EE3TR4 Communication Systems

Objectives

- To provide an understanding of the practical communication systems such as AM radio and digital modem.
- To introduce the mathematical concepts such as Fourier transform and random process, and apply them to communication systems.

Text Books/Reference Books

Communication Systems, S. Haykin and M. Moher, 5e
 Edition, John Wiley and Sons, Inc. (Preferred)

or

- An Introduction to Analog and Digital Communications, S. Haykin and M. Moher, 2nd Edition, John Wiley and Sons, Inc.
- Course notes: will be placed on Avenue to Learn

Course Outline

The course material will cover the first few chapters of Haykin. The material will cover Ch. 2,3, 4,5,8 and 9. This material will include:

- Review of Fourier theory
- Amplitude modulation (AM) systems
- Review of random processes and noise, and modeling of noise in communications systems.
- Digital transmission systems.

Labs

There will be 5 numerical experiments throughout the course. The outline for the labs:

- Practical application of Fourier transforms
- Standard Amplitude modulation and demodulation
- Double sideband suppressed carrier modulation
- Quadrature carrier multiplexing
- Random processes and noise.

You can work individually or work in pairs. Your lab partner need not be from your lab section.

Lab Timeline

- Fourier theory typically starts from the third week of Jan and runs for two weeks. The output of a function generator is passed through a filter. The output of the filter is analyzed using an oscilloscope and spectrum analyzer. You will be doing the numerical experiment on Matlab.
- Standard AM runs from the first/second week of Feb for two weeks. You will be doing a numerical experiment. You will be provided with an audio data which will modulate a carrier. At the receiver side, you will demodulate using a diode and RC circuit.

Lab Timeline

- DSB-SC modulation and demodulation: runs from the third week of Feb for two weeks. You will be doing a numerical experiment of modulating a 64 KHz carrier with a 4 KHz sinusoidal message.
- Quadrature-carrier multiplexing (QCM): runs from the second week of March and runs from two weeks. You will be doing a numerical experiment on QCM.
- Random processes starts from the first week of Apr. You will be doing a numerical experiment. Evaluate the autocorrelation and power spectral density of the output of a filter driven by a white

Evaluations

- Final Exam 35%
- Midterm 20%
- Labs 25%
- Quizzes 20%

Two best quizzes out of 3 will be selected. Quizzes will be conducted during tutorials.

Assignments will be handed out but will not contribute towards the course grade.

Lecture Timings

- Mondays and Wednesdays Live lecture 11:30 am-12:20 am.
- No lecture on Fridays.
- I record one lecture per week (typically on Fridays)
- No tutorials this week or next week. The tutorials will start from the week of Jan 25.

Midterm

- Date: Thursday, Mar 4
- Time: 7:00 pm 8:30 pm
- Extra 30 minutes to upload.

Contact Info

- Instructor: Dr. S. Kumar
- Office hours: Mondays and Wednesdays 1:30-2:30 pm, on Teams.
- Office: ITBA-322, Extn: 26008
- Announcements will be made on Avenue
- E-mail: skumar@mcmaster.ca
- **Important: Please include '3TR4' in the subject line of your email.** You may not get a response from me without '3TR4' on the subject line.

Email Contacts

- For questions related to labs, quizzes and midterms, please contact the TA, Mr. Ryan Scott (scottr8@mcmaster.ca)
 Do not contact me for such routine tasks.
 However, if the problem is not resolved, you could contact me.
- If you have questions related to lectures, contact me.

Questions?

