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1. Introduction

Shannon’s entropy power inequality (EPI) and its variants assert the optimality of the
Gaussian solution to certain extremal problems. They play important roles in characterizing the
information-theoretic limits of network information theory problems that involve Gaussian sources
and/or channels (see, e.g., [1–15]). Many different approaches have been developed for proving
such extremal results. Two notable ones are the doubling trick [16,17] and the monotone path
argument [18–21]. Roughly speaking, the former reaches the desired conclusion by establishing the
subadditivity of the relevant functional while the latter accomplishes its goal by constructing a monotone
path with one end associated with an arbitrary given point in the feasible region and the other associated
with the optimal solution to the Gaussian version of the problem. Though the doubling trick typically
yields simpler proofs, the monotone path argument tends to be more informative. Indeed, it shows not
only the existence of the Gaussian optimizer, but also the fact that every Karush–Kuhn–Tucker (KKT)
point (also known as the stationary point) of the Gaussian version of the problem is in fact globally
optimal. Such information is highly useful for numerical optimization.

Several years ago, inspired by the Gaussian two-terminal source coding problem, Courtade [22]
conjectured the following EPI-type extremal result for long Markov chains.

Conjecture 1. Let X and Z be two independent n-dimensional zero-mean Gaussian random (column) vectors
with covariance matrices ΣX � 0 and ΣZ � 0 respectively, and define Y = X + Z. Then, for any µ ≥ 0,

inf
U,V:U↔X↔Y↔V

I(X; U)− µI(Y; U) + I(Y; V|U)− µI(X; V|U) (1)

has a Gaussian minimizer (i.e., the infimum is achieved by some (U, V) jointly Gaussian with (X, Y)). Here,
U ↔ X↔ Y↔ V means U, X, Y, and V form a Markov chain in that order.

Later, Courtade and Jiao [23] proved this conjecture using the doubling trick. It is natural to ask
whether this conjecture can also be proved via the monotone path argument. We shall show in this
paper that it is indeed possible. Our work also sheds some light on the connection between these two
proof strategies.
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In fact, we shall prove a strengthened version of Conjecture 1 with some additional constraints
imposed on (U, V). For any random (column) vector S and random object ω, let DS|ω denote the
distortion covariance matrix incurred by the minimum mean squared error (MMSE) estimator of S
from ω (i.e., E[(S− E[S|ω])(S− E[S|ω])t]), where (·)t is the transpose operator. The main result of
this paper is as follows.

Theorem 1. For any µ ≥ 0,

inf
U,V:U↔X↔Y↔V

(DX|Y,U ,DY|X,V )∈D

−µh(X|U) + µh(Y|U) + (µ− 1)h(X|U, V)− h(Y|V) + h(X|V) (2)

has a Gaussian minimizer, where D = {(Da, Db) : 0 ≺ Da � D1, 0 ≺ Db � D2} with D1 and D2 satisfying
0 ≺ D1 � DX|Y and 0 ≺ D2 � DY|X.

Remark 1. The objective functions in (1) and (2) are equivalent. Indeed,

I(X; U)− µI(Y; U) + I(Y; V|U)− µI(X; V|U)

≈ −h(X|U) + µh(Y|U) + h(Y|U)− h(Y|U, V)− µh(X|U) + µh(X|U, V)

= −(µ + 1)h(X|U) + (µ + 1)h(Y|U)− h(Y|U, V) + µh(X|U, V) + h(Y|X, U, V)− h(Y|X, V)

= −(µ + 1)h(X|U) + (µ + 1)h(Y|U)− I(Y; X|U, V) + µh(X|U, V)− h(Y|X, V)

= −(µ + 1)h(X|U) + (µ + 1)h(Y|U) + (µ− 1)h(X|U, V) + h(X|Y, U)− h(Y|X, V)

≈ −(µ + 1)h(X|U) + (µ + 1)h(Y|U) + (µ− 1)h(X|U, V) + h(X|U)− h(Y|U)− h(Y|X, V)

≈ −µh(X|U) + µh(Y|U) + (µ− 1)h(X|U, V)− h(Y|V) + h(X|V),

where “≈” means that the two sides are equal up to an additive constant.

Remark 2. Conjecture 1 corresponds to the special case where D1 = DX|Y and D2 = DY|X.

The rest of the paper is organized as follows. Section 2 is devoted to the analysis of the Gaussian
version of the optimization problem in (2). The key construction underlying our monotone path
argument is introduced in Section 3. The proof of Theorem 1 is presented in Section 4. We conclude
the paper in Section 5.

2. The Gaussian Version

In this section, we consider the Gaussian version of the optimization problem in (2) defined by
imposing the restriction that (U, V) and (X, Y) are jointly Gaussian. Specifically, let Ug = X + N1 and
Vg = Y + N2, where N1 and N2 are two independent n-dimensional zero-mean Gaussian random
(column) vectors with covariance matrices Σ1 � 0 and Σ2 � 0, respectively. It is assumed that (N1, N2)

is independent of (X, Y); as a consequence, the Markov chain constraint Ug ↔ X ↔ Y ↔ Vg is
satisfied. Clearly,

− µh(X|Ug) + µh(Y|Ug) + (µ− 1)h(X|Ug, Vg)− h(Y|Vg) + h(X|Vg)

≈ −µh(X|Y, Ug) + (µ− 1)h(X|Ug, Vg)− h(Y|X, Vg)

≈ −µ

2
log |DX|Y,Ug |+ µ− 1

2
log |DX|Ug ,Vg | − 1

2
log |DY|X,Vg |.



Entropy 2019, 21, 276 3 of 12

Moreover,

DX|Y,Ug = (Σ−1
X + Σ−1

Z + Σ−1
1 )−1, (3)

DY|X,Vg = (Σ−1
Z + Σ−1

2 )−1, (4)

DX|Ug ,Vg = (Σ−1
X + Σ−1

1 + (ΣZ + Σ2)
−1)−1. (5)

Now, it is straightforward to write down the Gaussian version of the optimization problem in (2) with
Σ1 and Σ2 as variables. However, as shown in the sequel, through a judicious change of variables,
one can obtain an equivalent version that is more amenable to analysis.

Given λ ∈ (0, 1), we introduce two random (column) vectors MX and MY, independent of
(X, Y, Ug, Vg), such that the joint distribution of (MX, MY) is the same as that of(√

1− λ

λ
(X−E[X|Ug, Vg]),−

√
λ

1− λ
(Y−E[Y|Ug, Vg])

)
.

Denote the covariance matrix of (Mt
X, Mt

Y)
t by Σ(Mt

X ,Mt
Y)

t . We have

Σ−1
(Mt

X ,Mt
Y)

t =

 √
λ

1−λ I 0

0 −
√

1−λ
λ I

(Σ−1
(Xt,Yt)t + Σ−1

(Nt
1,Nt

2)
t

) √
λ

1−λ I 0

0 −
√

1−λ
λ I


=

(
λ

1−λ (Σ
−1
X + Σ−1

Z + Σ−1
1 ) Σ−1

Z
Σ−1

Z
1−λ

λ (Σ−1
Z + Σ−1

2 )

)
.

Define WX = X + MX and WY = Y + MY. Since

D(Xt,Yt)t|WX ,WY
= (Σ−1

(Xt,Yt)t + Σ−1
MX ,MY

)−1

=

(
Σ−1

X + Σ−1
Z + λ

1−λ (Σ
−1
X + Σ−1

Z + Σ−1
1 ) 0

0 Σ−1
Z + 1−λ

λ (Σ−1
Z + Σ−1

2 )

)−1

, (6)

X and Y must be conditionally independent given (WX, WY). It can be verified that

Dg
X := DX|WX ,WY ,Ug = (D−1

X|WX ,WY
+ Σ−1

1 )−1 = (1− λ)(Σ−1
X + Σ−1

Z + Σ−1
1 )−1,

Dg
Y := DY|WX ,WY ,Vg = (D−1

Y|WX ,WY
+ Σ−1

2 )−1 = λ(Σ−1
Z + Σ−1

2 )−1,

which implies

Σ1 = ((1− λ)D−1
X − Σ−1

X − Σ−1
Z )−1, (7)

Σ2 = (λ(Dg
Y)
−1 − Σ−1

Z )−1. (8)

Substituting (7) and (8) into (3–(5) gives

DX|Y,Ug =
1

1− λ
Dg

X, (9)

DY|X,Vg =
1
λ

Dg
Y, (10)

DX|Ug ,Vg =
1

1− λ

(
(Dg

X)
−1 − 1

λ(1− λ)
Σ−1

Z Dg
YΣ−1

Z

)−1
. (11)
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Therefore, the Gaussian version of the optimization problem in (2) can be written as

inf
(Dg

X ,Dg
Y)∈D′

−µ

2
log |Dg

X| −
µ− 1

2
log
∣∣∣∣(Dg

X)
−1 − 1

λ(1− λ)
Σ−1

Z Dg
YΣ−1

Z

∣∣∣∣− 1
2

log |Dg
Y|, (12)

where D′ = {(Da, Db) : 0 ≺ Da � (1− λ)D1, 0 ≺ Db � λD2}. It is clear that the infimum in (12) is
achievable by some (D∗X, D∗Y) ∈ D′. Moreover, such (D∗X, D∗Y) must satisfy the following KKT conditions:

− µ(D∗X)
−1 + (µ− 1)(D∗X)

−1
(
(D∗X)

−1 − 1
λ(1− λ)

Σ−1
Z D∗YΣ−1

Z

)−1
(D∗X)

−1 + Π1 = 0, (13)

(µ− 1)
λ(1− λ)

Σ−1
Z

(
(D∗X)

−1 − 1
λ(1− λ)

Σ−1
Z D∗YΣ−1

Z

)−1
Σ−1

Z − (D∗Y)
−1 + Π2 = 0, (14)

Π1(D∗X − (1− λ)D1) = 0, (15)

Π2(D∗Y − λD2) = 0, (16)

where Π1, Π2 � 0.

3. The Key Construction

Let (X∗, Y∗) be an identically distributed copy of (X, Y). Moreover, let N∗1 and N∗2 be two
n-dimensional zero-mean Gaussian random (column) vectors with covariance matrices Σ∗1 and Σ∗2 ,
respectively. It is assumed that (X∗, Y∗), N∗1 , and N∗2 are mutually independent. Define U∗ = X∗ + N∗1
and V∗ = Y∗ + N∗2 . We choose Σ∗1 and Σ∗2 such that (cf. (9)–(11))

DX∗ |Y∗ ,U∗ =
1

1− λ
D∗X, (17)

DY∗ |X∗ ,V∗ =
1
λ

D∗Y, (18)

DX∗ |U∗ ,V∗ =
1

1− λ

(
(D∗X)

−1 − 1
λ(1− λ)

Σ−1
Z D∗YΣ−1

Z

)−1
(19)

for some (D∗X, D∗Y) ∈ D′ satisfying the KKT conditions (13)–(16).
Let U and V be two arbitrary random objects jointly distributed with (X, Y) such that U ↔ X↔

Y ↔ V and (DX|Y,U , DY|X,V) ∈ D. It is assumed that (X, Y, U, V) and (X∗, Y∗, U∗, V∗) are mutually
independent. We aim to show that the objective function in (2) does not increase when (X, Y, U, V)

is replaced with (X∗, Y∗, U∗, V∗), from which the desired result follows immediately. To this end, we
develop a monotone path argument based on the following construction.

For λ ∈ [0, 1], define (
Xλ

X̄λ

)
=

( √
λI

√
1− λI√

1− λI −
√

λI

)(
X
X∗

)
,(

Yλ

Ȳλ

)
=

( √
λI

√
1− λI√

1− λI −
√

λI

)(
Y
Y∗

)
.

It is easy to verify the following Markov structures (see Figure 1a):{
(U, U∗)↔ (X, X∗)↔ (Xλ, Ȳλ)↔ (Y, Y∗)↔ (V, V∗),
(U, U∗)↔ (X, X∗)↔ (X̄λ, Yλ)↔ (Y, Y∗)↔ (V, V∗),

λ ∈ [0, 1]. (20)

Note that, as λ changes from 0 to 1, Xλ (Yλ) moves from X∗ (Y∗) to X (Y) while X̄λ (Ȳλ) moves the other
way around. This construction generalizes its counterpart in the doubling trick, which corresponds to
the special case λ = 1

2 .
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For λ ∈ (0, 1), define W∗X = X + M∗X and W∗Y = Y + M∗Y, where

M∗X =

√
1− λ

λ
(X∗ −E[X∗|U∗, V∗]),

M∗Y = −
√

λ

1− λ
(Y∗ −E[Y∗|U∗, V∗]).

In view of (6), we have the following Markov structure (see Figure 1b):

U ↔ X↔ (W∗X, W∗Y)↔ Y↔ V. (21)

Define DX = DX|Xλ ,Ȳλ ,U,U∗ and DY = DY|Xλ ,Ȳλ ,V,V∗ . It can be verified that for λ ∈ (0, 1),

DX = DX|Xλ ,Ȳλ ,U,U∗ ,V,V∗ (22)

= DX|W∗X ,W∗Y ,U,U∗ ,V,V∗ (23)

= DX|W∗X ,W∗Y ,U,V (24)

= DX|W∗X ,W∗Y ,U , (25)

where (22) is due to (20), (23) is due to the existence of a bijection between (Xλ, Ȳλ, U∗, V∗) and
(W∗X, W∗Y, U∗, V∗), (24) is due to the fact that (U∗, V∗) is independent of (X, WX, WY, U, V), and (25) is
due to (21). Similarly, we have DY = DY|W∗X ,W∗Y ,V for λ ∈ (0, 1).

Figure 1. Illustrations of the Markov structures in (20) and (21).

4. Proof of Theorem 1

The following technical lemmas are needed for proving Theorem 1. Their proofs are relegated to
the Appendices A–D.

Lemma 1. For λ ∈ (0, 1),

d
dλ

h(Xλ|U, U∗, V, V∗) = − n
2(1− λ)

+
1

2(1− λ)2 tr
(

D−1
X∗ |U∗ ,V∗DX|Xλ ,U,U∗ ,V,V∗

)
, (26)

d
dλ

h(Xλ, Ȳλ|U, U∗) = − n
2(1− λ)

+
1

2(1− λ)2 tr
(

D−1
X∗ |Y∗ ,U∗DX

)
, (27)

d
dλ

h(Xλ, Ȳλ|V, V∗) =
n

2λ
− 1

2λ2 tr
(

D−1
Y∗ |X∗ ,V∗DY

)
. (28)

Lemma 2. For λ ∈ (0, 1),

DX|Xλ ,U,U∗ ,V,V∗ � ∆ � 0,
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where

∆ =

(
D−1

X −
1

(1− λ)2 Σ−1
Z D∗Y

(
1

1− λ
D∗Y −DY

)−1
D∗YΣ−1

Z

)−1

.

Lemma 3. (B−1 −A−1)−1 is matrix convex in (A, B) for A � B � 0.

Lemma 4. Let X be a Gaussian random vector and U be an arbitrary random object. Moreover, let N1 and
N2 be two zero-mean Gaussian random vectors, independent of (X, U), with covariance matrices Σ1 and Σ2

respectively. If Σ2 � Σ1 � 0, then

DX|X+N2,U �
(

D−1
X|X+N1,U + Σ−1

2 − Σ−1
1

)−1
.

Now, we are in a position to prove Theorem 1. Define

hλ = −µh(X̄λ|Xλ, U, U∗) + µh(Ȳλ|Xλ, U, U∗) + (µ− 1)h(X̄λ|Xλ, U, U∗, V, V∗)

− h(Ȳλ|Xλ, V, V∗) + h(X̄λ|Xλ, V, V∗).

Clearly,

hλ|λ=0 = −µh(X|U) + µh(Y|U) + (µ− 1)h(X|U, V)− h(Y|V) + h(X|V),

hλ|λ=1 = −µh(X∗|U∗) + µh(Y∗|U∗) + (µ− 1)h(X∗|U∗, V∗)− h(Y∗|V∗) + h(X∗|V∗).

Therefore, it suffices to show dhλ
dλ ≤ 0 for λ ∈ (0, 1). Note that

hλ =− µh(Xλ, X̄λ|U, U∗) + µh(Xλ, Ȳλ|U, U∗) + (µ− 1)h(Xλ, X̄λ|U, U∗, V, V∗)

− (µ− 1)h(Xλ|U, U∗, V, V∗)− h(Xλ, Ȳλ|V, V∗) + h(Xλ, X̄λ|V, V∗).

Since h(Xλ, X̄λ|U, U∗) = h(X, X∗|U, U∗), h(Xλ, X̄λ|U, U∗, V, V∗) = h(X, X∗|U, U∗, V, V∗),
and h(Xλ, X̄λ|V, V∗) = h(X, X∗|V, V∗), we have

d
dλ

h(Xλ, X̄λ|U, U∗) = 0,

d
dλ

h(Xλ, X̄λ|U, U∗, V, V∗) = 0,

d
dλ

h(Xλ, X̄λ|V, V∗) = 0,

which, together with Lemma 1, implies

dhλ

dλ
= − n

2λ(1− λ)
+

µ

2(1− λ)2 tr
(

D−1
X∗ |Y∗ ,U∗DX

)
+

1
2λ2 tr

(
D−1

Y∗ |X∗ ,V∗DY

)
− (µ− 1)

2(1− λ)2 tr
(

D−1
X∗ |U∗ ,V∗DX|Xλ ,U,U∗ ,V,V∗

)
.

(29)

Combining Lemma 2 and (29) shows

dhλ

dλ
≤ − n

2λ(1− λ)
− 1

2
f (DX, DY), (30)
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where

f (DX, DY) = −
µ

(1− λ)2 tr
(

D−1
X∗ |Y∗ ,U∗DX

)
− 1

λ2 tr
(

D−1
Y∗ |X∗ ,V∗DY

)
+

(µ− 1)
(1− λ)2 tr

(
D−1

X∗ |U∗ ,V∗∆
)

.

We shall derive a lower bound for f (DX, DY). To this end, we first identify certain constraints on DX
and DY. Let W = X + Z̃, where Z̃ is a zero-mean Gaussian random vector, independent of (X, U),
with covariance matrix ΣZ̃. We shall choose ΣZ̃ such that DX|W = DX|W∗X ,W∗Y

, which implies

ΣZ̃ ≺ ΣZ, (31)

DX|W,U = DX|W∗X ,W∗Y ,U . (32)

It can be verified (cf. (6)) that

ΣZ̃ =

(
Σ−1

Z +
λ

1− λ
(Σ−1

X + Σ−1
Z + (Σ∗1)

−1)

)−1

=
(

Σ−1
Z + λ(D∗X)

−1
)−1

.

(33)

In view of (25), (31), (32), and Lemma 4,

DX|Y,U �
(

D−1
X + Σ−1

Z − Σ−1
Z̃

)−1
,

which, together with (33) and the constraint 0 ≺ DX|Y,U � D1, implies

DX �
(

D−1
1 + λ(D∗X)

−1
)−1

.

Similarly, we have

DY �
(

D−1
2 + (1− λ)D∗−1

Y

)−1
. (34)

Define D̄1 =
(

D−1
1 + λ(D∗X)

−1
)−1

, D̄2 =
(

D−1
2 + (1− λ)D∗−1

Y

)−1
, and D̄ = {(Da, Db) : 0 ≺ Da �

D̄1, 0 ≺ Db � D̄2}. Consider

min
(DX ,DY)∈D̄

f (DX, DY),

which is a convex semidefinite programming problem according to Lemma 3 (in view of (34) and
Lemma 2, we have DY ≺ 1

1−λ D∗Y and ∆ � 0). Note that (DX, DY) ∈ D̄ is an optimal solution to this
convex programming problem if and only if it satisfies the following KKT conditions:

− µ

(1− λ)2 D−1
X∗ |Y∗ ,U∗ +

(µ− 1)
(1− λ)2

(
D−1

X ∆D−1
X∗ |U∗ ,V∗∆D−1

X

)
+ Π′1 = 0 (35)

− 1
λ2 D−1

Y∗ |X∗ ,V∗ +
(µ− 1)
(1− λ)2

(
(D∗Y − (1− λ)DY)

−1D∗YΣ−1
Z ∆D−1

X∗ |U∗ ,V∗∆Σ−1
Z D∗Y(D

∗
Y − (1− λ)DY)

−1
)

+ Π′2 = 0, (36)

Π′1(DX − D̄1) = 0, (37)

Π′2(DY − D̄2) = 0, (38)
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where Π′1, Π′2 � 0. Let DX = D∗X, DY = D∗Y, Π′1 = 1
1−λ Π1, and Π′2 = 1

λ Π2. One can readily verify by
leveraging (17)–(19) that (35)–(38) with this particular choice of (DX, DY, Π′1, Π′2) can be deduced from
(13)–(16); it is also easy to see that (D∗X, D∗Y) ∈ D̄. Therefore,

min
(DX ,DY)∈D̄

f (DX, DY) = f (D∗X, D∗Y). (39)

Combining (30), (39), and the fact that f (D∗X, D∗Y) = −
n

λ(1−λ)
shows dhλ

dλ ≤ 0, which completes the proof.

5. Conclusions

We have generalized an extremal result by Courtade and Jiao. It is worth mentioning that recently
Courtade [24] found a different generalization using the doubling trick. So far, we have not been
able to prove this new result via the monotone path argument. A deeper understanding of the
connection between these two methods is needed. It is conceivable that the convex-like property
revealed by the monotone path argument and the subadditive property revealed by the doubling trick
are manifestations of a common underlying mathematical structure yet to be uncovered.

Author Contributions: Methodology, J.W., J.C.; writing—original draft preparation, J.W.; writing—review and
editing, J.C.

Funding: This research was funded by the National Science Foundation of China grant number 61771305.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Lemma 1

Note that

d
dλ

h(Xλ|U, U∗, V, V∗) =
d

dλ

(
n
2

log λ +
d

dλ
h(X + M∗X|U, V)

)
=

n
2λ

+
d

dλ
h(X + M∗X|U, V)

=
n

2λ
+ tr

(
∇ΣM∗X

h(X + M∗X|U, V)∇λΣM∗X

)
=

n
2λ
− 1

λ2 tr
(

DX∗ |U∗ ,V∗∇ΣM∗X
h(X + M∗X|U, V)

)
,

(A1)

where ΣM∗X
= 1−λ

λ DX∗ |U∗ ,V∗ . We have

∇ΣM∗X
h(X + M∗X|U, V) =

1
2

J(X + M∗X|U, V) (A2)

=
λ

2
J(Xλ|U, U∗, V, V∗), (A3)

where J(·) denotes the Fisher information matrix, and (A2) is due to ([25], Theorem 4). Substituting
(A3) into (A1) gives

d
dλ

h(Xλ|U, U∗, V, V∗) =
n

2λ
− 1

2λ
tr
(

DX∗ |U∗ ,V∗ J(Xλ|U, U∗, V, V∗)
)

, (A4)

which, together with the fact ([26], Lemma 2) that

J(Xλ|U, U∗, V, V∗) =
1

1− λ
D−1

X∗ |U∗ ,V∗ −
λ

(1− λ)2 D−1
X∗ |U∗ ,V∗DX|Xλ ,U,U∗ ,V,V∗D

−1
X∗ |U∗ ,V∗ , (A5)

proves (26).
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It remains to prove (27) since (28) follows by symmetry. Note that(
Xλ

Ȳλ

)
=

( √
λI 0
0

√
1− λI

)((
X
Y

)
+

(
NX
NY

))
,

where NX =
√

1−λ
λ X∗ and NY = −

√
λ

1−λ Y∗. Define

N̄X = NX −E[NX|U∗],
N̄Y = NY −E[NY|U∗].

Denote the covariance matrix of (N̄t
X, N̄t

Y)
t by Σ(N̄t

X ,N̄t
Y)

t . It can be verified (cf. (A4) and (A5)) that

d
dλ

h(Xλ, Ȳλ|U, U∗) =
(1− 2λ)n
2λ(1− λ)

+
1
2

tr
(
∇λΣ(N̄t

X ,N̄t
Y)

t J
(
(Xt, Yt)t + (N̄t

X, N̄t
Y)

t|U
))

, (A6)

J
(
(Xt, Yt)t + (N̄t

X, N̄t
Y)

t|U
)
= Σ−1

(N̄t
X ,N̄t

Y)
t − Σ−1

(N̄t
X ,N̄t

Y)
t D(Xt,Yt)t|Xλ ,Ȳλ ,U,U∗Σ

−1
(N̄t

X ,N̄t
Y)

t . (A7)

Since

Σ(N̄t
X ,N̄t

Y)
t =

(
1−λ

λ DX∗ |U∗ −DX∗ |U∗

−DX∗ |U∗
λ

1−λ (DX∗ |U∗ + ΣZ)

)
,

we have

Σ−1
(N̄t

X ,N̄t
Y)

t =

(
λ

1−λ (D
−1
X∗ |U∗ + Σ−1

Z ) Σ−1
Z

Σ−1
Z

1−λ
λ Σ−1

Z

)
,

∇λΣ(N̄t
X ,N̄t

Y)
t =

(
− 1

λ2 DX∗ |U∗ 0
0 1

(1−λ)2 (DX∗ |U∗ + ΣZ)

)
,

which further implies

1
2

tr
(
∇λΣ(N̄t

X ,N̄t
Y)

t Σ−1
(N̄t

X ,N̄t
Y)

t

)
= 0. (A8)

Combining (A6)–(A8) gives

d
dλ

h(Xλ, Ȳλ|U, U∗) =
(1− 2λ)n
2λ(1− λ)

− 1
2

tr
(

Σ−1
(N̄t

X ,N̄t
Y)

t∇λΣ(N̄t
X ,N̄t

Y)
t Σ−1

(N̄t
X ,N̄t

Y)
t D(Xt,Yt)t|Xλ ,Ȳλ ,U,U∗

)
. (A9)

In view of (20),

D(Xt,Yt)t|Xλ ,Ȳλ ,U,U∗ =

(
DX 0
0 DY|Xλ ,Ȳλ

)
. (A10)

Moreover,

Σ−1
(N̄t

X ,N̄t
Y)

t∇λΣ(N̄t
X ,N̄t

Y)
t Σ−1

(N̄t
X ,N̄t

Y)
t =

(
1

(1−λ)2 (D
−1
X∗ |U∗ + Σ−1

Z ) 0

0 1
λ2 Σ−1

Z

)

=

(
1

(1−λ)2 D−1
X∗ |Y∗ ,U∗ 0

0 1
λ2 Σ−1

Z

)
. (A11)
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Substituting (A10) and (A11) into (A9) yields

d
dλ

h(Xλ, Ȳλ|U, U∗) =
(1− 2λ)n
2λ(1− λ)

+
1

2(1− λ)2 tr
(

D−1
X∗ |Y∗ ,U∗DX

)
− 1

2λ2 tr
(

Σ−1
Z DY|Xλ ,Ȳλ

)
. (A12)

It can be verified that

D(Xt,Yt)t|Xλ ,Ȳλ
= D(Xt,Yt)t|X+NX ,Y+NY

=
(

Σ−1
(Xt,Yt)t + Σ−1

(Nt
X ,Nt

Y)
t

)−1

=

(
(1− λ)(Σ−1

X + Σ−1
Z )−1 0

0 λΣZ

)
,

which implies

DY|Xλ ,Ȳλ
= λΣZ. (A13)

Substituting (A13) into (A12) proves (27).

Appendix B. Proof of Lemma 2

It can be verified that E[W∗Y|X, Y, W∗X] = AX + Y − AW∗X, where A = 1
1−λ D∗YΣ−1

Z ; moreover,
Q := W∗Y − E[W∗Y|X, Y, W∗X] is a zero-mean Gaussian random vector with covariance matrix ΣQ =

1
1−λ D∗Y, and is independent of (X, Y, W∗X, U, V). Define Ỹ = AX + Y. We have

D(Xt,Ỹt)t|W∗X ,W∗Y ,U,V =

(
I 0
A I

)
D(Xt,Yt)t|W∗X ,W∗Y ,U,V

(
I At

0 I

)

=

(
I 0
A I

)(
DX 0
0 DY

)(
I At

0 I

)
.

(A14)

On the other hand,

D(Xt,Ỹt)t|W∗X ,W∗Y ,U,V = D(Xt,Ỹt)t|W∗X ,U,V,Ỹ+Q

�
(

D−1
(Xt,Ỹt)t|W∗X ,U,V

+

(
0 0
0 Σ−1

Q

))−1

,
(A15)

where (A15) is due to the fact that the distortion covariance matrix incurred by the MMSE estimator of
(Xt, Ỹt)t from (W∗X, U, V, Ỹ + Q) is no greater than (in the semidefinite sense) that incurred by the linear
MMSE estimator of (Xt, Ỹt)t from (E[(Xt, Ỹt)t|W∗X, U, V], Ỹ + Q). Combining (A14) and (A15) yields

D(Xt,Ỹt)t|W∗X ,U,V �
(

D−1
X + AtD−1

Y A −AtD−1
Y

−D−1
Y A D−1

Y − Σ−1
Q

)−1

.

Comparing the upper-left submatrices on the two sides of the above inequality gives DX|W∗X ,U,V � ∆,
which, together with the fact that DX|Xλ ,U,U∗ ,V,V∗ = DX|W∗X ,U,V , proves DX|Xλ ,U,U∗ ,V,V∗ � ∆. Moreover,
we have

0 ≺ D−1
(Xt,Y′t)t|(WX ,U,V)

�
(

D−1
X + AtD−1

Y A −AtD−1
Y

−D−1
Y A D−1

Y − Σ−1
Q

)
,
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where the second inequality is due to (A14) and (A15). Therefore, ∆ , which is equal to the inverse of
the upper-left submatrix of (

D−1
X + AtD−1

Y A −AtD−1
Y

−D−1
Y A D−1

Y − Σ−1
Q

)−1

,

must be positive definite.

Appendix C. Proof of Lemma 3

It is known [27] that BS−1B is matrix convex in (S, B) for symmetric matrix B and positive definite
matrix S. The desired conclusion follows from the fact that (B−1 −A−1)−1 = B + B(A− B)−1B and
that affine transformations preserve convexity.

Appendix D. Proof of Lemma 4

Without loss of generality, we assume that N2 = N1 + Ñ, where Ñ is a zero-mean Gaussian
random vector with covariance matrix Σ̃ = Σ2 − Σ1 and is independent of (X, N1, U). As a
consequence, E[N1|N2] = HN2, where H = (Σ−1

1 + Σ̃−1)−1Σ̃−1; moreover, M := N1 −E[N1|N2] is a
zero-mean Gaussian random vector with covariance matrix ΣM = (Σ−1

1 + Σ̃−1)−1, and is independent
of (X, N2, U). Note that

J(X + N1|X + N2, U) = J ((I−H)X + M|X + N2, U)

= (Σ−1
1 + Σ̃−1)− Σ−1

1 DX|X+N1,UΣ−1
1 ,

(A16)

where the second equality follows by ([26], Lemma 2). On the other hand,

J(X + N1|X + N2, U) � D−1
X+N1|X+N2,U (A17)

= D−1
(I−H)X+M|X+N2,U

=
(
(I−H)DX|X+N2,U(I−Ht) + ΣM

)−1
, (A18)

where (A17) is due to the conditional version of the Cramer–Rao inequality. Combining (A16) and
(A18) yields the desired result.
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