Electrical Engineering EE3TR4

Midterm test: 1.5 Hours

Instructor: Dr. J. Reilly March 1, 2017

This examination paper includes 4 pages and 3 questions. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

Special Instructions

- (a) If you want your paper to be considered for re-marking, then answer in pen and do not use white-out.
- (b) The McMaster Standard Calculator (Casio FX991) is the only calculator approved for this exam. No other aids are permitted.
- (c) There are 3 questions. Attempt all three.
- (d) You must show your work for full marks.
- (e) Make sure you read the entire paper over in its entirety before you start!
- (f) The tables of Fourier transforms and trigonometric identities at the back of this exam may be useful.

Continued on Page 2

- 1. The message signal shown in Figure 1 is modulated onto a carrier at frequency f_c Hz.
 - **a.** draw the corresponding amplitude modulated (AM) waveform $s_{\rm AM}(t)$ for 100% modulation. Assume the carrier amplitude $A_c = 1$. (2 marks)
 - **b.** draw the magnitude spectrum $S_{\text{AM}}(f)$ of the modulated waveform above. Show all relevant values. (3 marks)
 - c. repeat parts a. and b. for DSB/SC modulation. (5 marks)

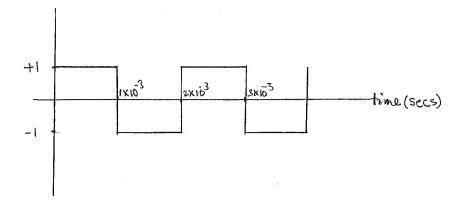


Figure 1: Message signal for Question 1.

- 2. Consider the configuration shown in Figure 2 below.
 - **a.** What is the Hilbert transform of $A \cos 2\pi f_o t$ (2 marks)?
 - **b.** Draw the waveform s(t) and the corresponding spectrum S(f) of the output signal (5 marks). *Hint:* Check the trigonometric formulas at the end!
 - **c.** Sketch the time domain waveform at the output of the top multiplier in the figure (3 marks).

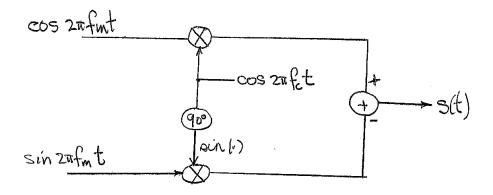


Figure 2: Modulation configuration for Question 2.

3. a. We are given a random process whose underlying pdf is a Gaussian distribution, given by

$$p(x) = \frac{1}{\sqrt{2\pi \cdot 4}} \exp\left(-\frac{1}{2} \cdot \frac{x^2}{4}\right). \tag{1}$$

What is the DC value and the power of this process? (Use the resistor value R = 1.) (4 marks)

- b. We wish to take the expectation of some function f(x) of a random process x(t). Explain how the expectation is evaluated in the most general case. What happens to the expectation when the underlying process is non-stationary?
- c. Let's say we are given a segment from a single realization (sample) of a random process; *i.e.* we are given x(n), n = 1, ..., 100. The mean and variance are unknown. Assume the process is stationary and ergodic. Carefully explain how we can estimate the mean and variance from this sample. (6 marks).

Fourier Transform Pairs

Time Function	Fourier Transform
$\operatorname{rect}\left(\frac{t}{T}\right)$	Tsinc(fT)
$\operatorname{sinc}(2Wt)$	$\frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$
$\exp(2\pi f_c t)$	$\delta(f-f_c)$
$\exp(-at)u(t), \ a > 0$	$\frac{1}{a+j2\pi f}$
$\exp(-a t), \ a > 0$	$\frac{2a}{a^2 + (2\pi f)^2}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$\delta(t)$	1
1	$\delta(f)$
$\cos(2\pi f_c t)$	$\frac{1}{2}\left[\delta(f-f_c)+\delta(f+f_c)\right]$

Trigonometric Identities

$$\begin{aligned} \cos(\theta) &= \frac{1}{2} \Big[\exp(j\theta) + \exp(-j\theta) \Big] \\ \sin(\theta) &= \frac{1}{2j} \Big[\exp(j\theta) - \exp(-j\theta) \Big] \\ \sin^2(\theta) + \cos^2(\theta) &= 1 \\ \cos^2(\theta) - \sin^2(\theta) &= \cos(2\theta) \\ \cos^2(\theta) &= \frac{1}{2} \Big[1 + \cos(2\theta) \Big] \\ 2\sin(\theta)\cos(\theta) &= \sin(2\theta) \\ \sin(\alpha)\sin(\beta) &= \frac{1}{2} \Big[\cos(\alpha - \beta) - \cos(\alpha + \beta) \\ \cos(\alpha)\cos(\beta) &= \frac{1}{2} \Big[\cos(\alpha - \beta) + \cos(\alpha + \beta) \\ \sin(\alpha)\cos(\beta) &= \frac{1}{2} \Big[\sin(\alpha - \beta) + \sin(\alpha + \beta) \Big] \end{aligned}$$

Note specifically that

$$\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) = \cos(\alpha + \beta)$$

Gaussian Distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$$

where μ, σ^2 are the mean and variance, respectively.

The End.