Mathematics for Linear Systems

Jian-Kang Zhang \& Jun Chen
Department of Electrical and Computer Engineering
McMaster University

COURSE ORGANIZATION

Webpage:

http://www.ece.mcmaster.ca/~jkzhang/Course_3ck3_2008.htm http://www.ece.mcmaster.ca/~junchen/EE3CK3.htm

Assessment:

- Two Assignments: 10% (each 5\%)
- Tutorial Attendance: 4\% (Random check)
- Two Midterms: 36\% (each 18\%)
- Final exam: 50\%

IMPORTANT INFORMATION

- Students must pass the combined midterm/exam component separately to get a pass in the course. The midterm and exam will be combined with the weighting 36% on the midterm and 50% on the final. A grade of 50% in this combination must be attained to pass. Statistical adjustments (such as bell curving) will not normally be used.
- Please note that students who miss the midterm, and who have a valid excuse, will be subjected to an oral makeup test or a written test, at the discretion of the instructor. Those who do not have a valid excuse will be assessed zero for the midterm component of the final grade.

COURSE ORGANIZATION

Teaching assistants:

- Min Huang (turorial), ITB A202, ext. 23151, Email: huangm2@mcmaster.ca
- Amin Behnad (turorial), ITB A103, ext. 26112,

Email: behnad@grads.ece.mcmaster.ca

- Lin Song (grading)

SYLLABUS

- Complex Variables and Contour Integration
- The Laplace Transform and Its Inversion
- The Fourier Transform and Applications
- Discrete Transforms
- Linear Algebra and State Variables (if time permits)

COURSE TEXTBOOK

- Shlomo Karni and William J. Byatt

Mathematical Methods in Continuous and Discrete Systems NY: Holt, Rinehart and Winston, 1982.
ISBN: 0-03-057038-7

COMPLEX ANALYSIS

- The shortest route between two truths in the real domain passes through the complex domain.

Jacques Salomon Hadamard (1865-1963)

- Complex analysis is beautiful, real analysis is dirty.

André Weil (1906-1998)

1 ARITHMETIC OPERATIONS of COMPLEX VARIABLES

1.1 Complex Variables

- Imaginary unit: $j=\sqrt{-1}$
- Complex variable: z
- Rectangular form: $z=x+j y \quad \operatorname{Re}(z)=x, \operatorname{Im}(z)=y$
- Exponential form: $z=r e^{j \theta}$

Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$

$$
\Rightarrow x=r \cos \theta, y=\sin \theta, x^{2}+y^{2}=r^{2}
$$

\diamond Example: $e^{j \pi / 2}=j, e^{j \pi}=-1, e^{2 n \pi j}=1$ (n any integer)
\diamond Example: $z=1-j \Leftrightarrow z=\sqrt{2} e^{-j \pi / 4}$

1.2 Arithmetic Operations

Rectangular form: $z_{1}=x_{1}+j y_{1}, z_{2}=x_{2}+j y_{2}$
Exponential form: $z_{1}=r_{1} e^{j \theta_{1}}, z_{2}=r_{1} e^{j \theta_{2}}$

- Addition: $z_{1}+z_{2}=x_{1}+x_{2}+j\left(y_{1}+y_{2}\right)$
- Subtraction: $z_{1}-z_{2}=x_{1}-x_{2}+j\left(y_{1}-y_{2}\right)$
- Multiplication: $z_{1} z_{2}=x_{1} x_{2}-y_{1} y_{2}+j\left(y_{1} x_{2}+y_{2} x_{1}\right)$ (rectangular form)
$z_{1} z_{2}=r_{1} r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}($ exponential form $)$
\diamond Example: $z_{1}=4+j 3, z_{2}=1-j$

$$
\Rightarrow z_{1}+z_{2}=5+j 2, z_{1}-z_{2}=3+j 4, z_{1} z_{2}=7-j
$$

- Complex conjugate: $z=x+j y, z^{*}=x-j y$
$z z^{*}=x^{2}+y^{2}=r^{2}, \quad|z|=\sqrt{z z^{*}}=r$
- Division: $\frac{z_{1}}{z_{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}+j\left(y_{1} x_{2}-y_{2} x_{1}\right)}{x_{2}^{2}+y_{2}^{2}}$ (rectangular form)
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{j\left(\theta_{1}-\theta_{2}\right)}$ (exponential form)
- Power: $z=r e^{j \theta}$
$z^{n}=r^{n} e^{j n \theta} \quad \operatorname{Re}\left(z^{n}\right)=r^{n} \cos n \theta, \operatorname{Im}\left(z^{n}\right)=r^{n} \sin n \theta$
- Fractional power: $z=r e^{j \theta}$
$z^{1 / n}=r^{1 / n} e^{j(\theta+2 \pi p) / n}, p=0,1, \cdots, n-1$
\diamond Example: $z=3+j 4=5 e^{j \theta}$ with $\theta=\tan ^{-1} \frac{4}{3}$

$$
\Rightarrow(3+j 4)^{1 / 2}=\sqrt{5} e^{j(\theta / 2+\pi p)}, p=0,1
$$

1.3 Functions of a Complex Variable

$$
f(z)=f(x+j y)=u(x, y)+j v(x, y)
$$

\diamond Example: $f(z)=e^{ \pm z}$

$$
\begin{aligned}
& e^{ \pm z}=e^{ \pm(x+j y)}=e^{ \pm x}(\cos y \pm j \sin y) \\
& \Rightarrow u(x, y)=e^{ \pm x} \cos y, v(x, y)= \pm e^{ \pm x} \sin y
\end{aligned}
$$

\diamond Example: $f(z)=\sin z$

$$
\sin (x+j y)=\sin x \cos (j y)+\cos x \sin (j y)
$$

$$
\cos j y=\cosh y, \sin (j y)=j \sinh y
$$

$$
\Rightarrow u(x, y)=\sin x \cosh y, v(x, y)=\cos x \sinh y
$$

\diamond Example: $f(z)=\ln z$

$$
\begin{aligned}
& \ln z=\ln \left(r e^{j \theta}\right)=\ln \left(r e^{j(\theta \pm 2 n \pi)}\right)=\ln r+j(\theta \pm 2 n \pi)(n \text { any integer }) \\
& \Rightarrow u(x, y)=\ln r), v(x, y)=\theta \pm 2 n \pi
\end{aligned}
$$

1.4 Derivatives of a Complex Function

$$
f(z)=u(x, y)+j v(x, y)
$$

- Definition (derivative): $\left.\frac{d f}{d z}\right|_{z=z_{0}}=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$
- Definition (Cauchy-Riemann conditions): $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
\star Theorem (sufficient conditions for differentiability):

1. the first-order partial derivatives of the functions $u(x, y)$ and $v(x, y)$ with respect to x and y exist everywhere in the neighborhood of $z_{0}=x_{0}+j y_{0} ;$
2. those partial derivatives are continuous at (x_{0}, y_{0}) and satisfy the Cauchy-Riemann conditions $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$ at $\left(x_{0}, y_{0}\right)$.

Then $\left.\frac{d f}{d z}\right|_{z=z_{0}}$ exists, its value being

$$
\left.\frac{d f}{d z}\right|_{z=z_{0}}=\frac{\partial u}{\partial x}+\left.j \frac{\partial v}{\partial x}\right|_{(x, y)=\left(x_{0}, y_{0}\right)}
$$

- Definition (analytical function): $f(z)$ is analytic at a point z_{0} if it has a derivative at each point in some neighborhood of z_{0}. It follows that if f is analytic at a point z_{0}, it must be analytic at each point in some neighborhood of z_{0}.
\diamond Example: $f(z)=e^{-z}$
$u(x, y)=e^{-x} \cos y, v(x, y)=-e^{-x} \sin y$
$\frac{\partial u}{\partial x}=-e^{-x} \cos y=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-e^{-x} \sin y=-\frac{\partial v}{\partial x}$
The Cauchy-Riemann conditions are satisfied.
\diamond Example: $f(z)=\ln z$
$u(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right), v(x, y)=\tan ^{-1}(y / x)+2 n \pi$
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{x}{x^{2}+y^{2}}=\frac{\cos \theta}{r}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=\frac{y}{x^{2}+y^{2}}=\frac{\sin \theta}{r}$
The Cauchy-Riemann conditions are satisfied at all finite points other than $r=0(x=y=0)$. The origin $x=y=0$ is called a singular point for $f(z)=\ln z$.
- Definition (singularity): A point in the z-plane at which $f(z)$ is not analytic is called a singular point (or a singularity) of $f(z)$. There are several types of singularities. We say that $f(z)$ has an isolated singularity at $z=z_{0}$ if in the neighborhood of $z=z_{0}$, no matter how small, there are no other singularities. In other words, $f(z)$ is analytic throughout the neighborhood of $z=z_{0}$ except at $z=z_{0}$.
The function $f(z)$ has a pole of order n at $z=z_{0}$ (also called a removable singularity) if $\left(z-z_{0}\right)^{n} f(z)$ is analytic at z_{0}. If no integer n
can be found, then $z=z_{0}$ is an essential singularity.
\diamond Example: $f(z)=\frac{z-2}{z^{2}(z+1)}$ has isolated singularities at $z=0$ and at $z=1$. The singularity at $z=0$ is a pole of order 2 , and the singularity at $z=-1$ is a pole of order 1 (simple pole).

1.5 Laplace's Equation

- Cauchy-Riemann conditions: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
$\Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}, \frac{\partial^{2} v}{\partial y \partial x}=-\frac{\partial^{2} u}{\partial y^{2}}$
$\Rightarrow \nabla^{2} u=0$ with $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
Similarly, $\nabla^{2} v=0$
- Definition (Laplace's equation): $\nabla^{2} H=0$
\star Theorem: If a function $f(z)=u(x, y)+j v(x, y)$ is analytic in some region of the complex plane, both u and v satisfy Laplace's equation throughout that same region.

1.6 Integration in the Complex Plane

- Definition (Contour): A contour, or piecewise smooth arc, is an arc consisting of a finite number of smooth arcs joined end to end. When only the initial and final values are the same, a contour C is called a simple closed contour. A contour is positively oriented when it is in the counterclockwise direction.
* Theorem (Cauchy's first integral theorem): If a function $f(z)$ is analytic all all points interior to and on a simple closed contour C, then

$$
\oint_{C} f(z) d z=0
$$

\star Theorem (Cauchy's second integral theorem): Let $f(z)$ be analytic everywhere inside and on a simple closed contour C, taken in the positive
sense. If z_{0} is any point interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi j} \oint_{C} \frac{f(z)}{z-z_{0}} d z
$$

Extension:

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi j} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where

$$
f^{(n)}\left(z_{0}\right)=\left.\frac{d^{n} f}{d z^{n}}\right|_{z=z_{0}}
$$

1.7 The Taylor Series

\star Theorem: Suppose that a function $f(z)$ is analytic throughout a disk $\left|z-z_{0}\right|<R_{0}$, centered at z_{0} and with radius R_{0}. Then $f(z)$ has the power series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad\left(\left|z-z_{0}\right|<R_{0}\right)
$$

where

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi j} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \quad(n=0,1,2, \cdots)
$$

and the contour C is inside the disk.
\diamond Example: The Taylor series expansion of $\cos z$ about the point
$z=z_{0}=\pi / 2$.

$$
\begin{aligned}
\cos z= & \cos \frac{\pi}{2}+\frac{d}{d z}(\cos z)_{z=\pi / 2}\left(z-\frac{\pi}{2}\right) \\
& +\frac{1}{2!} \frac{d^{2}}{d z^{2}}(\cos z)_{z=\pi / 2}\left(z-\frac{\pi}{2}\right)^{2} \\
& +\frac{1}{3!} \frac{d^{3}}{d z^{3}}(\cos z)_{z=\pi / 2}\left(z-\frac{\pi}{2}\right)^{3}+\cdots \\
= & -\left(z-\frac{\pi}{2}\right)+\frac{1}{6}\left(z-\frac{\pi}{2}\right)^{3}+\cdots
\end{aligned}
$$

1.8 The Laurent Expansion

- Theorem: Suppose that a function $f(z)$ is analytic throughout an annular domain $R_{1}<\left|z-z_{0}\right|<R_{2}$, centered at z_{0}, and let C denote any positively oriented simple closed contour around z_{0} and lying in that domain. Then, at each point in the domain, $f(z)$ has the series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \quad\left(R_{1}<\left|z-z_{0}\right|<R_{2}\right)
$$

where

$$
a_{n}=\frac{1}{2 \pi j} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \quad(n=0,1,2, \cdots)
$$

and

$$
b_{n}=\frac{1}{2 \pi j} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z \quad(n=1,2, \cdots)
$$

\diamond Example: Find the Laurent expansion of $f(z)=(z-2)^{-1}$ for $|z|<2$.

$$
f(z)=\frac{-1}{2(1-z / 2)}=\sum_{n=0}^{\infty}-2^{-(n+1)} z^{n}
$$

\diamond Example: Find the Laurent expansion of $f(z)=(z-2)^{-1}$ for $|z|>2$.

$$
f(z)=\frac{1}{z}(1-2 / z)^{-1}=\sum_{n=0}^{\infty} \frac{2^{n}}{z^{n+1}}
$$

1.9 Cauchy's Residue Theorem

- Definition (Residues): When z_{0} is an isolated singular point of $f(z)$, there is a positive number R_{2} such that $f(z)$ is analytic at each point z for which $0<\left|z-z_{0}\right|<R_{2}$. Let C be any positively oriented simple closed contour around z_{0} that lies in the punctured disk $0<\left|z-z_{0}\right|<R_{2}$.
Define

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{1}{2 \pi j} \oint_{C} f(z) d z
$$

which is called the residue of $f(z)$ at the isolated singular point z_{0}. Remark: The residues can often be calculated using Cauchy's second integral theorem.

* Theorem: Let C be a simple closed contour, described in the positive
sense. If a function $f(z)$ is analytic inside and on C except for a finite number of singular points $z_{k}(k=1,2, \cdots, n)$ inside C, then

$$
\oint_{C} f(z) d z=2 \pi j \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

\diamond Example: Find the residue of

$$
f(z)=\frac{\sin z}{(z-\pi / 2)^{3}}
$$

at $z=\pi / 2$. The residue can be found by calculating

$$
\left.\frac{1}{2!} \frac{d^{2} \sin z}{d z^{2}}\right|_{z=\pi / 2}=-\frac{1}{2}
$$

2.0 The Evaluation of Real Definite Integrals

\diamond Example: Consider the integral I, defined by

$$
I(a, b, \pi)=\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}
$$

where a and b are real, and $b<a$. Set $z=e^{j \theta}$. The contour C of integration in the complex plane will, then, be a circle of unit radius. Since $\cos \theta=\left(e^{j \theta}+e^{-j \theta}\right) / 2$, we have $\cos \theta=\left(z+z^{-1}\right) / 2=\left(z^{2}+1\right) / 2 z$. Further, with $z=e^{j \theta}, d z=j e^{j \theta} d \theta$, so that $d \theta=d z / j z$. The integral I becomes

$$
I=\oint_{C} \frac{2 d z}{j\left[2 a z+b\left(z^{2}+1\right)\right]}=\frac{2}{j b} \oint_{C} \frac{d z}{\left(z-z_{+}\right)\left(z-z_{-}\right)}
$$

where the poles of the integrand are at the points

$$
\begin{aligned}
& z_{+}=-\frac{a}{b}+\sqrt{\left(\frac{a}{b}\right)^{2}-1} \\
& z_{-}=-\frac{a}{b}-\sqrt{\left(\frac{a}{b}\right)-1}
\end{aligned}
$$

Since $b<a$ by assumption, both poles are real, and $\left|z_{+}\right|<1,\left|z_{-}\right|>1$. Thus only the root z_{+}is within a circle of unit radius. Therefore the application of the Cauchy's residue theorem leads to the result

$$
I=\frac{2}{j b} 2 \pi j \operatorname{Res}_{z=z_{+}} \frac{1}{z-z_{-}}=\frac{4 \pi}{b} \frac{1}{z_{+}-z_{-}}
$$

On inserting the expression for z_{+}and z_{-}, the answer is

$$
I=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
$$

\diamond Example: Consider the integral

$$
I(\omega)=\int_{0}^{\infty} \frac{\sin \omega t}{t} d t
$$

By setting $\omega t=x$, we have

$$
I(\omega)=\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

It is easy to see the value of I is be independent of ω. Now, $\sin x / x$ is an even function of x. Thus we can write

$$
I(\omega)=\frac{1}{2} \operatorname{lm} \int_{-\infty}^{\infty} \frac{e^{j x}}{x} d x
$$

To evaluate this integral, consider the associated integral

$$
J=\oint \frac{e^{j z}}{z} d z
$$

Here the integrand has a pole at the point $z=0$. To excluce the point $z=0$, we choose the contour C shown in Fig. 2.15 (p. 91).
By Cauchy's first integral theorem, we have

$$
J=0=\oint_{C} \frac{e^{j z}}{z} d z
$$

The contributions from the four parts of C must now be found. We have

$$
0=\int_{-R}^{-\rho} \frac{e^{j x}}{x} d x+j \int_{\pi}^{0} \frac{e^{j \rho e^{j \theta}} \rho e^{j \theta}}{\rho e^{j \theta}} d \theta+\int_{\rho}^{R} \frac{e^{j x}}{x} d x+j \int_{0}^{\pi} \frac{e^{j R e^{j \theta}} R e^{j \theta}}{R e^{j \theta}} d \theta
$$

The value of the second term of the right-hand side, as $\rho \rightarrow 0$, is $-j \pi$; the first and third terms are combined, so that

$$
0=-j \pi+\int_{-R}^{R} \frac{e^{j x}}{x} d x+j \int_{0}^{\pi} e^{j R e^{j \theta}} d \theta
$$

The absolute value of the integral over θ satisfies the inequality

$$
\left|j \int_{0}^{\pi} e^{j R e^{j \theta}} d \theta\right| \leq \int_{0}^{\pi} e^{-R \sin \theta} d \theta
$$

Further, since $\sin \theta$ is an even function about $\pi / 2$, we have

$$
\int_{0}^{\pi} e^{-R \sin \theta} d \theta=2 \int_{0}^{\pi / 2} e^{-R \sin \theta} d \theta
$$

and $\sin \theta \geq 2 \theta / \pi$ for all θ in $0 \leq \theta \leq \pi / 2$. Thus,

$$
2 \int_{0}^{\pi / 2} e^{-R \sin \theta} d \theta \leq 2 \int_{0}^{\pi / 2} e^{-2 R \theta / \pi} d \theta=\frac{\pi}{R}\left(1-e^{-R}\right)
$$

Clearly, as $R \rightarrow \infty$, the last result approaches zero. Thus,

$$
I(\omega)=\int_{0}^{\infty} \frac{\sin \omega t}{t} d t=\frac{1}{2} \operatorname{lm} \int_{-\infty}^{\infty} \frac{e^{j x}}{x} d x=\frac{\pi}{2}
$$

