Mathematics for Linear Systems

Jian-Kang Zhang & Jun Chen

Department of Electrical and Computer Engineering McMaster University

COURSE ORGANIZATION

Webpage:

http://www.ece.mcmaster.ca/~jkzhang/Course_3ck3_2008.htm http://www.ece.mcmaster.ca/~junchen/EE3CK3.htm

Assessment:

- Two Assignments: 10% (each 5%)
- Tutorial Attendance: 4% (Random check)
- Two Midterms: 36% (each 18%)
- Final exam: 50%

1

IMPORTANT INFORMATION

- Students must pass the combined midterm/exam component separately to get a pass in the course. The midterm and exam will be combined with the weighting 36% on the midterm and 50% on the final. A grade of 50% in this combination must be attained to pass. Statistical adjustments (such as bell curving) will not normally be used.
- Please note that students who miss the midterm, and who have a valid excuse, will be subjected to an oral makeup test or a written test, at the discretion of the instructor. Those who do not have a valid excuse will be assessed zero for the midterm component of the final grade.

COURSE ORGANIZATION

Teaching assistants:

- Min Huang (turorial), ITB A202, ext. 23151, Email: huangm2@mcmaster.ca
- Amin Behnad (turorial), ITB A103, ext. 26112, Email: behnad@grads.ece.mcmaster.ca
- Lin Song (grading)

SYLLABUS

- Complex Variables and Contour Integration
- The Laplace Transform and Its Inversion
- The Fourier Transform and Applications
- Discrete Transforms
- Linear Algebra and State Variables (if time permits)

COURSE TEXTBOOK

Shlomo Karni and William J. Byatt
 Mathematical Methods in Continuous and Discrete Systems
 NY: Holt, Rinehart and Winston, 1982.
 ISBN: 0-03-057038-7

COMPLEX ANALYSIS

• The shortest route between two truths in the real domain passes through the complex domain.

Jacques Salomon Hadamard (1865-1963)

Complex analysis is beautiful, real analysis is dirty.
 André Weil (1906-1998)

1 ARITHMETIC OPERATIONS OF COMPLEX VARIABLES 1.1 Complex Variables

- Imaginary unit: $j = \sqrt{-1}$
- Complex variable: z
 - Rectangular form: z = x + jy Re(z) = x, Im(z) = y
- Exponential form: $z = re^{j\theta}$ Euler's formula: $e^{j\theta} = \cos \theta + j \sin \theta$ $\Rightarrow x = r \cos \theta$, $y = \sin \theta$, $x^2 + y^2 = r^2$ \diamond Example: $e^{j\pi/2} = j$, $e^{j\pi} = -1$, $e^{2n\pi j} = 1$ (*n* any integer) \diamond Example: $z = 1 - j \Leftrightarrow z = \sqrt{2}e^{-j\pi/4}$

7

1.2 Arithmetic Operations

Rectangular form: $z_1 = x_1 + jy_1$, $z_2 = x_2 + jy_2$ Exponential form: $z_1 = r_1 e^{j\theta_1}$, $z_2 = r_1 e^{j\theta_2}$

- Addition: $z_1 + z_2 = x_1 + x_2 + j(y_1 + y_2)$
- Subtraction: $z_1 z_2 = x_1 x_2 + j(y_1 y_2)$
- Multiplication: $z_1z_2 = x_1x_2 y_1y_2 + j(y_1x_2 + y_2x_1)$ (rectangular form) $z_1z_2 = r_1r_2e^{j(\theta_1+\theta_2)}$ (exponential form)

 \diamond Example: $z_1=4+j3$, $z_2=1-j$

 $\Rightarrow z_1 + z_2 = 5 + j2$, $z_1 - z_2 = 3 + j4$, $z_1 z_2 = 7 - j$

• Complex conjugate:
$$z = x + jy$$
, $z^* = x - jy$
 $zz^* = x^2 + y^2 = r^2$, $|z| = \sqrt{zz^*} = r$

• Division:
$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2 + j(y_1 x_2 - y_2 x_1)}{x_2^2 + y_2^2}$$
 (rectangular form)
 $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)}$ (exponential form)
• Power: $z = re^{j\theta}$
 $z^n = r^n e^{jn\theta}$ Re $(z^n) = r^n \cos n\theta$, Im $(z^n) = r^n \sin n\theta$
• Fractional power: $z = re^{j\theta}$
 $z^{1/n} = r^{1/n} e^{j(\theta + 2\pi p)/n}$, $p = 0, 1, \cdots, n - 1$
• Example: $z = 3 + j4 = 5e^{j\theta}$ with $\theta = \tan^{-1} \frac{4}{3}$
 $\Rightarrow (3 + j4)^{1/2} = \sqrt{5}e^{j(\theta/2 + \pi p)}$, $p = 0, 1$

EE 3CK3, Hamilton

1.3 Functions of a Complex Variable

$$\begin{split} f(z) &= f(x + jy) = u(x, y) + jv(x, y) \\ \diamond \text{ Example: } f(z) &= e^{\pm z} \\ e^{\pm z} &= e^{\pm (x + jy)} = e^{\pm x}(\cos y \pm j \sin y) \\ \Rightarrow u(x, y) &= e^{\pm x} \cos y, \ v(x, y) = \pm e^{\pm x} \sin y \\ \diamond \text{ Example: } f(z) &= \sin z \\ \sin(x + jy) &= \sin x \cos(jy) + \cos x \sin(jy) \\ \cos jy &= \cosh y, \ \sin(jy) &= j \sinh y \\ \Rightarrow u(x, y) &= \sin x \cosh y, \ v(x, y) &= \cos x \sinh y \\ \diamond \text{ Example: } f(z) &= \ln z \\ \ln z &= \ln(re^{j\theta}) &= \ln(re^{j(\theta \pm 2n\pi)}) = \ln r + j(\theta \pm 2n\pi) \ (n \text{ any integer} \\ \Rightarrow u(x, y) &= \ln r), \ v(x, y) &= \theta \pm 2n\pi \end{split}$$

EE 3CK3, Hamilton

1.4 Derivatives of a Complex Function

f(z) = u(x, y) + jv(x, y)

- Definition (derivative): $\frac{df}{dz}\Big|_{z=z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) f(z_0)}{\Delta z}$ Definition (Cauchy-Riemann conditions): $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$
- \star Theorem (sufficient conditions for differentiability):
 - 1 the first-order partial derivatives of the functions u(x,y) and v(x,y)with respect to x and y exist everywhere in the neighborhood of $z_0 = x_0 + jy_0;$
 - 2. those partial derivatives are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann conditions $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ at (x_0, y_0) .

Then
$$\frac{df}{dz}\Big|_{z=z_0}$$
 exists, its value being
$$\frac{df}{dz}\Big|_{z=z_0} = \frac{\partial u}{\partial x} + j\frac{\partial v}{\partial x}\Big|_{(x,y)=(x_0,y_0)}$$

• Definition (analytical function): f(z) is analytic at a point z_0 if it has a derivative at each point in some neighborhood of z_0 . It follows that if f is analytic at a point z_0 , it must be analytic at each point in some neighborhood of z_0 .

$$\diamond$$
 Example: $f(z) = e^{-z}$

$$\begin{split} u(x,y) &= e^{-x} \cos y, \ v(x,y) = -e^{-x} \sin y \\ \frac{\partial u}{\partial x} &= -e^{-x} \cos y = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -e^{-x} \sin y = -\frac{\partial v}{\partial x} \\ \text{The Cauchy-Riemann conditions are satisfied.} \end{split}$$

 \diamond Example: $f(z) = \ln z$

- $$\begin{split} u(x,y) &= \frac{1}{2}\ln(x^2 + y^2), \ v(x,y) = \tan^{-1}(y/x) + 2n\pi\\ \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} = \frac{x}{x^2 + y^2} = \frac{\cos\theta}{r}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = \frac{y}{x^2 + y^2} = \frac{\sin\theta}{r}\\ \text{The Cauchy-Riemann conditions are satisfied at all finite points other than}\\ r &= 0 \ (x = y = 0). \ \text{The origin } x = y = 0 \ \text{is called a singular point for}\\ f(z) &= \ln z. \end{split}$$
- Definition (singularity): A point in the z-plane at which f(z) is not analytic is called a singular point (or a singularity) of f(z). There are several types of singularities. We say that f(z) has an isolated singularity at $z = z_0$ if in the neighborhood of $z = z_0$, no matter how small, there are no other singularities. In other words, f(z) is analytic throughout the neighborhood of $z = z_0$ except at $z = z_0$. The function f(z) has a pole of order n at $z = z_0$ (also called a

removable singularity) if $(z-z_0)^n f(z)$ is analytic at z_0 . If no integer n

can be found, then $z = z_0$ is an essential singularity. \diamond Example: $f(z) = \frac{z-2}{z^2(z+1)}$ has isolated singularities at z = 0 and at z = 1. The singularity at z = 0 is a pole of order 2, and the singularity at z = -1 is a pole of order 1 (simple pole).

1.5 Laplace's Equation

- Cauchy-Riemann conditions: $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\Rightarrow \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$, $\frac{\partial^2 v}{\partial y \partial x} = -\frac{\partial^2 u}{\partial y^2}$ $\Rightarrow \nabla^2 u = 0$ with $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ Similarly, $\nabla^2 v = 0$
- Definition (Laplace's equation): $\nabla^2 H = 0$
- * Theorem: If a function f(z) = u(x, y) + jv(x, y) is analytic in some region of the complex plane, both u and v satisfy Laplace's equation throughout that same region.

EE 3CK3, Hamilton

1.6 Integration in the Complex Plane

- Definition (Contour): A contour, or piecewise smooth arc, is an arc consisting of a finite number of smooth arcs joined end to end. When only the initial and final values are the same, a contour *C* is called a simple closed contour. A contour is positively oriented when it is in the counterclockwise direction.
- \star Theorem (Cauchy's first integral theorem): If a function f(z) is analytic all all points interior to and on a simple closed contour C, then

$$\oint_C f(z)dz = 0$$

 \star Theorem (Cauchy's second integral theorem): Let f(z) be analytic everywhere inside and on a simple closed contour C, taken in the positive

sense. If z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi j} \oint_C \frac{f(z)}{z - z_0} dz$$

Extension:

$$f^{(n)}(z_0) = \frac{n!}{2\pi j} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

where

$$f^{(n)}(z_0) = \frac{d^n f}{dz^n}\Big|_{z=z_0}$$

1.7 The Taylor Series

* Theorem: Suppose that a function f(z) is analytic throughout a disk $|z - z_0| < R_0$, centered at z_0 and with radius R_0 . Then f(z) has the power series representation

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad (|z - z_0| < R_0)$$

where

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi j} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \quad (n = 0, 1, 2, \dots)$$

and the contour C is inside the disk.

 \diamond Example: The Taylor series expansion of $\cos z$ about the point

$$z = z_0 = \pi/2$$
.

$$\cos z = \cos \frac{\pi}{2} + \frac{d}{dz} (\cos z)_{z=\pi/2} (z - \frac{\pi}{2}) + \frac{1}{2!} \frac{d^2}{dz^2} (\cos z)_{z=\pi/2} (z - \frac{\pi}{2})^2 + \frac{1}{3!} \frac{d^3}{dz^3} (\cos z)_{z=\pi/2} (z - \frac{\pi}{2})^3 + \cdots = -(z - \frac{\pi}{2}) + \frac{1}{6} (z - \frac{\pi}{2})^3 + \cdots$$

1.8 The Laurent Expansion

• Theorem: Suppose that a function f(z) is analytic throughout an annular domain $R_1 < |z - z_0| < R_2$, centered at z_0 , and let C denote any positively oriented simple closed contour around z_0 and lying in that domain. Then, at each point in the domain, f(z) has the series representation

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \quad (R_1 < |z - z_0| < R_2)$$

where

$$a_n = \frac{1}{2\pi j} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \quad (n = 0, 1, 2, \cdots)$$

and

$$b_n = \frac{1}{2\pi j} \oint_C \frac{f(z)}{(z - z_0)^{-n+1}} dz \quad (n = 1, 2, \cdots)$$

 \diamond Example: Find the Laurent expansion of $f(z) = (z-2)^{-1}$ for |z| < 2.

$$f(z) = \frac{-1}{2(1-z/2)} = \sum_{n=0}^{\infty} -2^{-(n+1)}z^n$$

 \diamond Example: Find the Laurent expansion of $f(z) = (z-2)^{-1}$ for |z| > 2.

$$f(z) = \frac{1}{z}(1 - 2/z)^{-1} = \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$$

1.9 Cauchy's Residue Theorem

• Definition (Residues): When z_0 is an isolated singular point of f(z), there is a positive number R_2 such that f(z) is analytic at each point z for which $0 < |z - z_0| < R_2$. Let C be any positively oriented simple closed contour around z_0 that lies in the punctured disk $0 < |z - z_0| < R_2$. Define

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{2\pi j} \oint_C f(z) dz$$

which is called the residue of f(z) at the isolated singular point z_0 . Remark: The residues can often be calculated using Cauchy's second integral theorem.

 \star Theorem: Let C be a simple closed contour, described in the positive

EE 3CK3, Hamilton

sense. If a function f(z) is analytic inside and on C except for a finite number of singular points z_k $(k = 1, 2, \dots, n)$ inside C, then

$$\oint_C f(z) dz = 2\pi j \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z)$$

♦ Example: Find the residue of

$$f(z) = \frac{\sin z}{(z - \pi/2)^3}$$

at $z = \pi/2$. The residue can be found by calculating

$$\frac{1}{2!} \frac{d^2 \sin z}{dz^2} \bigg|_{z=\pi/2} = -\frac{1}{2}$$

2.0 The Evaluation of Real Definite Integrals

 \diamond Example: Consider the integral I, defined by

$$I(a, b, \pi) = \int_0^{2\pi} \frac{d\theta}{a + b\cos\theta}$$

where a and b are real, and b < a. Set $z = e^{j\theta}$. The contour C of integration in the complex plane will, then, be a circle of unit radius. Since $\cos \theta = (e^{j\theta} + e^{-j\theta})/2$, we have $\cos \theta = (z + z^{-1})/2 = (z^2 + 1)/2z$. Further, with $z = e^{j\theta}$, $dz = je^{j\theta}d\theta$, so that $d\theta = dz/jz$. The integral I becomes

$$I = \oint_C \frac{2dz}{j[2az + b(z^2 + 1)]} = \frac{2}{jb} \oint_C \frac{dz}{(z - z_+)(z - z_-)}$$

where the poles of the integrand are at the points

$$z_{+} = -\frac{a}{b} + \sqrt{(\frac{a}{b})^{2} - 1}$$
$$z_{-} = -\frac{a}{b} - \sqrt{(\frac{a}{b}) - 1}$$

Since b < a by assumption, both poles are real, and $|z_+| < 1$, $|z_-| > 1$. Thus only the root z_+ is within a circle of unit radius. Therefore the application of the Cauchy's residue theorem leads to the result

$$I = \frac{2}{jb} 2\pi j \operatorname{Res}_{z=z_+} \frac{1}{z-z_-} = \frac{4\pi}{b} \frac{1}{z_+ - z_-}$$

On inserting the expression for z_+ and z_- , the answer is

$$I = \frac{2\pi}{\sqrt{a^2 - b^2}}$$

♦ Example: Consider the integral

$$I(\omega) = \int_0^\infty \frac{\sin \omega t}{t} dt$$

By setting $\omega t = x$, we have

$$I(\omega) = \int_0^\infty \frac{\sin x}{x} dx$$

It is easy to see the value of I is be independent of ω . Now, $\sin x/x$ is an even function of x. Thus we can write

$$I(\omega) = \frac{1}{2} \mathrm{Im} \int_{-\infty}^{\infty} \frac{e^{\jmath x}}{x} dx$$

To evaluate this integral, consider the associated integral

$$J = \oint \frac{e^{jz}}{z} dz$$

McMaster University Electrical and Computer Engineering Here the integrand has a pole at the point z = 0. To exclude the point z = 0, we choose the contour C shown in Fig. 2.15 (p. 91). By Cauchy's first integral theorem, we have

$$J = 0 = \oint_C \frac{e^{jz}}{z} dz$$

The contributions from the four parts of C must now be found. We have

$$0 = \int_{-R}^{-\rho} \frac{e^{jx}}{x} dx + j \int_{\pi}^{0} \frac{e^{j\rho e^{j\theta}} \rho e^{j\theta}}{\rho e^{j\theta}} d\theta + \int_{\rho}^{R} \frac{e^{jx}}{x} dx + j \int_{0}^{\pi} \frac{e^{jRe^{j\theta}} Re^{j\theta}}{Re^{j\theta}} d\theta$$

The value of the second term of the right-hand side, as $\rho \rightarrow 0$, is $-j\pi$; the first and third terms are combined, so that

$$0 = -j\pi + \int_{-R}^{R} \frac{e^{jx}}{x} dx + j \int_{0}^{\pi} e^{jRe^{j\theta}} d\theta$$

McMaster University Electrical and Computer Engineering The absolute value of the integral over θ satisfies the inequality

$$\left| j \int_0^{\pi} e^{jRe^{j\theta}} d\theta \right| \le \int_0^{\pi} e^{-R\sin\theta} d\theta$$

Further, since $\sin \theta$ is an even function about $\pi/2$, we have

$$\int_0^{\pi} e^{-R\sin\theta} d\theta = 2 \int_0^{\pi/2} e^{-R\sin\theta} d\theta$$

and $\sin\theta \geq 2\theta/\pi$ for all θ in $0 \leq \theta \leq \pi/2.$ Thus,

$$2\int_0^{\pi/2} e^{-R\sin\theta} d\theta \le 2\int_0^{\pi/2} e^{-2R\theta/\pi} d\theta = \frac{\pi}{R}(1-e^{-R})$$

Clearly, as $R
ightarrow \infty$, the last result approaches zero. Thus,

$$I(\omega) = \int_0^\infty \frac{\sin \omega t}{t} dt = \frac{1}{2} \operatorname{Im} \int_{-\infty}^\infty \frac{e^{jx}}{x} dx = \frac{\pi}{2}$$

McMaster University Electrical and Computer Engineering