate-distortion
performance. It is of great interest to extend our work by considering more general source and
noise models.

Author Contributions: Conceptualization, Y.W. and J.C.; methodology, Y.W.; validation, L.X., S.Z. and M.W.;
formal analysis, L.X., S.Z. and M.W.; investigation, L.X., S.Z. and M.W.; writing—original draft preparation, Y.W.;
writing—review and editing, J.C.; supervision, J.C.

Funding: S.Z. was supported in part by the China Scholarship Council.

Acknowledgments: The authors wish to thank the anonymous reviewer for their valuable comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2019, 21, 213 14 of 14

References

1. Berger, T.; Zhang, Z.; Viswanathan, H. The CEO problem. IEEE Trans. Inf. Theory 1996, 42, 887–902.
[CrossRef]

2. Viswanathan, H.; Berger, T. The quadratic Gaussian CEO problem. IEEE Trans. Inf. Theory 1997, 43, 1549–1559.
[CrossRef]

3. Oohama, Y. The rate-distortion function for the quadratic Gaussian CEO problem. IEEE Trans. Inf. Theory
1998, 44, 1057–1070. [CrossRef]

4. Prabhakaran, V.; Tse, D.; Ramchandran, K. Rate region of the quadratic Gaussian CEO problem.
In Proceedings of the IEEE International Symposium onInformation Theory, Chicago, IL, USA, 27 June–2
July 2004; p. 117.

5. Chen, J.; Zhang, X.; Berger, T.; Wicker, S.B. An upper bound on the sum-rate distortion function and its
corresponding rate allocation schemes for the CEO problem. IEEE J. Sel. Areas Commun. 2004, 22, 977–987.
[CrossRef]

6. Oohama, Y. Rate-distortion theory for Gaussian multiterminal source coding systems with several side
informations at the decoder. IEEE Trans. Inf. Theory 2005, 51, 2577–2593. [CrossRef]

7. Chen, J.; Berger, T. Successive Wyner-Ziv coding scheme and its application to the quadratic Gaussian CEO
problem. IEEE Trans. Inf. Theory 2008, 54, 1586–1603. [CrossRef]

8. Wagner, A.B.; Tavildar, S.; Viswanath, P. Rate region of the quadratic Gaussian two-encoder source-coding
problem. IEEE Trans. Inf. Theory 2008, 54, 1938–1961. [CrossRef]

9. Tavildar, S.; Viswanath, P.; Wagner, A.B. The Gaussian many-help-one distributed source coding problem.
IEEE Trans. Inf. Theory 2010, 56, 564–581. [CrossRef]

10. Wang, J.; Chen, J.; Wu, X. On the sum rate of Gaussian multiterminal source coding: New proofs and results.
IEEE Trans. Inf. Theory 2010, 56, 3946–3960. [CrossRef]

11. Yang, Y.; Xiong, Z. On the generalized Gaussian CEO problem. IEEE Trans. Inf. Theory 2012, 58, 3350–3372.
[CrossRef]

12. Wang, J.; Chen, J. Vector Gaussian two-terminal source coding. IEEE Trans. Inf. Theory 2013, 59, 3693–3708.
[CrossRef]

13. Courtade, T.A.; Weissman, T. Multiterminal source coding under logarithmic loss. IEEE Trans. Inf. Theory
2014, 60, 740–761. [CrossRef]

14. Wang, J.; Chen, J. Vector Gaussian multiterminal source coding. IEEE Trans. Inf. Theory 2014, 60, 5533–5552.
[CrossRef]

15. Oohama, Y. Indirect and direct Gaussian distributed source coding problems. IEEE Trans. Inf. Theory 2014,
60, 7506–7539. [CrossRef]

16. Nangir, M.; Asvadi, R.; Ahmadian-Attari, M.; Chen, J. Analysis and code design for the binary CEO problem
under logarithmic loss. IEEE Trans. Commun. 2018, 66, 6003–6014. [CrossRef]

17. Ugur, Y.; Aguerri, I.-E.; Zaidi, A. Vector Gaussian CEO problem under logarithmic loss and applications.
arXiv 2018, arXiv:1811.03933.

18. Nangir, M.; Asvadi, R.; Chen, J.; Ahmadian-Attari, M.; Matsumoto, T. Successive Wyner-Ziv coding for the
binary CEO problem under logarithmic loss. arXiv 2018, arXiv:1812.11584.

19. Wang, Y.; Xie, L.; Zhang, X.; Chen, J. Robust distributed compression of symmetrically correlated Gaussian
sources. arXiv 2018, arXiv:1807.06799.

20. Chen, J.; Xie, L.; Chang, Y.; Wang, J.; Wang, Y. Generalized Gaussian multiterminal source coding:
The symmetric case. arXiv 2017, arXiv:1710.04750.

21. Dobrushin, R.; Tsybakov, B. Information transmission with additional noise. IRE Trans. Inf. Theory 1962, 8,
293–304. [CrossRef]

22. Cover, T.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 1991.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/18.490552
http://dx.doi.org/10.1109/18.623151
http://dx.doi.org/10.1109/18.669162
http://dx.doi.org/10.1109/JSAC.2004.830888
http://dx.doi.org/10.1109/TIT.2005.850110
http://dx.doi.org/10.1109/TIT.2008.917687
http://dx.doi.org/10.1109/TIT.2008.920343
http://dx.doi.org/10.1109/TIT.2009.2034791
http://dx.doi.org/10.1109/TIT.2010.2050960
http://dx.doi.org/10.1109/TIT.2012.2184667
http://dx.doi.org/10.1109/TIT.2013.2245397
http://dx.doi.org/10.1109/TIT.2013.2288257
http://dx.doi.org/10.1109/TIT.2014.2333473
http://dx.doi.org/10.1109/TIT.2014.2361332
http://dx.doi.org/10.1109/TCOMM.2018.2863377
http://dx.doi.org/10.1109/TIT.1962.1057738
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Definitions and Main Results
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Conclusions
	References

