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COURSE ORGANIZATION

Webpage:

http://www.ece.mcmaster.ca/∼jkzhang/Course 3ck3 2008.htm
http://www.ece.mcmaster.ca/∼junchen/EE3CK3.htm

Assessment:
• Two Assignments: 10% (each 5%)
• Tutorial Attendance: 4% (Random check)
• Two Midterms: 36% (each 18%)
• Final exam: 50%
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IMPORTANT INFORMATION

• Students must pass the combined midterm/exam component separately
to get a pass in the course. The midterm and exam will be combined with
the weighting 36% on the midterm and 50% on the �nal. A grade of 50%
in this combination must be attained to pass. Statistical adjustments
(such as bell curving) will not normally be used.

• Please note that students who miss the midterm, and who have a valid
excuse, will be subjected to an oral makeup test or a written test, at the
discretion of the instructor. Those who do not have a valid excuse will
be assessed zero for the midterm component of the �nal grade.
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COURSE ORGANIZATION

Teaching assistants:
• Min Huang (turorial), ITB A202, ext. 23151,
Email: huangm2@mcmaster.ca

• Amin Behnad (turorial), ITB A103, ext. 26112,
Email: behnad@grads.ece.mcmaster.ca

• Lin Song (grading)
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SYLLABUS

• Complex Variables and Contour Integration
• The Laplace Transform and Its Inversion
• The Fourier Transform and Applications
• Discrete Transforms
• Linear Algebra and State Variables (if time permits)
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COURSE TEXTBOOK

• Shlomo Karni and William J. Byatt
Mathematical Methods in Continuous and Discrete Systems
NY: Holt, Rinehart and Winston, 1982.
ISBN: 0-03-057038-7
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COMPLEX ANALYSIS

• The shortest route between two truths in the real domain passes through
the complex domain.

Jacques Salomon Hadamard (1865-1963)

• Complex analysis is beautiful, real analysis is dirty.
André Weil (1906-1998)

McMaster University
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1 ARITHMETIC OPERATIONS
OF COMPLEX VARIABLES

1.1 Complex Variables

• Imaginary unit: j =
√−1

• Complex variable: z

� Rectangular form: z = x + jy Re(z) = x, Im(z) = y

� Exponential form: z = rejθ

Euler's formula: ejθ = cos θ + j sin θ

⇒ x = r cos θ, y = sin θ, x2 + y2 = r2

¦ Example: ejπ/2 = j, ejπ = −1, e2nπj = 1 (n any integer)
¦ Example: z = 1− j ⇔ z =

√
2e−jπ/4
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1.2 Arithmetic Operations

Rectangular form: z1 = x1 + jy1, z2 = x2 + jy2
Exponential form: z1 = r1e

jθ1, z2 = r1e
jθ2

• Addition: z1 + z2 = x1 + x2 + j(y1 + y2)
• Subtraction: z1 − z2 = x1 − x2 + j(y1 − y2)
• Multiplication: z1z2 = x1x2− y1y2 + j(y1x2 + y2x1) (rectangular form)

z1z2 = r1r2e
j(θ1+θ2) (exponential form)

¦ Example: z1 = 4 + j3, z2 = 1− j

⇒ z1 + z2 = 5 + j2, z1 − z2 = 3 + j4, z1z2 = 7− j

• Complex conjugate: z = x + jy, z∗ = x− jy

zz∗ = x2 + y2 = r2, |z| =
√

zz∗ = r

McMaster University
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• Division: z1
z2

= x1x2+y1y2+j(y1x2−y2x1)
x2

2+y2
2

(rectangular form)
z1
z2

= r1
r2

ej(θ1−θ2) (exponential form)
• Power: z = rejθ

zn = rnejnθ Re(zn) = rn cosnθ, Im(zn) = rn sin nθ

• Fractional power: z = rejθ

z1/n = r1/nej(θ+2πp)/n, p = 0, 1, · · · , n− 1
¦ Example: z = 3 + j4 = 5ejθ with θ = tan−1 4

3
⇒ (3 + j4)1/2 =

√
5ej(θ/2+πp), p = 0, 1
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1.3 Functions of a Complex Variable

f(z) = f(x + jy) = u(x, y) + jv(x, y)
¦ Example: f(z) = e±z

e±z = e±(x+jy) = e±x(cos y ± j sin y)
⇒ u(x, y) = e±x cos y, v(x, y) = ±e±x sin y

¦ Example: f(z) = sin z

sin(x + jy) = sin x cos(jy) + cos x sin(jy)
cos jy = cosh y, sin(jy) = j sinh y

⇒ u(x, y) = sin x cosh y, v(x, y) = cos x sinh y

¦ Example: f(z) = ln z

ln z = ln(rejθ) = ln(rej(θ±2nπ)) = ln r + j(θ ± 2nπ) (n any integer)
⇒ u(x, y) = ln r), v(x, y) = θ ± 2nπ

McMaster University
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1.4 Derivatives of a Complex Function

f(z) = u(x, y) + jv(x, y)
• De�nition (derivative): df

dz

∣∣∣
z=z0

= lim
∆z→0

f(z0+∆z)−f(z0)
∆z

• De�nition (Cauchy-Riemann conditions): ∂u
∂x = ∂v

∂y ,
∂v
∂x = −∂u

∂y

? Theorem (su�cient conditions for di�erentiability):
1. the �rst-order partial derivatives of the functions u(x, y)and v(x, y)

with respect to x and y exist everywhere in the neighborhood of
z0 = x0 + jy0;

2. those partial derivatives are continuous at (x0, y0) and satisfy the
Cauchy-Riemann conditions ∂u

∂x = ∂v
∂y ,

∂v
∂x = −∂u

∂y at (x0, y0).

McMaster University
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Then df
dz

∣∣∣
z=z0

exists, its value being

df

dz

∣∣∣∣
z=z0

=
∂u

∂x
+ j

∂v

∂x

∣∣∣∣
(x,y)=(x0,y0)

• De�nition (analytical function): f(z) is analytic at a point z0 if it has a
derivative at each point in some neighborhood of z0. It follows that if f is
analytic at a point z0, it must be analytic at each point in some
neighborhood of z0.

¦ Example: f(z) = e−z

u(x, y) = e−x cos y, v(x, y) = −e−x sin y
∂u
∂x = −e−x cos y = ∂v

∂y ,
∂u
∂y = −e−x sin y = −∂v

∂x

The Cauchy-Riemann conditions are satis�ed.
¦ Example: f(z) = ln z

McMaster University
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u(x, y) = 1
2 ln(x2 + y2), v(x, y) = tan−1(y/x) + 2nπ

∂u
∂x = ∂v

∂y = x
x2+y2 = cos θ

r , ∂u
∂y = −∂v

∂x = y
x2+y2 = sin θ

r

The Cauchy-Riemann conditions are satis�ed at all �nite points other than
r = 0 (x = y = 0). The origin x = y = 0 is called a singular point for
f(z) = ln z.

• De�nition (singularity): A point in the z-plane at which f(z) is not
analytic is called a singular point (or a singularity) of f(z). There are
several types of singularities. We say that f(z) has an isolated singularity
at z = z0 if in the neighborhood of z = z0, no matter how small, there
are no other singularities. In other words, f(z) is analytic throughout the
neighborhood of z = z0 except at z = z0.
The function f(z) has a pole of order n at z = z0 (also called a
removable singularity) if (z − z0)nf(z) is analytic at z0. If no integer n

McMaster University
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can be found, then z = z0 is an essential singularity.
¦ Example: f(z) = z−2

z2(z+1) has isolated singularities at z = 0 and at
z = 1. The singularity at z = 0 is a pole of order 2, and the singularity at
z = −1 is a pole of order 1 (simple pole).

McMaster University
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1.5 Laplace's Equation

• Cauchy-Riemann conditions: ∂u
∂x = ∂v

∂y ,
∂v
∂x = −∂u

∂y

⇒ ∂2u
∂x2 = ∂2v

∂x∂y ,
∂2v

∂y∂x = −∂2u
∂y2

⇒ ∇2u = 0 with ∇2 = ∂2

∂x2 + ∂2

∂y2

Similarly, ∇2v = 0
• De�nition (Laplace's equation): ∇2H = 0
? Theorem: If a function f(z) = u(x, y) + jv(x, y) is analytic in some
region of the complex plane, both u and v satisfy Laplace's equation
throughout that same region.

McMaster University
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1.6 Integration in the Complex Plane

• De�nition (Contour): A contour, or piecewise smooth arc, is an arc
consisting of a �nite number of smooth arcs joined end to end. When only
the initial and �nal values are the same, a contour C is called a simple
closed contour. A contour is positively oriented when it is in the
counterclockwise direction.

? Theorem (Cauchy's �rst integral theorem): If a function f(z) is analytic
all all points interior to and on a simple closed contour C, then

∮

C
f(z)dz = 0

? Theorem (Cauchy's second integral theorem): Let f(z) be analytic
everywhere inside and on a simple closed contour C, taken in the positive
McMaster University
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sense. If z0 is any point interior to C, then

f(z0) =
1

2πj

∮

C

f(z)
z − z0

dz

Extension:

f (n)(z0) =
n!

2πj

∮

C

f(z)
(z − z0)n+1dz

where

f (n)(z0) =
dnf

dzn

∣∣∣∣
z=z0

McMaster University
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1.7 The Taylor Series

? Theorem: Suppose that a function f(z) is analytic throughout a disk
|z − z0| < R0, centered at z0 and with radius R0. Then f(z) has the
power series representation

f(z) =
∞∑

n=0
an(z − z0)n (|z − z0| < R0)

where

an =
f (n)(z0)

n!
=

1
2πj

∮

C

f(z)
(z − z0)n+1dz (n = 0, 1, 2, · · · )

and the contour C is inside the disk.
¦ Example: The Taylor series expansion of cos z about the point

McMaster University
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z = z0 = π/2.

cos z = cos
π

2
+

d

dz
(cos z)z=π/2(z −

π

2
)

+
1
2!

d2

dz2(cos z)z=π/2(z −
π

2
)2

+
1
3!

d3

dz3(cos z)z=π/2(z −
π

2
)3 + · · ·

= −(z − π

2
) +

1
6
(z − π

2
)3 + · · ·

McMaster University
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1.8 The Laurent Expansion

• Theorem: Suppose that a function f(z) is analytic throughout an annular
domain R1 < |z − z0| < R2, centered at z0, and let C denote any
positively oriented simple closed contour around z0 and lying in that
domain. Then, at each point in the domain, f(z)has the series
representation

f(z) =
∞∑

n=0
an(z − z0)n +

∞∑

n=1

bn
(z − z0)n

(R1 < |z − z0| < R2)

where

an =
1

2πj

∮

C

f(z)
(z − z0)n+1dz (n = 0, 1, 2, · · · )

McMaster University
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and

bn =
1

2πj

∮

C

f(z)
(z − z0)−n+1dz (n = 1, 2, · · · )

¦ Example: Find the Laurent expansion of f(z) = (z − 2)−1 for |z| < 2.

f(z) =
−1

2(1− z/2)
=

∞∑

n=0
−2−(n+1)zn

¦ Example: Find the Laurent expansion of f(z) = (z − 2)−1 for |z| > 2.

f(z) =
1
z
(1− 2/z)−1 =

∞∑

n=0

2n

zn+1

McMaster University
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1.9 Cauchy's Residue Theorem

• De�nition (Residues): When z0 is an isolated singular point of f(z), there
is a positive number R2 such that f(z) is analytic at each point z for
which 0 < |z − z0| < R2. Let C be any positively oriented simple closed
contour around z0 that lies in the punctured disk 0 < |z − z0| < R2.
De�ne

Resz=z0f(z) =
1

2πj

∮

C
f(z)dz

which is called the residue of f(z) at the isolated singular point z0.
Remark: The residues can often be calculated using Cauchy's second
integral theorem.

? Theorem: Let C be a simple closed contour, described in the positive
McMaster University
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sense. If a function f(z) is analytic inside and on C except for a �nite
number of singular points zk (k = 1, 2, · · · , n) inside C, then

∮

C
f(z)dz = 2πj

n∑

k=1

Resz=zkf(z)

¦ Example: Find the residue of

f(z) =
sin z

(z − π/2)3

at z = π/2. The residue can be found by calculating

1
2!

d2 sin z

dz2

∣∣∣∣∣
z=π/2

= −1
2

McMaster University
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2.0 The Evaluation of Real De�nite Integrals

¦ Example: Consider the integral I , de�ned by

I(a, b, π) =
∫ 2π

0

dθ

a + b cos θ

where a and b are real, and b < a. Set z = ejθ. The contour C of
integration in the complex plane will, then, be a circle of unit radius. Since
cos θ = (ejθ + e−jθ)/2, we have cos θ = (z + z−1)/2 = (z2 + 1)/2z.
Further, with z = ejθ, dz = jejθdθ, so that dθ = dz/jz. The integral I
becomes

I =
∮

C

2dz

j[2az + b(z2 + 1)]
=

2
jb

∮

C

dz

(z − z+)(z − z−)

McMaster University
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where the poles of the integrand are at the points

z+ = −a

b
+

√
(
a

b
)2 − 1

z− = −a

b
−

√
(
a

b
)− 1

Since b < a by assumption, both poles are real, and |z+| < 1, |z−| > 1.
Thus only the root z+ is within a circle of unit radius. Therefore the
application of the Cauchy's residue theorem leads to the result

I =
2
jb

2πjResz=z+
1

z − z−
=

4π

b

1
z+ − z−

On inserting the expression for z+ and z−, the answer is

I =
2π√

a2 − b2

McMaster University
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¦ Example: Consider the integral

I(ω) =
∫ ∞

0

sin ωt

t
dt

By setting ωt = x, we have

I(ω) =
∫ ∞

0

sinx

x
dx

It is easy to see the value of I is be independent of ω. Now, sinx/x is an
even function of x. Thus we can write

I(ω) =
1
2
Im

∫ ∞

−∞
ejx

x
dx

To evaluate this integral, consider the associated integral

J =
∮

ejz

z
dz

McMaster University
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Here the integrand has a pole at the point z = 0. To exclude the point
z = 0, we choose the contour C shown in Fig. 2.15 (p. 91).
By Cauchy's �rst integral theorem, we have

J = 0 =
∮

C

ejz

z
dz

The contributions from the four parts of C must now be found. We have

0 =
∫ −ρ

−R

ejx

x
dx + j

∫ 0

π

ejρejθ
ρejθ

ρejθ
dθ +

∫ R

ρ

ejx

x
dx + j

∫ π

0

ejRejθ
Rejθ

Rejθ
dθ

The value of the second term of the right-hand side, as ρ → 0, is −jπ;
the �rst and third terms are combined, so that

0 = −jπ +
∫ R

−R

ejx

x
dx + j

∫ π

0
ejRejθ

dθ

McMaster University
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The absolute value of the integral over θ satis�es the inequality
∣∣∣∣j

∫ π

0
ejRejθ

dθ

∣∣∣∣ ≤
∫ π

0
e−R sin θdθ

Further, since sin θ is an even function about π/2, we have
∫ π

0
e−R sin θdθ = 2

∫ π/2

0
e−R sin θdθ

and sin θ ≥ 2θ/π for all θ in 0 ≤ θ ≤ π/2. Thus,

2
∫ π/2

0
e−R sin θdθ ≤ 2

∫ π/2

0
e−2Rθ/πdθ =

π

R
(1− e−R)

Clearly, as R →∞, the last result approaches zero. Thus,

I(ω) =
∫ ∞

0

sinωt

t
dt =

1
2
Im

∫ ∞

−∞
ejx

x
dx =

π

2
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