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Abstract

Embedded deterministic test (EDT) is a manufacturing test paradigm that combines

the compression advantage of built-in self-test with the high fault coverage of deter-

ministic stimuli inherent to methods based on automatic test pattern generation and

external testers. Despite enabling the use of low cost testers for rapidly achieving

high fault coverage, EDT must consciously use the available tester channels to ensure

non-disruptive scaling to future devices of increased complexity. The focus of this

thesis is to introduce a new EDT approach for systems-on-a-chip (SOCs) that are

designed using embedded cores that are intellectual property (IP)-protected.

Following an introduction to integrated circuit testing and an overview of the

related work, we define the criteria that must be satisfied by the EDT approaches

for the future SOCs of ever growing complexity. Then we observe that the necessary

amount of compressed volume of test data transferred from the tester to the embedded

cores in an SOC varies significantly during the testing process. This motivates a

novel approach to compressed SOC testing based on time-multiplexing the tester

channels. It is shown how the introduction of test control channels will reduce the

number of required test data channels which will then have increased usage, as the

embedded cores will receive compressed test data only when necessary. Through

the use of modular and scalable hardware for on-chip test control and test data

decompression, we define a new algorithmic framework for test data compression that

is applicable to SOCs comprising IP-protected blocks. Experimental results indicate

that our approach compares to the existing approaches for EDT that have similar

design criteria and methodology constraints, while providing a seamless integration

to low cost test equipment.
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Glossary

Abstraction removal of detail to facilitate design description

ATE automated test equipment, used to apply test patterns to ICs

ATE buffer the memory used in ATEs where the test data to be applied is stored

ATPG automatic test pattern generation, deriving of fault based test patterns

At-speed operating with the same clock period as used in normal operation

Automation handing over of control to computers for management of design details

BIST built-in self-test, test hardware placed on-chip to apply test patterns

CAD computer aided design, tools for design automation (also EDA)

Core a pre-designed and pre-verified module which can be reused

Core (firm) a core provided in the form of a netlist

Core (hard) a core provided in the form of a physical layout

Core (soft) a core provided in the form of an RTL description

Core provider one who develops a core, in contrast to system integrator

CUT circuit (or core) under test

Defect a manufacturing error or process variation

Defect coverage the percentage of defects detected by a test set

Design reuse use of already designed cores in a system to ease the design process

Design verification comparison of design against specification

Deterministic BIST fault targeted BIST, in contrast to pseudo-random BIST

DFT design for test, steps/hardware added in design to facilitate test

Diagnosis determining what caused a failed device to fail

EDA electronic design automation, tools for design automation (also CAD)

EDT embedded deterministic test, on-chip hardware facilitating test application
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Fault a model which captures the effect of one or many types of defects

Fault coverage the percentage of faults detected by a test set

Fault simulation evaluation of a test pattern to determine what faults it detects

FDR frequency directed run-length encoding

FSM finite state machine, algorithmic hardware control

Functional inputs the inputs of the device used during normal operation

Functional test tests focused on circuit operation, in contract to structural test

Golomb a type of statistical coding

HDL hardware description language, syntax for RTL descriptions e.g. Verilog/VHDL

Huffman a type of statistical coding

IC integrated circuit, many transistors integrated in a single package, a device

IEEE 1500 a standard for interfacing to IP-protected cores

IP intellectual property, details of a core which are not disclosed

IP-consistency respecting IP-protection by not requiring IP details

ISCAS’89 benchmarks benchmark circuits widely used in literature on test

ITRS International Technology Roadmap for Semiconductors

JTAG (IEEE 1149) a widely used device programming interface

Layout low level description of a circuit in terms of transistor placements

LFSR linear feedback shift register, a type of PRPG

Low cost tester an ATE without special expensive features

Manufacturing test comparison of manufactured devices against the design

MISR multiple input signature register

Modularity ease of plugability into a system architecture

Moore’s law an empirical observation of exponential transistor density growth

Netlist a low-mid level description of a circuit in terms of logic gate connections

Phase shifter a network placed on a PRPG output to reduce shift correlations

Phase shifter reconfiguration use of muxes to modify a phase shifter

Physical layout see layout

Programmability (WRT TDC) ability of a decompressor to pass any test

PRPG pseudo-random pattern generator, produces a pseudo-random sequence

Pseudo-random BIST BIST by random patterns, contrast to deterministic BIST
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RTL register transfer level, a mid-high level description using register operations

Run-length encoding compression by encoding long runs of 1s or 0s as a symbol

Scalability the ability to cope with increasing circuit size, VTD, etc.

Scan access to the internal state registers of an IC

Scan chain reconfiguration linking of scan chains end to end

Scan chains shift register structure facilitating scan

Scan frequency the clock frequency of the scan chains

SCU scan chain utilization - useful portion of decompressor output

SOC system-on-a-chip, an integrated circuit comprised of cores

Specification the formal description of the design requirements for a system

Structural test tests focused on circuit logic pathways, contrast to functional test

Stuck-at-0 a fault model assuming a node shorted to ground

Stuck-at-1 a fault model assuming a node shorted to power

STUMPS Self-Test Using a MISR and Parallel Shift register sequence generator

Synthesis transformation of a description to a lower level of abstraction

Synthesis (architectural) behavioral → RTL

Synthesis (logic) logic equations → netlist

Synthesis (RTL) RTL → logic equations

System integrator one who links cores to form a system, contrast to core provider

TCU tester channel utilization - useful portion of decompressor input

TDC test data compression, reduction in the amount of test data applied to a CUT

Test cube a partly specified test pattern (containing x-bits)

Test data compression see TDC

Test pattern a vector of circuit input values applied with the intent of testing

Test set a collection of test patterns

Test set compaction merging of test cubes which do not conflict

Test set dependent decompression methods tuned to a given test set

Test set independent decompression methods equally applicable to many test sets

Testbench stimuli and expected responses used by simulation during verification

VLSI very large scale integrated circuits, containing millions of transistors

VTD volume of test data, the amount of data applied to a CUT
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Chapter 1

Introduction

Integrated circuits (ICs) are thin chips made out of semiconductor material (e.g.,

silicon or germanium), which consist of a connection of semiconductor devices like

transistors, and passive components such as resistors or capacitors. The devices on an

IC can be used to build logic gates that process electronic signals using the formalism

of the Boolean algebra. The ICs based predominantly on logic gates are called digital

with examples being microprocessors, microcontrollers, digital signal processors and

application specific integrated circuits (ASICs). From simple electronic gadgets such

as digital clocks to more sophisticated appliances like cellular phones and personal

computers, our lives are influenced by digital ICs. They even affect our lives in ways

which are not directly evident. For instance, banks rely heavily on complex computer

systems for financial management and security. Although the circuits themselves in

all these applications may be very diverse, what they all have in common is that

they require design and manufacture. In almost all cases the complexity of the device

is well beyond human management at the transistor level. This has spawned the

electronic design automation (EDA) industry which provides tools for dealing with

designs of ever increasing levels of complexity.

In the remainder of this chapter discussion will be provided on the design flow

for very large scale integrated (VLSI) circuits (Section 1.1), providing justification

for manufacturing test (Section 1.2) and in turn the need for test data compression

(Section 1.3), the focus of this work. Thesis organization is outlined in Section 1.4.
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1.1. VLSI Design M.A.Sc. - A.B. Kinsman - McMaster

Figure 1.1: Scaling of transistor count ( c©Intel [29]).

1.1 VLSI Design

The International Technology Roadmap for Semiconductors (ITRS) [36] predicts that

by 2010 the number of transistors per chip will exceed four billion. Simultaneously,

time to market pressure is stretching the limits of designers to keep pace with the

demand for faster, smaller devices. At the same time, device pin counts are increasing

at a much slower rate, meaning that we have relatively less access to each internal

circuit node as time goes on. Moore’s law1, illustrated in Figure 1.1, further em-

phasizes the challenge illustrating the exponential growth in number of transistors

per chip over the last few decades. The increased transistor density translates into

a relentlessly increasing complexity for each new generation of devices. Delivery of

these new generations of increasingly complex devices is enabled by a few key factors

as listed below and detailed in the forthcoming sub-sections:

• Design Reuse: Construction of large systems is facilitated by reusing modules

and components which have been pre-designed and pre-verified, and linking

them together to obtain the desired functionality (Section 1.1.1).

1According to Moore’s law the number of transistors on a chip doubles about every two years. It
should be noted that although Figure 1.1 shows the scaling trend for Intel Microprocessors, Moore’s
law is applicable to any type of integrated circuit in general.

2
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• Abstraction: Different layers of abstraction have been created between the

physical transistor level at which manufacturing occurs, and the design specifi-

cation which comes to the design engineer (Section 1.1.2).

• Automation: By placing the extremely computationally intensive tasks of de-

sign in software, the designer may focus on adding value to his specific product

while tools handle the implementation tasks common to all the integrated cir-

cuits (Section 1.1.3).

1.1.1 Design Reuse

Due to the complexity of current day devices with their enormous roster of embedded

features, the time required to design each new system from the ground up would

seriously impede progress from a technological stand point. In fact it may in some

cases even exceed the anticipated duration of the application for which the device is

being designed. To enable designs of such complexity to be completed in a timely

fashion design reuse is employed where the functionality of each application is divided

into sub-functions for which the hardware may be designed and verified separately

and then used again in other designs. As a simple example, a 32 bit adder once

designed, can be used in a number of applications without the need to explicitly

redesign that functionality into each kind of device which uses it. In a similar fashion

to reuse in software development, libraries of functional modules called cores are

assembled and when a new design is started, the designer can select the required

cores from these libraries. As a result the designer may focus on 1) development of

the special application cores which may not be available and 2) system level assembly

of the cores to invoke the desired functionality. The resulting overall system is called

a system-on-a-chip (SOC).

Although reuse is a significant enabler of complex designs with many features,

standards are required to ensure smooth integration of cores designed in one place

to systems designed in another. For instance there are a few choices in existence for

on-chip busses which connect multiple cores in an SOC. There is also the issue of

intellectual property (IP). Some businesses are built around the development of cores

3
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for particular applications and if the IP is not protected others may reap benefits

instead of the company that put the work into developing the core. The issue of IP

protection raises challenges, especially in test, which will be addressed in Section 1.2.

Simply note for now that SOCs may consist of IP-protected and non-IP-protected

cores, that is, some cores to which the system integrator does not have access to the

internal circuit details, and some for which access is granted.

1.1.2 Abstraction

In addition to relieving some of the design effort there is a sense in which reuse

enables levels of abstraction by providing convenient borders on which to divide the

design. Coming back to the adder, there is no need to consider the inner workings

of an adder once they are in place and the design may be handled at a level of

abstraction where the adder is considered a black box. This level is often referred

to as register transfer level (RTL). Although reuse facilitates abstraction it is not

necessary for abstraction. Levels of abstraction simply provide a way of linking the

very high level design specification to the very low level transistor implementation

in silicon. Instead of jumping directly from specification to implementation, tasks

which the system must perform can be divided and each task handled individually,

then each task may be divided into separate blocks and so on with more detail added

at each level. For designs of current day complexity the specification essentially gives

the behavioral description of the circuit. The job of the designer is to translate the

behavioral description into an RTL description using standard hardware description

languages (HDLs) such as Verilog HDL or VHDL [98, 99]. For small designs the

designer would then be able to progress deeper to the gate level and the transistor

level, but complexities of today’s chips are beyond the scope of what people can

reasonably manage. This has resulted in the development of design automation tools.

1.1.3 Automation

In order to cope with such large complexities, the designer will generally not proceed

past the RTL when designing a circuit. Once a complete RTL description in some
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HDL has been amassed the HDL is given to a tool called a logic synthesis tool. This

process transforms the RTL description to a gate level description of the SOC called

a gate level netlist. Note that because of the intractability of the problem the gate

level netlist will not be optimal for the design at hand, however the results obtained

in the time required far outweigh the extra area and performance overhead which

may arise from giving control of this level to the tool. Once a gate level netlist has

been obtained, it is fed into a physical design/layout tool to determine the locations

of transistors and how the wires (vias, metal layers) must be routed to obtain the

circuit described by the gate level netlist. This process too is sub-optimal however.

Were time to be spent searching for an optimal solution, likely no devices would ever

be constructed.

1.1.4 VLSI Design Process

Figure 1.2 summarizes the process of designing VLSI integrated circuits. The process

begins with a specification which describes in a precise way what the device is expected

do. This comes from the application (for instance if the device is to be designed to

solve a specific problem), or may be market driven as in the case of devices built to

suit consumer demand. The role of the designer is to extract from the specification a

high level behavioral description of the circuit. This level of abstraction organizes the

system into several large tasks providing convenient divisions of the design effort. The

designer also decides what parts of the design may be reused from an assembled library

of cores. Once the behavioral description of the circuit is clear, it must be translated

to the RTL using a hardware description language such as Verilog HDL or VHDL. For

some small classes of designs this process is automated under the term architectural

synthesis , however in the general case a skilled designer can obtain much better results

than an architectural synthesis tool can, at least for designs of current complexity.

As a note, scaling trends indicate the likelihood of a level of design complexity being

reached in the near future that will require the use of architectural synthesis to obtain

acceptable design times. Cores for reuse are also generally instantiated at this level,

explicitly in the case of soft cores (HDL descriptions) and as black boxes for firm
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Figure 1.2: VLSI design flow.

(gate level netlists) and hard (layouts) cores. The RTL provides more detail about

the operation of the device rather than simply an organization of tasks. It provides

information about how data and control interact and evolve in the system to provide

the desired functionality given in the behavioral model.

An RTL description of the circuit generally marks the end of heavy manual in-

volvement in the design process as automated tools take over at this point adding

more detail at each lower level of abstraction. First an RTL synthesis tool generates

the logic functions which describe operations laid out in the RTL. Logic synthesis

maps these equations to interconnections of gates called the gate level netlist. Place

and route tools take this netlist and provide a layout of transistors and metal inter-

connects which will be formed in manufacturing. This layout is used for the masks

which the wafer fab uses to manufacture the devices, the back-end of the design flow2.

2Note that Figure 1.2 shows an idealized flow with independence between abstraction levels. In
reality, cross level interaction is required, especially with movement to smaller technology nodes.

6



1.1. VLSI Design M.A.Sc. - A.B. Kinsman - McMaster

It is to be expected that some design errors will occur in light of the fact that

subtle mistakes can be made when handling such a degree of complexity, and that

the stages from RTL synthesis onward are handled by software tools which have no

explicit “understanding” about the function of the device. At each level of abstraction

a tool merely adds detail according to rules applied to input from the level above.

To cope with such design errors, design verification methods have been developed.

Formal verification methods exist, as do simulation based methods which are used

much more frequently. Generally speaking testbenches are developed which, through

software simulation, apply stimulus to a simulation model of the circuit to check

whether operation of the model will align with the specifications. A simulation model

exists at each level of abstraction with lower level models containing more detail to

reflect the greater detail in the circuit description itself. Because of this greater detail,

simulation is more computationally expensive at lower levels of abstraction and so

verification is performed at all levels during synthesis to try and catch and correct

as many errors as possible as early as possible thereby avoiding having to spend

more computational effort on simulation later on. The other reason for verification

at each level is that each time a circuit change is made synthesis must be re-done.

Accordingly simulation on the gate level model for instance does not require place

and route to be run which saves time on each design correction. At the end, design

verification should ensure (to the limits of: 1) accuracy of the simulation models and

2) extensiveness of the testbenches) the correlation between the specification and the

fabrication instructions (layout).

Other than its role in the design process, design verification is outside the scope of

this thesis. It is mentioned more so to bring contrast to the process of manufacturing

test since distinction is not often made between test and verification, especially in

software development. We have seen in the previous paragraph that the role of veri-

fication is to ensure that what we designed is what we intended to design. The role

of manufacturing test is to ensure that what we have manufactured is what we have

designed. The right extreme of Figure 1.2 shows the levels between which comparison

occurs for both verification (upper section) and test (lower section). It is immedi-

ately clear that while verification is done through software simulation, as we have
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discussed, manufacturing test makes comparisons at the device level and is therefore

a physical process. At the simplest level this process consists of deciding a set of test

vectors which are applied to each circuit, and the response returned by each circuit is

compared against the expected response which is obtained by simulation. The details

of this process, including the generation and application of vectors, are provided in

the next section.

1.2 VLSI Test

Due to the stochastic nature of the manufacturing process we cannot have confidence

in every device which is manufactured, especially for emerging technology nodes. This

stochastic nature leads to what are called process variations, that is for example, not

all wafers nor all parts of the same wafer get precisely equal exposure to precisely

equal concentrations of developing or etching chemicals. Process variations may affect

transistor threshold voltages or wire thicknesses and can result in some metal not

being entirely etched away, or metal which should remain being etched away. Other

sources of manufacturing errors (defects) include silicon impurities in the wafer or dust

particles on the chip during manufacturing. Figure 1.3 shows two examples of the

many possible types of defects which may occur. In Figure 1.3(a), the area may have

been over-etched or the photo-resist may have been too thin or under-developed in

the region of the defect, resulting in less metal being present than should be and thus

a resistive open (resistive since not all metal has been removed, some conductivity

remains). Figure 1.3(b) shows the opposite case where metal that should have been

removed was not, leading to a resistive short along the same line of reasoning just

above. In both these cases and for the many other types of defects which may occur,

the circuit will not behave as intended. This problem is only becoming more serious

as increasingly intricate technologies are used. This section lays the foundations

for manufacturing test which addresses those issues just mentioned. More in-depth

details about manufacturing test may be found in [1, 7, 13].

Having resolved that manufacturing test must be employed, one may ask “how

can it be accomplished?”. A straightforward approach would be to simply apply all
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(a) Resistive open defect (b) Resistive short defect

Figure 1.3: Manufacturing defects responsible for device failure [86].

possible circuit inputs and check that the circuit output is correct for each given in-

put combination. This method is called exhaustive functional testing and although it

could give extremely high confidence about the operability of the device, it becomes

entirely impractical for anything more than the most trivial of devices. For example,

consider a 64 bit ripple carry adder. This circuit would have 129 inputs (64+64+1),

and thus there are 2129 possible input combinations. Assuming automated test equip-

ment (ATE) is used to apply these patterns at 1 GHz (extremely fast by today’s

standards), the test would take 2.16× 1022 years to complete [13].

1.2.1 Structural Testing and ATPG

To deal with this issue, the concept of a structural test has been defined. Due to

the large number and variety of manufacturing defects which exist, it is impossible

to test explicitly for each kind. To overcome this obstacle, fault models have been

developed which group defects according to their impact on the logical functionality

of the circuit, i.e. we link defects to their manifestation as faults in the logical domain

and apply logical tests to look for the presence of faults. The two most common fault

models used are the stuck-at and delay fault models [13]. Delay fault models cover

those defects which affect timing, causing a transition to occur later than it ought to.

They are outside the realm of material dealt with in this thesis. This work is aimed

rather at tests relating to the stuck-at fault model, which covers those defects which

manifest themselves as a particular circuit node being fixed to a logical 1 (stuck-at

1) or to a logical 0 (stuck-at 0).
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Figure 1.4: Stuck-at fault models for different defects.

Figure 1.4 shows the fault modeling of defects. In Figure 1.4(a), the transistor

level detail of a logical AND gate has been shown. The most straightforward example

of a stuck-at fault is the case where the node in question has actually become shorted

to a power or ground rail. Figure 1.4(b) shows the case where the output has become

shorted to ground, resulting in a stuck-at 0 fault on the output. Not only explicit

shorts to power or ground manifest as stuck-at faults however. Take for example

Figure 1.4(c), in this figure the output has become shorted to one of the inputs. In

this case, when testing the gate (applying patterns to the inputs and observing the

output) it will behave as though the other input (the one to which the output is not

shorted) is stuck-at 1 since the shorted input will always be passed directly to the

output. Hence, a very important observation is that most short or open defects that

do not make any particular node to be connected to power/ground rails will still be

detected by stuck-at test patterns. In this way a small number of fault models are

able to cover many classes of defects. It should be noted that after manufacturing

test the failing devices are analyzed and the failing pattern information will be used

for diagnosis, which is a separate problem not covered in this thesis.

With fault models in place, the insurmountable task of targeting every kind of

defect reduces to the task of targeting each fault at each node, a still difficult but

more manageable problem. To this end, a tool called automatic test pattern generation

(ATPG) is employed which systematically works through the nodes in the circuit

description and generates tests according to selected fault models, these being the

aforementioned structural tests. Figure 1.5 shows the process of generating a test for

a particular stuck-at fault in a circuit. At the basic level, a test for a given stuck-at
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Figure 1.5: Structural test vector generation.

fault on a given node is simply to try to drive that circuit node to the opposite value

of the fault. In the figure, the test is for stuck-at 0 so the test involves driving that

node to a 1. After establishing this node, values to control the primary inputs are

determined through backward justification - values to excite the fault and forward

propagation - values to carry the effect of the fault to the primary outputs where it

can be observed. Fittingly, the ease of setting a node to a given value through the

primary inputs is called controllability while the ease of propagating the effect of the

fault to the primary outputs is called observability. It is also important to note that

ATPG is a known NP-complete problem [25].

As can be seen in Figure 1.5, values which are not directly on the excitation or

propagation path of the fault are assigned x’s - “don’t care” values indicating that

they may take on a 0 or 1 value without affecting the effectiveness of the test, hereafter

referred to as x-bits. This fact is important for test data reduction methods, as will

be addressed in detail later. As a side note, stimulus patterns which contain x-bits

are referred to as test cubes. Also note that after the fault site each point on the

propagation path should be of the form a(b), where a is the expected response of

a correctly operating circuit and b is the response of a defective circuit. Obviously

these two must be different to be able to discern between good and defective circuits.

As a note, fault simulation tools, which examine an input pattern to a circuit and

indicate what faults are detected by that pattern, are often used in concert with

ATPG. These tools can be used to reduce the number of patterns which must be
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Figure 1.6: Merging of two test vectors into one by compaction.

applied to the circuit since some patterns may cover multiple faults. Another method

of reducing the number of patterns is called compaction, which merges vectors whose

stimulated primary inputs form compatible sets, as shown in Figure 1.6. Also, since

some faults are equivalent to one another (e.g., a stuck-at-0 fault on one node may

result in a stuck-at-1 fault on another node), the number of required test patterns

which must be applied can be further reduced resulting in significantly fewer than are

required in the exhaustive functional case. In the same example as given above with

a 64 bit ripple carry adder, ATPG for this circuit results in 1728 tests which would

take 0.000 001 728s on a 1 GHZ ATE [13].

This example has centered around combinational circuits although in reality most

circuits contain a large number of sequential elements. We would naturally ask if the

same process may be applied to sequential circuits. Sequential ATPG does in fact

exist, however it is extremely impractical because of its intractability caused by huge

state spaces. The increased complexity arises from having to not only justify a node

through primary inputs, but also through the current state which must be reached

through application of successive patterns to the primary inputs during successive

clock cycles. In Section 1.1, mention was made that device pin counts are not keeping

pace with transistor densities which results in an overall reduction in controllability

and observability of nodes in the circuit. This is a significant challenge even for

combinational circuits, which is what invalidates sequential ATPG when added to

the need to set-up a required state through functional means. This overwhelming

complexity is sidestepped through the introduction of design-for-test (DFT) hardware

and in the following section the scan-based DFT method is discussed.
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Figure 1.7: General sequential circuit.

Scan-out

Combinational
Logic

Sequential
Memory

Elements
Clock

Next State

Current State

Primary
Outputs

Primary
Inputs

Scan-in

Scan en

(a) Block diagram.

1
0 D    Q

1
0 D    Q

1
0 D    Q

Scan en
Clock

Scan-in Scan-out

Functional-out

Functional-in

(b) Sequential memory element detail.

Figure 1.8: General sequential circuit with scan DFT.

1.2.2 Scan Based Testing

Figure 1.7(a) shows the block diagram of a general sequential circuit. Based on

the present state and the primary inputs, the primary outputs and the next state

are computed by the combinational circuit block. When a clock edge arrives at the

sequential block, the next state is stored in the memory elements (flip-flops - shown

in Figure 1.7(b)) and therefore becomes the present state, starting the cycle again.

The modified circuit can be seen in Figure 1.8 where scan has been inserted. In

Figure 1.8(b), it can be seen that the only change to the circuit is the addition of a

multiplexer in front of each flip-flop (FF) which allows it to take data either from its

respective functional pin of the combinational circuit (when Scan en = 0), or from

the adjacent FF (when Scan en = 1, the test mode). In this way, the FFs in the

design can be linked into a shift register structure, and thus any desired state can be

shifted in through Scan-in and the state at any given time can be shifted out through

Scan-out. One may ask how we can be sure that the operation of the scan chain (or

all the DFT hardware for that matter) is not corrupted by circuit defects. We can in

fact assume with reasonable certainty that if the scan chains are not working correctly
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then at some point a test should fail and thus the chip will be rejected anyway. As

a precaution, before any other test patterns are applied the sequence ...0110... is

shifted through the scan chains. Since this sequence contains all transitions (0→0,

0→1, 1→0, 1→1), an uncorrupted sequence emerging from the scan chain will also

give a high degree of confidence about the reliability of the scan hardware.

By increasing the number of Scan-in and Scan-out pins, the FFs may be linked

into multiple scan chains to reduce scan chain length and thereby the time required

to shift in a new current state. For example, if a circuit contains 1 million FFs, this

may be organized as a single scan chain of length 1 million (using two scan pins)

or 2 scan chains with length 500,000 (using 4 scan pins) requiring half the time to

scan in a new state. The number of chains can therefore be extended as much as

required providing there are sufficient package pins available. The introduction of the

muxes obviously incurs area and performance penalties. The penalty in area penalty

is obvious, and the performance penalty arises because the current state instead of

passing only through the combinational logic to arrive at the FF inputs, must now

pass through the scan muxes as well, adding extra propagation delay. This increases

the time which must be left between consecutive clock cycles and therefore decreases

the maximum operating frequency of the circuit. These penalties are relatively small

and well worth accepting given the increased observability and controllability gained.

By introducing scan the combinational block may be accessed directly, and thus

combinational ATPG as discussed in the previous section may be used to generate

test vectors, and the need for sequential ATPG in its intractability is removed.

In addition to the small area and performance penalty brought about by the

introduction of scan, the problem of volume of test data (VTD) arises when scan

based testing is used. Without scan the size of each pattern corresponds to the

number of primary inputs to the circuit, roughly a few hundred at most for even

current day large designs. Once scan is integrated however, each pattern must now

drive not only the primary inputs but also all the flip-flops for the entire design, a

number exceeding 1 million for current day large designs. Delivery of this enormous

VTD to the circuit under test (CUT) has posed significant challenges.
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Figure 1.9: Functional test application.

1.2.3 Test Application

With all the discussion surrounding generation of tests for particular faults, mention

should be made about the actual application of the patterns to the CUT. Before dis-

cussing application of scan vectors generated as detailed in the previous section, we

will backtrack slightly and discuss application of functional patterns. Even though

functional testing cannot be relied on to give required fault coverage (because of the

intractability of sequential ATPG as discussed earlier), it is often used for at-speed

testing. Instead of testing exhaustively, structural scan tests are used in conjunction

with functional tests which excite the critical path of the circuit (the longest combi-

national path). It should be noted that the use of scan for at-speed testing has been

researched in the recent years and production methods have emerged. Nevertheless,

for most designs a very small number of functional patterns (usually obtained from

simulation testbenches) are still employed. For this reason, application of functional

patterns will be covered first, and then application of scan patterns will be addressed.

Functional testing consists of applying test patterns to the primary inputs of the

circuit while applying a clock as in normal functional mode (although the maximum

clock speed need not be used) and observing the response of the circuit during each

clock cycle on the primary outputs. This scheme is also often called test per clock since

a test occurs in each clock cycle. Figure 1.9 emphasizes the application of data to the

primary inputs and observation at the primary outputs by the shaded arrows. Note

that although data is not explicitly applied to the sequential elements, in each clock

cycle the values on the inputs influence what is stored in the memory and each current

15



1.2. VLSI Test M.A.Sc. - A.B. Kinsman - McMaster

Scan-out

Combinational
Logic

Sequential
Memory

Elements
Clock

Next State

Current State

Primary
Outputs

Primary
Inputs

Scan-in

Scan en

Pseudo
Inputs

Pseudo
Outputs

Scan in of next test vector

Simultaneous scan out of previous test response

1

(a) Scanning in/out new stimulus/previous response.

Scan-out

Combinational
Logic

Sequential
Memory

Elements
Clock

Next State

Current State

Primary
Outputs

Primary
Inputs

Scan-in

Scan en

Pseudo
Inputs

Pseudo
Outputs

0

Application of scanned-in 
stimulus to combinational 
circuit

Capture of response 
from combinational 
circuit

(b) Single clock pulse test application/capture.

Figure 1.10: Scan test application.

state in the memory influences the values appearing on the outputs. As mentioned

above, this approach is very efficient in terms of VTD since each pattern consists

of only the values for primary inputs, plus primary outputs for the response. It is

also much faster since each test requires only a single clock cycle rather than many

as is the case for scan. Where this method fails is its inability to ensure adequate

fault coverage with reasonable computational effort and thus we require scan also as

discussed above.

Figure 1.10 shows the process of applying a scan test to a circuit. The main

difference between this and functional testing is that a given state can be reached

by scanning it in as opposed to reaching it by manipulation through the primary

16



1.2. VLSI Test M.A.Sc. - A.B. Kinsman - McMaster

inputs. In fact, scan enables application of patterns which may not be possible in

functional testing since normally unreachable states may be scanned in. This is one of

the mechanisms by which scan testing enables higher fault coverage. To apply a scan

pattern two steps must occur. The first step is setup of the new state through scan,

shown in Figure 1.10(a). Here the scan input arrow has been shaded to emphasize

the path along which the new state data is provided. The scan output path has also

been highlighted to show that simultaneous to the setup of a new state, the result

from application of the previous pattern to the circuit (which is stored in the FFs) is

scanned out and compared with the expected response. Note also that the Scan en

pin has been asserted which links the scan cells into chains as covered in Section 1.2.2.

The second step of scan testing is to apply the newly updated state to the circuit

and capture the response as in Figure 1.10(b). During this step the Scan en pin is

de-asserted to put the circuit into normal functional mode so that each FF draws its

data from its respective output of the combinational logic. A single clock cycle is

applied to the circuit so that the combinational output is captured in the FFs, thus

it may be scanned out as the next pattern is scanned in. At the same time that the

values from the sequential elements are applied and the results captured, the primary

inputs are stimulated and the primary outputs observed, as indicated by the shaded

arrows in the figure. Note that scan FFs may be added to drive/capture the primary

inputs/outputs in the test mode to circumvent application and observation of them

directly. Henceforth in this thesis we refer only to data in the scan chains without

loss of generality because of this fact.

In contrast to test per clock, this method is often called test per scan because

each test pattern requires multiple clock cycles amounting to a single scan to apply.

The increased number of clock cycles required to scan in a new state results in much

longer test times than the test per clock scheme. In addition to longer test times, the

data for each pattern now consists of values for each FF (likewise for the expected

responses) which drastically increases the VTD. Addressing this issue of increased

VTD is the topic of the next section.
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Figure 1.11: Scaling of volume of test data - assumes 20 gates/FF, 1 pattern/10 FFs,
256 scan channels and 20 MHz scan clock.

1.3 Test Data Compression

In the last section we have seen how introduction of scan to enable sufficient fault

coverage results in large VTD. We have also provided discussion regarding application

of test patterns to a circuit without giving details about what provides those test

patterns. In this section we will discuss trends in VTD, followed by elaboration on

possible methods of application of test patterns to the CUT and the impact that

trends in VTD have on each.

Section 1.1 addressed the challenges arising in design due to trends in device

complexity (increasing transistor count). In Section 1.2.1 we saw that pin counts,

although increasing, are not even close to keeping up with the rate of increase in

transistor count. Both these trends are driving the increasing difficulty in effectively

testing VLSI circuits. Rising transistor counts are a direct translation of rising gate

counts and FF counts. Rising FF counts directly increase the size of each test pattern

which must be applied. At the same time, the reduced observability and controlability

coupled with the increased number of faults per circuit (as a result of the increased

gate count) is driving up the pattern count. To be direct, increased circuit sizes are

yielding increased pattern counts and increased data per pattern causing VTD to

increase at an accelerated rate as discussed in the next paragraph.
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Figure 1.11 shows how VTD is affected by circuit size. The values in the graph

are calculated from the gate count according to the assumptions given in the caption.

It is assumed that there are 20 gates per flip-flop, a widely accepted empirical result

used by many (e.g., [77]). We have assumed here 1 pattern for 10 FFs, another

empirical observation which we believe to be optimistic. In reality we believe it to

be more patterns per FF - giving an even larger VTD than we obtain here. The

assumption of 256 scan channels is justifiable since 256 must be used for each input

and output scan channels giving 512 in total, a significant number of pins for the range

of device sizes given. Finally, a 20 MHz scan clock is assumed mainly for the sake

of containing power during test. For volume of test data only the stimulus has been

considered, so the total ATE memory required will be twice the value in the graph

(stimulus + response). It has been calculated as the product of patterns × FFs or

Gates2/200 (based on the assumptions). The test time is patterns×time per pattern

where time per pattern = FFs/scan channels giving Gates2/51200 or V TD/256.

As mentioned above, the situation is only aggravated by Moore’s law which is fueling

the increasing gate count. With gates scaling as the square of time, and VTD scaling

as the square of gates, VTD has become a serious concern. This problem is further

aggravated by the fact that the gate count (and hence scan flip-flops and test patterns)

will continue to increase at a faster rate than the tester channel count (determined

by the packaging constraints on the chip pin count) and the scan clock frequency

(limited by the power constraints).

Having established that VTD is large and is only getting larger, we must evaluate

its impact on current test application methods and ensure the problem is addressed

in new methods which are proposed. We have seen in Section 1.2.3 that functional

testing leads to comparatively small volumes of test data, however, as addressed

it cannot provide the fault coverage that is necessary for required product quality.

Constrained to use scan based testing, let us consider different pattern application

methods and the impact of VTD scaling on them.
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Figure 1.12: Test pattern application with an ATE.

1.3.1 Automated Test Equipment

The most obvious source of test patterns is an external piece of equipment which

can apply the required sequences to the CUT and observe and compare the output

response. Such systems are called automatic test equipment (ATE), and the test

application process is shown in Figure 1.12. The pattern memory stores both the test

stimuli and the expected responses. The processor accesses the memory in a stream

mode passing stimuli for the next pattern to the scan chains (application block), and

comparing the response from the previous pattern to the expected response from

the memory (comparison block). The data lines that connect the ATE to the CUT

are called tester channels. Note that this is the setup used for functional testing

as well where the tester channels are connected to the primary inputs and outputs

instead of the scan chains. This method certainly accomplishes the task and allows

any possible sequence to be applied. Increasing volume of test data however is raising

challenges with this method. Firstly, the memory should be large enough to contain

the entire test set since loading it takes significantly longer than applying it to the

chip and doing so in the middle of the test would cause unacceptably expensive test

times (the test time values shown in Figure 1.11 assume that no ATE buffer reload

occurs). ATEs are also very expensive because they must have a significant amount

of fast memory. This makes testing expensive since the cost of the tester must be

justified by the sales of the devices it is testing. The longer each device takes, the

less can be tested in a given time frame, and thus the more each device costs to test.

Furthermore, with ATE technology always lagging behind the devices being tested,

a way to more effectively leverage the technology at hand to test the devices of the

future is essential to avoid prohibitively large testing costs. In answer to the cost

20



1.3. Test Data Compression M.A.Sc. - A.B. Kinsman - McMaster

Circuit Under
Test (CUT)

Scan Chain

Scan Chain
B
I
S
T

Figure 1.13: BIST test pattern application.

associated challenges arising in test using ATEs, a method known as built-in self-test

(BIST) has been explored, as discussed in the next section.

1.3.2 Built-in Self-test

Figure 1.13 shows the philosophy of BIST, placing hardware on the chip to generate

test patterns on the fly as well as make the comparison between the expected responses

and the actual circuit response. This method entirely solves the problem of large

memory and bandwidth requirements between the ATE and the chip. In addition,

with BIST in place a chip could use idle time to run checks on itself to ensure continued

proper operation. The main problem with BIST is the area overhead incurred. To

generate fully deterministic patterns generally requires fully functional finite state

machines whose size rival that of the circuits they are testing. An exception to this

is memory BIST where the deterministic tests are very regular, and the expected

responses are very easily derived from the stimuli. For this reason, memory BIST has

enjoyed a great deal more success than logic BIST where the patterns are irregular

and responses need dedicated generation.

In addition to the cost of the actual silicon estate, the problem of yield arises if

BIST area is unconstrained. With increased BIST area there is a greater probability

of a defect in the BIST logic and chips which are functionally acceptable may be

discarded on the basis of malfunctioning BIST hardware, decreasing yield. If the

size of the BIST hardware were to become comparable to the circuit size, redundant

logic is likely to give better results than BIST. Alternatively we can opt for smaller

BIST hardware that does not provide deterministic test patterns. Many approaches
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Figure 1.14: BIST fault coverage ( c©Kluwer [13]).

use some form of pseudo-random pattern generator (PRPG) which continually cycles

providing pseudo-random sequences to the circuit. The benefit of PRPGs is a very

compact implementation however, it is a accompanied by a reduction in fault coverage.

Figure 1.14 shows the fault coverage obtained by BIST in the ideal case and in

practice. In the ideal case random pattern testing gives very good fault coverage, as

indicated in the upper curve. However, because of the existence of random pattern

resistant faults, fault coverage as shown in the lower curve is what can be expected for

realistic cases. This level of fault coverage is clearly unacceptable and given the trend

in the curve a much larger number of patterns would have to be applied to obtain a

reasonable fault coverage level. The use of control points in the circuit may alleviate

this problem, nevertheless it will introduce both hardware and performance overhead,

in addition to complicating the design process. Thus the fundamental tradeoff for

BIST is established, either unacceptably large area overhead or unacceptably long

test times are necessary to reach the required fault coverage. As expressed, this

tradeoff results from the aforementioned random pattern resistant faults, aside from

which random testing is able to substantially reduce the volume of test data. For

this reason, hybrid testing has been proposed where pseudo-random patterns are first

applied to cover easily detectable faults, after which deterministic pattern application

is used to catch the random pattern resistant faults. This marriage of random and

deterministic testing is mainly what has sustained BIST research and due to the
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Figure 1.15: EDT - a combination of BIST and ATE.

extensive use of hybrid testing, some previous methods on BIST will be given in

Chapter 2, in Section 2.2.

Even though the use of hybrid testing has enabled smaller VTD, we have begun

to reach transistor densities that even the deterministic data which must be applied

is stressing the capabilities of current day ATEs. In order to be able to keep up

with the increasing VTD caused by more complex devices, alternative means of data

application will be required. These scaling concerns have been addressed in the form

of embedded deterministic test which is the topic of the next section.

1.3.3 Embedded Deterministic Test

Hybrid testing as discussed in the last section can be viewed as a mixture of BIST

and ATE testing since we apply patterns through BIST followed by patterns through

ATE. There is another way in which ATE and BIST testing can be mixed and that

is through simultaneous use. Embedded deterministic test (EDT) accomplishes just

this by applying data from the tester to guide on-chip hardware in providing patterns

to the circuit as shown in Figure 1.15. EDT captures the benefits of BIST - shorter

pattern application time by increased number of scan chains, and reduced external

influence; as well as the benefits of ATE - determinism in patterns and reduced on-chip

area. The terms EDT and test data compression are often used interchangeably since

the data coming from the tester can be seen as “compressed”, and the EDT hardware

is seen as a decompressor which feeds uncompressed data into the scan chains. Since

the compressed data is smaller than the actual test set, the memory requirements on

the ATE are less strict and a less expensive tester may be used, thereby reducing the

cost of test.
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Test data compression is made possible by the presence of the x-bits in the test

set produced by ATPG, as seen in Section 1.2.1. Since these bits may take on any

value, they are irrelevant information. The compression is accomplished by building

a decompressor in such a way that the tester is able to communicate the location

and value of the specified bits to it, and having it fill the x-bit values in an alternate

way. The irrelevant information is thereby stripped from the test set greatly reduc-

ing the volume of test data which must be applied to the chip. What makes EDT

challenging is the development of new CAD (or EDA) algorithms for compressing

test sets and generating hardware architectures that effectively trade-off compression

factor, embedded hardware complexity, ATE features and capacity, performance im-

pact, test time, design time and methodology. It should be noted that a full EDT

solution also provides compression for the output responses since often the number of

internal scan chains is more than the available pins, and also to reduce the volume of

stored output responses to a level on par with the stimuli. This task of compressing

output responses comes with its own unique challenges [67, 81, 106] and as a result

is considered a separate problem, not in the scope of this work.

1.4 Thesis Organization

In light of what has been presented regarding test data compression, it is clear that

many potential methods exist for compression algorithms and on-chip decompression

hardware. The relevant work that has been done so far in this field will be established

in Chapter 2. The new method we propose for improved compression [51], taking into

account not only abstraction and automation, but also design reuse (as discussed in

Section 1.1) will be shown in Chapter 3. Following this, Chapter 4 will summarize

providing a conclusion and work which remains to be done in the future.
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Chapter 2

Related Work

Chapter 1 of this thesis introduced the VLSI design flow, explained the relevant steps

in integrated circuit testing, and motivated the need for test data compression. Given

the importance of the test data compression problem, this chapter attempts to answer

the question: why do we need yet another approach for embedded deterministic test?

This is done by reviewing the recent related approaches in the field and summarizing

their main strengths and weaknesses.

In Section 2.1 we start by reviewing the ATPG and ATE solutions for test data

compression. Some recent BIST approaches relevant to EDT technology are outlined

in Section 2.2. Then Section 2.3 gives the basic equation of test data compression

which is used for introducing the different research directions in EDT that have been

undertaken recently. Section 2.4 reviews several test set dependent approaches that

use the specific test cube data to hardwire the on-chip decompression engine and

stresses their main limitation. The opposite research direction is labeled as test set

independent and can focus either on temporal and spatial decompression. On the one

hand the key feature of temporal decompression, detailed in Section 2.5, is that it

exploits the ratio between the scan frequency and ATE frequency. On the other hand

the spatial decompression exploits the ratio between internal scan chains and tester

channels and due to its practical relevance, has been widely adopted as outlined in

Section 2.6. Section 2.7 overviews multi-level test data compression and Section 2.8

summarizes this chapter.
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Figure 2.1: ATE test application.

2.1 VTD Reduction by ATPG and ATE

The methods provided in this section rely on external processing methods to reduce

the volume of test data required, and as a result, test data application resembles the

standard test application where no on-chip decompression hardware is used as shown

in Figure 2.1. Two main directions for external reduction of VTD have been taken.

The first is the use of ATPG to reduce VTD by dynamic compaction. In this method,

compaction (as described in Section 1.2.1) is performed during ATPG to increase the

number of faults covered by each pattern and thereby decrease the number of patterns

which must be applied. Examples of this approach can be found in [23, 30, 76, 103].

Another way in which the volume of test data to be applied may be reduced is

to exploit specific ATE features. The method proposed in [8] pairs filling of x-bits

by ATPG with filling features provided by the ATE, i.e. random-fill, 0-fill, 1-fill, and

repeat-fill. A similar method is used by [47] which also discusses how the fill features of

the ATE may be put on-chip. In [22] the hybrid approach discussed in Section 1.3.2

is used but the patterns consist of some scan chains being filled pseudo-randomly

and some being filled from the ATE which requires separate control of channels for

random fill and stream from memory. The method in [31] stores the vectors in the

ATE memory column-wise instead of row-wise and processes them before delivery to

the device while [101] reduces the stored volume of test data by exploiting the repeat

per group feature of ATEs to facilitate run-length encoding.

Both ATPG and ATE based methods can provide reasonable VTD reduction and

directly target one of the motivating factors for test data compression - the reduction
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of data stored on the tester. As an added benefit they accomplish VTD reduction

in a non-intrusive way since no decompression hardware must be placed on the chip.

A drawback however is that although they reduce the VTD stored on the tester, the

bandwidth between the ATE and the CUT is not reduced at all as it is clearly shown in

Figure 2.1. This means that a tester channel is required for each scan chain and since

the number of scan chains is limited by the package pin constraints (Section 1.3), long

pattern application times result which cannot be compensated by the reduction in

number of patterns mainly because conflicting test patterns limit pattern reduction.

In addition, ATE based methods can be expensive since the special features on which

they rely cost extra. Besides which, if the tester at hand does in fact have these

features they can be used to augment an EDT approach. Furthermore, application

of more patterns improves the probability that a defect (not modeled by the targeted

fault model) will be covered, and thus improves the quality of the test. It is therefore

better to concentrate on reducing the VTD per pattern as accomplished by EDT,

rather than targeting only a reduction in the number of patterns.

2.2 BIST
The concept of BIST, first introduced in Section 1.3.2, is the holy grail of EDT. By

placing test hardware on the chip it seeks to remove entirely the need for external

input, which reduces test cost to essentially nothing in comparison to external test

application using expensive ATEs. Despite the fact that BIST cannot be used to

entirely remove the need for external data application it does provide the basis for

EDT and as a result some of the previous work done in BIST is summarized here.

A basic single scan chain architecture for BIST is shown in Figure 2.2(a) where

pseudo-random patterns are fed into the scan chains and applied to the circuit. The

response is shifted out and captured in a linear feedback shift register (LFSR) that

has been configured as a signature register. Figure 2.2(b) shows BIST applied to

multiple scan chains, which substantially improves the test time by cutting down

the time required to shift each pattern into the scan chains. This configuration is

known as the STUMPS configuration for Self-Test Using a MISR and Parallel Shift

register sequence generator [7, 13]. To drive multiple chains, all the FFs in the LFSR
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Figure 2.2: BIST pattern application.

are used instead of just one as in Figure 2.2(a). In order to break up the strong

shift correlations between adjacent FFs in the LFSR, a phase shifter is introduced as

illustrated. By taking linear combinations of the LFSR outputs, a separation (called

the channel separation) in the pseudo-random sequences can be obtained, hence the

name phase shifter. More details regarding the requirement and design of phase

shifters can be found in [79]. At the output, the response across the multiple scan

chains is collected into the multiple input signature register (MISR). As mentioned

earlier, most BIST methods rely on some sort of pseudo-random pattern generator,

and LFSRs are very commonly chosen as the PRPG. Figure 2.3 details an example of

an LFSR and a MISR. In the LFSR, the state is modified by the feedback polynomial

only, whereas in the MISR the next state depends on both the feedback and the

inputs, which allows it to be used for response collection.

Although many existing BIST methods use LFSRs, other types of PRPGs operate

on the same principle and are equally applicable to BIST. For example, [70] uses linear

hybrid cellular automata to drive the scan chains through a phase shifter. In [14], a

twisted ring counter is used as the PRPG, but the work attempts to encode seeds for

the ring counter to enable increased determinism. Self reseeding hardware is used in

[2] for the same reason as in [14] but is applied to LFSRs. An LFSR is also used by

[4] where a seed selection algorithm is proposed, and also in [42] which explores the

relationship between seeds of a given LFSR. A method similar to reseeding the PRPG

is the insertion of state skipping logic which enables dropping of entire sections of the

state sequence if desired, as in [96].
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Figure 2.3: Example LFSR and MISR.

Alternatively to encoding seeds in an attempt to increase determinism, there is a

research direction in which logic is placed around the PRPG to modify its output.

One particular approach skews the probability distribution of bits generated at the

output of the PRPG according to a set of weights and is known as weighted pseudo-

random pattern testing. Another example, [97] fixes a given output of an LFSR to

a 1 or a 0 for some pattern depending on the fixing logic. Similarly to this, [48]

flips bits according to some logic instead of fixing them. Both bit flipping and fixing

are incorporated in [26]. A reconfigurable interconnect network between the PRPG

and the scan chains which is controlled by a configuration counter and a decoder is

used by [64]. In [43, 44], different sections of the CUT are tested in different phases,

controlled by logic between the PRPG and the scan chains.

Another class of methods including [62, 111] modify the circuit to facilitate BIST

by increasing observability/controlability of selected circuit nodes. Although this is

sometimes done even in ATPG for scan based deterministic test (using an ATE), it

is only required in very extreme cases and generally is not done at all. On the other

hand, its usefulness in BIST is to increase effectiveness of random patterns but often

the circuit must be significantly modified. It is preferable not to modify the circuit

for a couple of reasons. The first is that it interferes with the automation aspect of

design described in Section 1.1. Modifications to the circuit, even those performed by

an automated tool, can affect the circuit in an undesirable way (e.g. timing closure
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can be disrupted) requiring feedback in the design flow, which complicates matters.

Moreover, circuit modifications do not fully respect the reuse aspect of design since

for IP-protected cores no access to internal details of the core is provided, thereby

invalidating methods which rely on circuit modifications. The final type of method

that will be discussed here is the kind that places certain constraints on the circuit to

be tested. As an example take [90] which requires that the SOC have an embedded

processor and an FPGA core on which the BIST machinery may be formed. Such

methods can be effective in their domain of applicability but often that domain is not

nearly general enough.

In addition to BIST limitations outlined in the previous chapter, another con-

sideration which should be made is that BIST hardware can be ineffective during

diagnosis of a circuit given its randomness and resistance to determinism. For diag-

nosis, a high degree of control is desired to enable tracking down of a defect. Where

BIST cannot effectively provide such a level of control EDT can work well because

of its built-in determinism. In light of these facts and the discussion in Section 1.3.2,

we can conclude that EDT is the most viable choice as a solution to the problem

of VTD. The next section introduces the governing relationship of EDT, which has

motivated its main research directions.

2.3 Test Data Compression

As we have seen in Section 1.3.3, embedded deterministic test places a small decom-

pressor on-chip and uses compressed streams arriving from the ATE, expanding them

and applying them to the internal scan chains of the circuit as shown in Figure 2.4.

Note that an important part of EDT is compression of the expected output responses

since they must be stored on the tester in addition to input stimuli. As discussed in

Section 1.3.3 this is considered a separate problem. Consequently, henceforth in this

thesis the output response compression hardware will be omitted from figures and

discussion without loss of generality.

In light of Figure 2.4, the on-chip decompression hardware can be viewed as a

system which takes a small bandwidth stream of data in (from the ATE) and delivers
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Figure 2.4: General EDT hardware.

a high bandwidth stream of data on the output (to the scan chains), and the com-

pression ratio is seen as the ratio of the output bandwidth to the input bandwidth.

The following discussion sets up the framework for the different directions which

have been taken in test data compression research through elaboration of the basic

equation of test data decompression:

CR =
BWout

BWin

. (2.1)

Equation 2.1 is the very basic relationship between the compression ratio (CR)

and the bandwidth (BW) in and out of a decompressor. Since we may write the

bandwidth as the product of the bus-width carrying the data and the frequency at

which that data is sent, we can obtain:

BWout

BWin

=
BITSout × fout

BITSin × fin

. (2.2)

Now consider that the test set must contain some amount of “useful” data, which

cannot be modified by the decompressor and thus remains the same on both the input

and output sides. This gives:

BITSout × fout

BITSin × fin

=
fout × BITSout

BITSuseful

fin × BITSin

BITSuseful

. (2.3)

Finally if we write fr as the frequency ratio between the (CUT) and the ATE

(fr = fout/fin), and if we use TCU and SCU to denote tester channel utilization
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and scan chain utilization respectively, that is, the percentage of data in the tester

channels or in the scan chains respectively which is “useful”, we obtain:

CR =
fout ÷ SCU

fin ÷ TCU
= fr

TCU

SCU
. (2.4)

We have established that automatic test pattern generation (ATPG) provides test

vectors which are not completely specified. This unspecified portion of the information

is obviously “useless”, and so it can be seen that the measure of SCU relates to the

concept of care bit density, the percentage of bits in the test set which are useful or

take on a specified value (as opposed to being left free as x-bits). In this way the

SCU value is fixed by the ATPG process and the only free parameters in determining

compression ratio are fr and TCU . These two parameters embody the two main

directions of research in test data compression. We call those methods which focus

on fr - temporal compression methods (Section 2.5) and those which focus on TCU -

spatial compression methods (Section 2.6). In addition to these divisions a distinction

can be made regarding what are called test set dependent and test set independent

compression methods. Test set dependent methods exploit the structure of the test

set itself (e.g., specific locations and values of care bits) to produce compression,

while test set independent methods exploit only very general features (e.g., average

care bit density). While the sections just mentioned above will focus on the test

set independent methods of their respective approaches, Section 2.4 gives some work

done on test set dependent compression methods and a justification as to why test

set independent approaches are favorable.

2.4 Test Set Dependent Methods

Somewhat like the a few of the BIST approaches mentioned earlier, some compression

methods modify a circuit to ease testing. Unlike the BIST approaches however,

this is not so much a case of increasing controllability or observability but more

so of increasing correlation between specified bits in an attempt to enable better

compression. The improved compression is often enabled by a decompressor set up

to exploit such correlations. As an example [75] crafts a decompressor based on the
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test patterns at hand as do [10, 82], and [94] uses the test set to determine switch

connections for a reconfigurable switch based decompressor. A finite state machine

(FSM) is used in [63] to drive a combinational expander which is derived from the test

set. A linear decompression network is derived from the linear dependencies of the

test set by [83], and [5] does the same but includes inversion of the scan outputs when

determining the network. In [88] consideration is given to power by reordering the

test set and partitioning scan chains based on examination of the test set and [11, 68]

construct a scan tree where the output of a scan cell branches to multiple chains and

the structure of the tree (i.e. where to branch) is determined by dependencies in the

test set. In [74] scan chains are separated into groups by evaluating the test set and

determining which groups may be tested using random, periodic or external tests

respectively, somewhat like hybrid testing, but across different sections of the circuit

instead of across different parts of the test set.

Although test set dependent methods can often be used to obtain better compres-

sion results than test set independent methods, they suffer some serious drawbacks.

Aside from the IP issues discussed previously with respect to BIST for those methods

which change the circuit (e.g. modify scan cell order) there are methods which do

not interfere with the circuit itself, however they still do not allow alternate pattern

sets to be used. It is very desirable to reuse the existing manufacturing test infras-

tructure on-chip for embedded debug and diagnosis when tracing a problem in the

circuit. Related to this is the application of failure analysis patterns when more detail

is required than the simple pass/fail provided by manufacturing test. Further, new

tests may need to be added even for manufacturing test to detect an un-anticipated

fault (perhaps due to an un-modeled defect) which is resulting in test escapes (devices

which pass manufacturing test but which are in reality defective and are caught later

in-field). In all these cases, the additional patterns would almost certainly be outside

the expansion space of the decompressor since it would have been crafted to con-

tain just the original test set (to increase compression). To avoid all these problems,

the practical approach is to design a decompressor which obtains relatively exten-

sive coverage of the entire potential space of test patterns and in addition provide a

mechanism whereby any pattern not in the output space of the decompressor may
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Figure 2.5: General temporal decompressor.

be applied, at reduced compression of course. Such methods are called test set inde-

pendent and for the reasons just listed will constitute the remainder of the discussion

on previous work. The remaining discussion will be in light of temporal and spatial

compression, the two main research directions in EDT as outlined in Section 2.3.

2.5 Temporal Decompression

Temporal decompression methods achieve reduction of data by employing a few-to-

many mapping in the temporal domain. This means that data sent in a short number

of clock cycles from the ATE is expanded for a long number of clock cycles on the

CUT. To avoid excessive accumulation of test data in the decompressor temporal

methods therefore require that the ATE and the scan chains of the CUT be clocked

at different frequencies, hence they focus on increasing fr as discussed in Section 2.3.

Figure 2.5 shows a very general architecture used for temporal decompression of

test data. Because the ATE and CUT scan chains operate at different frequencies,

the chip clock and ATE clock are provided to the decompressor which are used to

drive the scan clock as shown in the figure. Compressed test data is provided to the

decompressor (on data in - synchronized to the ATE clock) while decompressed data

arrives on data out, synchronized to the scan clock provided by the decompressor.

The sync data is required to indicate to the ATE that the decompressor is ready for

more data, to balance the arrival of data at the input with its consumption at the

output. This is in fact one of the drawbacks of this approach and will be discussed

in more detail a little further down.
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Temporal decompression in general relies on some manner of statistical coding

which assigns short codewords to sequences appearing frequently in the test set. X-

bits are mapped in such a way as to increase the occurrence of sequences which map

to small codewords and thereby provide better compression. The following details

the work which has been done on temporal decompression methods.

In [16, 18], Golomb codes are used for test data compression and comparison is

made against conventional run-length encoding, showing the advantages to be higher

compression with a scalable, low cost decompressor on-chip. In [15] Golomb coding

is also used, taking scan power into consideration. In [17, 21] another class of codes

called frequency-directed run-length (FDR) codes are discussed, which improve com-

pression by addressing the low probability of long runs of zeros. [19, 37, 38] also use

FDR codes, but focus on partitioning of test resources at the system level. Similar to

FDRs are alternating run-length codes presented in [20] which enable switching be-

tween coding of runs of 1s and runs of 0s. Alternate run-length encoding is also used

by [87] which modifies scan cell order to improve compression. In [109] run-length en-

coding is used, but longer run-length codes (which are shown to occur infrequently)

are stored in an on-chip dictionary to increase efficiency of coding. The Burrows-

Wheeler transform is applied by [112] followed by run-length encoding, and in [95]

the test set is divided into blocks and compressed using 9 code words one of which

contains an explicit uncompressed word (for the case where a block does not fit any

of the other 8 codewords).

Huffman coding has also been used extensively in test data compression such as

in [39]. Huffman coding is also used by [108], but in the spatial domain (i.e., the ATE

and CUT frequencies are the same), causing it to suffer from large area overhead of

the decoder. Variable length input Huffman compression (VIHC) is proposed in [27]

of which Golomb coding is shown to be a special case and system level considerations

for VIHC are given in [28]. Selective Huffman vertical coding (SHVC) is implemented

by [113] but they require an embedded FPGA in the SOC, otherwise suffering from

large area. In [34] the need for synchronization with the ATE is eliminated at the cost

of a large on-chip buffer. By using Tunstall codes, [32] improves error resilience of the

test set. Finally, the well known LZW algorithm used in software compression has
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been applied to the test data compression problem in [52, 107]. In [107] the boundary

scan cells are modified to enable low overhead, while [52] reuses on-chip memory for

decompression.

One of the main strengths of statistical coding methods for test data compression

is the ability to compress highly specified test sets. This makes them particularly

suitable for application to IP-protected circuits. Because IP-protection implies that

there is no disclosure of internal circuit information, ATPG and fault simulation may

not be performed by the system integrator and thus test generation is the responsi-

bility of the core provider while the system integrator must translate the core level

tests of each core into an entire system level test. To reduce the amount of data that

must be communicated between the core provider and system integrator the core

tests may arrive highly compacted. As will be shown later, other approaches suffer

loss of compression when the care bit density is high which makes statistical coding

favorable in such cases.

On the other hand, the synchronization referred to towards the beginning of this

section is a substantial drawback of this approach. Essentially most ATEs are un-

equipped with any type of reactive functionality, that is they operate in the stream

mode and so the aforementioned sync data pin shown in Figure 2.5 cannot control

the tester. Since codewords vary in length as do the sequences which they represent,

a short codeword may arrive representing a long sequence and so the decompressor

may not finish expanding a given codeword before the next one arrives. Address-

ing this synchronization problem leads to additional overhead either in terms of area

or compression ratio and more importantly, it complicates the implementation pro-

cess due to the number of distinct clock domains that need to be considered in the

decompressor.

Another difficulty encountered by statistical coding lies in the fact that the scan

chains are clocked at a higher frequency. Because the scanning shifts values through

all the flip-flops in the scan chains simultaneously, the number of transitions during

any clock cycle is greatly increased over the normal transitions occurring in the native

mode. As a result, the power rails may be unable to deliver sufficient current to switch

a flip-flop, or worse, the chip may not be able to dissipate quickly enough the power
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Figure 2.6: General spatial decompressor.

generated from a large number of transitions resulting in overheating and permanent

damage. To combat this problem, a substantial amount of work has been done on scan

chain partitioning to reduce the power during test. Nevertheless integrating scan chain

power management with temporal decompression imposes further implementation

constraints, such as additional gated clock domains, not easily satisfiable in practice.

Finally, in the case where the care bit density is not sufficiently high as to adversely

affect the operation of other compression methods, such other compression methods

(which will be presented next) can provide much better compression. This will be

elaborated on later, for now it will suffice to say that the drawback of statistical

encoding is that it must assign x-bits then compress the entire test set, whereas the

methods addressed next compress only the information carried by the specified bits.

2.6 Spatial Decompression

In light of the above discussion, temporal decompression does not provide a com-

pellingly practical solution to the problem of test data compression, an observation

which is reinforced by the fact that (to the authors knowledge) no commercially avail-

able tools utilizing statistical based methods for test data compression/decompression

are available. This next section details the concept of spatial decompressors which

form the basis for the most prominent commercially available test data compression

tools. Spatial decompression is enabled by a few-to-many mapping in the spatial

domain, that is a small number of channels from the ATE drive a large number of

channels in parallel on the CUT during test as shown in Figure 2.6. By doing this, the
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clock frequency of the ATE and the CUT scan chains may be kept the same and the

ATE memory needed may be reduced either by using a smaller number of channels

from the ATE, or by driving a larger number of scan chains from the same number

of tester channels resulting in reduced test time. Such decompressors come in com-

binational and sequential varieties, each of which will be described in the following

sections.

2.6.1 Combinational Decompression

Combinational decompression occurs when the Test Data Decompressor network be-

tween the ATE tester channels and the CUT scan chains as shown in Figure 2.6 does

not contain any flip-flops, that is it is entirely combinational. In this case each slice

of compressed test data from the tester (the data sent in one clock cycle) corresponds

directly to the expanded slice of test data in the scan chains for the same clock cy-

cle. There are many options for what may constitute the combinational network.

The simplest option is mere fan-outs where multiple scan chains are connected to a

single scan input as in [33], which is known as the Illinois Scan Architecture and is

depicted in Figure 2.7. It is immediately clear that there is a high correlation in each

clock cycle between the scan cells of all scan chains connected to the same scan pin.

This high degree of correlation results in a high probability of lockout (conflicting

assignments to values in the compressed stream) meaning some patterns may not be

testable. For patterns which cannot be satisfied in the broadcast mode (as depicted

in the figure), a serial scan mode is employed where the scan chains are concatenated

resulting in a number of scan chains equal to the number of scan inputs. In this

case the patterns are filled in directly with no compression. The overall compression

therefore relates to the product of the percentage of patterns which may be tested in

the broadcast mode and the compression factor for patterns in the broadcast mode.

Some work has been done to try and increase the percentage of patterns testable in

the broadcast mode, for example [85] allows multiple mappings of the CUT scan pins

to the scan chain inputs and [89] extends this work. Another modification of Illinois

Scan is [72] which allows a prelude vector to be loaded that modifies the vector being
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Figure 2.7: Illinois Scan Architecture.

shifted in. Multiple configuration modes between the broadcast and serial modes are

added by [53] to reduce the cost in compression of a broadcast-untestable pattern.

In any case, what makes Illinois Scan attractive is the very low area overhead and

the simple compression algorithm. Unfortunately, despite efforts to decrease lockout,

many patterns are often pushed to the serial scan mode and as a result compression

suffers.

An alternative to Illinois Scan is known as dictionary based compression shown

in Figure 2.8. In this approach, the x-bits of the test set are mapped in such a

way as to minimize the number of distinct scan slices in the test set. This set of

distinct words is stored in an on-chip ROM and indexed by the address lines. In

[110] the tester channels are divided into two groups; one to select a dictionary entry

(address lines of ROM) and one to flip a single bit of the dictionary output. In

this approach the entire set of distinct words need not be stored, only the distinct

words which differ by at most 1 position from any given scan slice. The advantage of

this method over Illinois Scan is that it reduces the correlation between scan chains,

thus the probability of lockout and as a result the compression is improved. The

implementation is also relatively straightforward, although more work is involved in

choosing a set of words for the dictionary. With respect to area, this method does

not perform exceedingly well especially if the number of scan chains is large, since the

number of scan chains dictates the word size. The approach in [110] addresses this by

placing a combinational network at the output of the ROM, however the drawbacks

of this are the same as those of general combinational networks discussed shortly. The

dictionary based method is also inherently test set dependent since the set of words for
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Figure 2.8: Dictionary based decompression.

one test set may not work efficiently with another test set. The reason these methods

were not addressed at the same time as the test set dependent methods is that a case

can be made for test set independent methods when the dictionary is reconfigurable,

for instance if a RAM is used instead of a ROM. Allowing reconfigurability also

addresses the area problem since a smaller dictionary may be used and updated

during test, dividing the entire test into multiple sessions with a different dictionary

configuration for each session. Although this leads to smaller area, reconfiguration

becomes a test-time bottleneck increasing the cost of test.

Extending the concept of the dictionary decompressor, a general combinational

circuit may be used as the decompressor as shown in Figure 2.9(a). This approach

is in essence equivalent to the ROM based method but with smaller area since the

logic synthesis will optimize the network to remove redundant logic which is not the

case in a ROM. This method also suffers from test set dependence (since the network

is generally crafted according to the test set), and in addition from computational

complexity. In exchange for the area that is saved in comparison to the dictionary,

the satisfiability problem must now be solved to determine the compressed stream.

Satisfiability solves the problem of what input values applied to the decompressor

will justify the required output values. For even a modest number of scan chains this

problem becomes intractable, however this step makes the case for the next type of

decompressor described.

Figure 2.9(b) shows a special case of the combinational decompressor discussed

in the previous paragraph where the only type of gate used is the XOR gate. This

method is indicative of those such as [66]. One drawback of this approach is that use
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Figure 2.9: Combinational decompressors.

of XORs results in linear dependencies between channels, increasing the probability

of lockout. Lockout is addressed in [9] through the use of integrated ATPG/fault

simulation and extremely short scan chains. The approach in [60] also uses linear

decompressors but splits the scan chains into groups and clocks each group separately

so that the linear decompressor may decompress to all scan chains simultaneously or

just one group, thereby reducing lockout. Although the use of XORs results in linear

dependencies, the solution to this particular case of the satisfiability problem can be

obtained in polynomial time, since the network may be modeled by equations in GF2

(each XOR is a modulo-2 addition) and Gaussian elimination can be used to obtain

input sequences which will justify the required output scan slices. In addition, use

of generic logic makes the issue of test set independence difficult to address whereas

the concept of test set independence is more clear for linear decompressors. For

these reasons, XOR based decompressors have become the most popular type of

combinational test data decompressor.

2.6.2 Sequential Decompression

In the previous section we have discussed combinational decompressors, and area and

computational complexity considerations have led us to conclude that decompressors

based on linear networks (XOR gates) provide the best tradeoff between area, com-

pression and computational complexity. Given that compressed data in each clock

cycle is obtained by observing which scan channels contain care bits for that clock

cycle, and equating the linear expressions for those channels each to the value of their
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Figure 2.10: Averaging of care bits in a test pattern.

respective care bit, it can be seen that in each clock cycle there is an equation only

for each care bit. Thus in each clock cycle a system of equations is formed in terms

of the variables representing the input channels from the tester, having a number

of equations equal to the number of care bits for that clock cycle. Since we desire

compression, the number of tester channels (number of variables) should be less than

the number of scan chains (potential number of care bits per clock cycle). Thus it is

immediately clear that a situation may arise where the number of equations is greater

than the number of variables, often resulting in a linear inconsistency and therefore

lockout. In order to reduce the probability of lockout more variables may be pro-

vided, however this requires more tester channels and as a result adversely affects

compression. In [54], a proof is given that a system of n equations in m variables has

a probability of lockout < 10−6 when m > n + 20. Because in general we use large

m and n we assume that so long as m = n, a lockout will not occur. Nonetheless,

provision is made to deal with lockout even though it is rare.

Given the reasoning just provided we can consider that the number of tester

channels required for a linear combinational decompressor to ensure sufficient vari-

ables arriving from the tester is given by the maximum number of care bits in any

clock cycle (frame) for the entire test set. Consider now the fact that care bits are

not uniformly distributed within the test set. Figure 2.10 shows how averaging over

a few consecutive frames can reduce the maximum demand for free variables from

the tester. In the case where the frames are considered independent of one another

(first row) the maximum care bits appearing at a time is 8, and thus 8 variables are

required per frame (clock cycle). It is important to note that the channels are physi-

cally allocated to the chip during test and as a result if they must be allocated even
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Figure 2.11: General sequential decompressor.

for one frame, they must be allocated for the entire test set. As a result, during the

rest of the test set the channels are under-utilized more free variables are provided

than necessary and so there is room for improvement in compression. Observe the

second row of the figure which indicates the average number of care bits per frame

which exist when a block length of two is used, that is, the test set is split into blocks

of two consecutive frames and considered block by block. Now, (taking the ceiling

function of 5.5) 6 variables are needed every frame indicating that no block contained

more than 12 care bits. Likewise when four frames are considered at a time (third

row), now a maximum of only 5 (d4.5e) variables are required in each clock cycle.

Averaging across a number of clock cycles reduces the demand for variables from the

tester and so frames which have a high number of care bits may borrow some variables

from an adjacent frame which contains fewer care bits.

In light of this discussion on averaging it is clear that we desire to lend/borrow

variables arriving from the tester across multiple clock cycles, which requires the use

of some sequential elements. Figure 2.11 shows the generic sequential decompressor.

The presence of the clock signal indicates the use of memory elements (flip-flops) to

store accumulated free variables. Note that although any type of generic sequential

circuitry may be placed in the decompressor, machines based on XOR networks mod-

eled by linear equations in GF2 are favored for the same complexity reasons considered

for combinational decompressors, especially in light of the fact that sequential satisfi-

ability is of even greater complexity than combinational satisfiability. The remainder

of this section will discuss the existing solutions in this category.
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As mentioned above, providing sequential elements in the decompressor enables

the storing of variables to be shared among a block of frames, that is, the care bits

in a block need not be considered as existing in separate frames, only as being being

a part of a particular block. The most straightforward approach to compressing the

data is to consider the data on a block by block basis and encode the data needed

for the care bits of each block. Figure 2.12 shows a general architecture which uses

this scheme based on the STUMPS configuration [7]. The compressed data comes in

the form of an initial state (seed) for the LFSR which is loaded at the beginning of

a block. During the clock cycles corresponding to that block the LFSR progresses

from one state to the next producing a pseudo-random sequence which matches the

original test vector in all the care bit positions. The purpose of the XOR network

between the LFSR and the scan chains (called a phase shifter) is to remove shift

correlations. Without a phase shifter the pseudo-random sequences generated from

adjacent cells in the LFSR are shifted by only a single clock cycle, and are thus very

much correlated. The introduction of a phase shifter produces a greater shift between

these channels. The seed is computed in a similar way as for the linear combinational

decompressor discussed in the previous section, where each scan chain for each time

frame in the block (instead of simply each scan chain) has an associated equation.

By assigning the equation for each care bit position to its respective value, a system

of equations can be obtained and solved to determine the required seed. The Buffer

shown in the figure captures data from the tester so as not to disturb the operation

of the LFSR while a seed is provided from the tester for the duration of the block.

The seed is then loaded into the LFSR at the beginning of the next block. It is this

buffer which enables solution of the blocks independently. This architecture exactly

is used by [105] to map each pattern onto a seed, and ATPG and fault simulation are

integrated to cover as many faults as possible for each pattern and merge multiple

patterns on a single seed (to reduce the number of patterns). This work is further

elaborated in [104] to give more consideration to output response compression. An

interesting take on this approach is to encode the number of clock cycles required to

reach the next LFSR seed instead of the seed itself, as proposed in [3].
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Figure 2.12: Seed buffering architecture.

We have seen that the care bit density dictates the number of equations and

therefore the number of variables needed for acceptable probability of lockout, while

the number of variables used indicates the achievable level of compression. When

care bit density is increased more equations appear and linear dependencies cause

either pattern lockout resulting in loss of fault coverage, or decreased compression.

A couple of methods addressing linear dependencies have been proposed such as [50]

which adds multiplexers on either side of the phase shifter to provide reconfigurability

(at the expense of increased area and computational complexity), and [49] which uses

a multiple polynomial LFSR (different feedback polynomials may be selected) of

variable size by dictating the location of least significant bit of feedback polynomial

(through configuration). Both of these approaches incur some extra area overhead

and involve increased complexity in the calculation of compressed streams, but enable

compression of test sets with higher care bit densities.

The common feature of the methods just addressed is the accumulating of variables

separate from the operation of the LFSR and transfer of those variables to the LFSR

once, at the beginning of a block. This means that variables are not correlated in

any way from one block to another and for sufficiently large buffers the probability

of lockout is very small [54]. Unfortunately, such large buffers come at the expense

of impractical on-chip area and so smaller buffers must be used. The use of smaller

buffers leads either to increased probability of lockout or more severe over allocation

of resources since the averaging period is reduced. An alternative to buffering all

the variables for each block is to provide the variables to the LFSR in a continuous

manner, a few in every clock cycle instead of many during one clock cycle. A general
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Figure 2.13: Variable injection architecture.

depiction of such a method can be seen in Figure 2.13. This approach is used in [58, 61]

both of which inject the variables coming from the ATE during each clock cycle in the

feedback of the LFSR. The new variables arriving provide more degrees of freedom in

each clock cycle for solving the systems of equations and thereby satisfying the care

bits of the test set. Both [71, 78] also work on this principle of injecting free variables,

however they use ring generators instead of LFSRs. Ring generators are claimed to

operate at higher frequencies because of smaller fan-out of gates and shorter signal

propagation distances, however the principle of operation and seed solution methods

are the same for all intents and purposes. Ring generators are explored further in

[69, 80]. The injection approach is also used in [41] which connects a few scan chains

to an LFSR and the injection input to the LFSR is seen as a virtual scan chain. In

a similar way, [102] splits scan chains into smaller scan chains and provides a shift

register and XOR broadcast network but allows the chains to be concatenated into

a single long chain (reconfiguration) to deal with lockout. Injection is also used by

[45, 46] where some encoding of the injection stream is proposed. In [91], injection

to an LFSR is used and a dictionary is added for frames which cannot be expanded

from the LFSR.

The advantage to variable injection as opposed to variable buffering discussed

earlier is that the on-chip area is much smaller since large buffers are no longer needed.

In addition, the variables injected remain in the decompressor (in linear combination

with each other) for a much longer time due to the fact that in the injection method

the decompressor continues cycling and accumulating more variables while in the

buffering method, the variables are flushed each time a new block is started. In
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Figure 2.14: Implementation of stalling.

practice this corresponds to a longer averaging period since variables are alive for

longer. At the same time, this fact that the variables are alive for longer results in

larger systems of equations needing solution when calculating seeds, and thus run-

time may increase significantly. Also, when bursts of care bits arrive there may not

be sufficient free variables accumulated to deal with the added equations and lockout

may still occur.

To address the problem arising from bursts of care bits, a couple of similar methods

have been proposed which are represented in Figure 2.14. By halting the shift process

in the scan chains, free variables can continue to accumulate in the decompressor until

enough free variables can be provided to the circuit to overcome the lockout. This

approach is used in [57] to achieve good compression at relatively low area overhead.

This method is also used by [100] which enables the use of a smaller LFSR, however

the area is increased since they use it in concert with the buffering approach described

earlier. In this case fewer channels are allocated than are required to ensure sufficient

free variables may be provided during the worst case block (the block with the most

care bits). Relying on the fact that these blocks occur infrequently they stall shifting

of the scan chains to fill in the buffer when lockout occurs in the middle of a block.

Although this method is attractive due to low area overhead gating of the scan clock

is a methodology issue because routing of the scan clock is sensitive, and gating may

cause clock skew. Furthermore, test time may be adversely influenced if bursts of

care bits are frequent or too little tester bandwidth is allocated. This will also have

a negative impact on the compression factor.
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2.7 Multi-level Compression

In addition to the research directions overviewed above there is a small class of multi-

level compression methods which have been proposed. Multi-level compression com-

presses the test patterns onto compressed streams but then applies compression (usu-

ally a different type) to the compressed streams. An example of this is [59] which first

maps care bits onto seeds as in general LFSR based compression and then applies

statistical coding to compress the LFSR seeds. This however suffers from the same

challenges discussed earlier with temporal compression methods. The LFSR seeds

are also compressed in [65] but using folding counters. The approach in [40] deliv-

ers compressed weight sets for weighted pseudo-random BIST. In [55, 56], weighted

pseudo-random pattern testing is also used with compressed weights sent from the

tester. In [56], the weight set decompressor is a RAM/ROM connected to a multi-

ple input signature register (MISR) which allows it to act like a PRPG. All of these

methods exploit is some sort of structure in the compressed form of the test set to

achieve compression. Both [55, 56] attribute the compressibility largely to clustering

of care bits within a test set. This observation of clustered care bits also enables

the work presented in the next chapter of this thesis. Instead of complicating the

decompressor by adding a second level of compression to the incoming data, we have

aimed to address care bit clustering at the first level of compression to improve the

VTD. The methods mentioned above also suffer from increased test time because of

reliance on pseudo-random testing, whereas we try also to improve the test time. In

addition to these facts, multi-level compression can always benefit from improving

the compression in one of its layers and so our method can also be used in conjunc-

tion with multi-level compression to further enable delivery of test data to large scale

circuits with low cost testers.
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2.8 Summary

This chapter provided a survey of the recent advancements in embedded deterministic

test and it was established that spatial decompression based on linear decompressors is

the most suitable approach for large scale integrated circuits. Nevertheless, given the

continuing increase in circuit complexity and the new emerging design methodologies

based on the core reuse philosophy, adapting spatial decompression to core based

SOCs using IP-protected blocks faces its own challenges, as shown in the following

chapter where a novel approach is introduced.
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Chapter 3

Compression in Core Based SOCs

In this chapter, the main contribution of this work is presented, a compression

methodology for core based SOCs with IP-protected blocks. In Section 3.1, the

desired features of the methodology are set up as objectives. Exploitation of key

observations given in Section 3.2 has led to the development of the central scheme

described in Section 3.3. This is followed by incremental advancements presented in

Sections 3.4 and 3.5. Finally, Section 3.6 will give some experimental results and

discuss the relation to other approaches and Section 3.7 will summarize.

3.1 Desired Features

In light of discussion in Chapters 1 and 2, we may summarize here the five key

features we desire in a compression scheme for core based SOCs with IP-protected

blocks. They are as follows:

• IP-consistency: We desire a method that does not require access to the inter-

nal details of the core to provide compression, thus fault simulation and ATPG

should not be relied upon (Section 3.1.1);

• Modularity: In order to facilitate reuse, the EDT method should be easily

pluggable to any system and furthermore, the hardware generation should be

easily automated (Section 3.1.2);
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• Scalability: To remain relevant in the long term, the hardware architectures

employed and the algorithms used should scale reasonably with circuit size

(Section 3.1.3);

• Programmability: Any test pattern should pass through the decompression

engine and changes to the test set should not influence its compressibility so

long as the general features of the test set (i.e., care bit density) remain intact

(Section 3.1.4);

• Low Cost Test Platform: No special requirements should be made about the

ATE and what features it has, we should assume a very low cost basic tester

which operates only in the stream mode without any sequencing-per-pin options

(Section 3.1.5).

3.1.1 IP-consistency

We have seen that the SOC design paradigm facilitates design reuse by enabling

construction of complex systems through the assembly of pre-designed modules called

cores. This brings with it some unique test challenges as some cores may be IP-

protected in which case no internal details of the circuit are available. IEEE 1500

standard has been developed to ensure core test reuse and isolation during test [35],

however no provisions were made yet for test data compression. Many compression

methods rely heavily on integrated fault simulation/ATPG to obtain small volumes

of test data and these methods are un-applicable to IP-protected cores. As shown in

Figure 3.1, methods which require fault simulation restrict compression to the domain

of the core provider. This poses a problem if some core providers choose not to provide

compression hardware, or if the method of compression they use does not suit the

system level test methodology. By creating the decompression engine without the

need for IP disclosure, freedom to perform compression on either the core provider

or system integrators side is enabled. This gives the system integrator the ability to

perform compression in such a way as to facilitate packing of the compressed streams

at the system level. Moreover, compression can still be done by the core provider as

long as the compression method used fits the system level methodology.

51



3.1. Desired Features M.A.Sc. - A.B. Kinsman - McMaster

ATPG
Fault Simulation

Scan Insertion

System level
compression

Test-access
mechanism

design

Norm
al te

st fl
ow

for S
OC

IP-protected

test flow

C
o

re L
evel

(p
erfo

rm
ed

 fo
r each

 co
re)

S
ystem

 L
evel

(d
o

n
e o

n
ce fo

r
w

h
o

le system
)

Core level
compression

Compression

Circuit
details

required
Circuit

detailsNOTrequired

Responsibility of 
core provider

Responsibility of 
system integrator

May be done 
by either

Compression done in a 
way that facilitates system 
level compression

Figure 3.1: IP-consistency.

3.1.2 Modularity

In order to remain as flexible as possible we want to be able to use cores with a

number of different core level compression hardware types, as long as they share the

same interfaces required to be plugged into in the same system level architecture. Of

course this is closely linked with the IP-consistency issue, since the system integrator

will most likely opt to use the same decompressor type system wide if they have

access to all the information of all cores. If however, some IP protected cores come

with decompression hardware already in place, some cores may use LFSRs, some ring

generators, some cellular automata, etc. To achieve a modular approach a common

feature of all the decompression hardware can be exploited in order to ensure an easy

plug-n-play into the system level decompression architecture. For example, as it is

the case in this thesis, the discontinuous demand of data from the tester can be used
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as the common feature of the core level decompression hardware which can be used

by a system level test engine to improve utilization of the tester channels, and thereby

improve compression (Figure 3.2).

3.1.3 Scalability

To remain applicable in the long term, scalability needs to be taken into account. Even

if the hardware and computational overhead are acceptable for current day devices, if

they do not scale effectively they cannot be used in the future. Figure 3.3 shows how

the hardware should be kept relatively low, even when many cores are used. Since

the core level decompressor size is linked to the size of the core it accompanies, the

area overhead for this hardware will be kept from scaling to an unreasonable level.

At the system level, some small control logic is required. The size of the control logic

should scale roughly logarithmically with the number of cores, and thus the area for

this hardware will remain reasonable as well. In terms of computation, the execution

time for core level compression should scale linearly with the number of cores since

it must be performed for each core, while system level compression must also remain

practical even as the system level design size increases.
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Figure 3.3: Scalability.

3.1.4 Programmability

Programmability is of great importance when forming a test compression methodology

since changes to the test set (modified patterns, extra patterns) may be required. By

keeping the hardware as generic as possible and providing a multi-mode feature, any

test set desired may be passed through the decompressor. Although the compression

will suffer as care bit density is increased, through multi-mode configuration the

decompressor retains the ability to pass any pattern through (Figure 3.4).
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Figure 3.4: Programmability.
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3.1.5 Low Cost Test Platform

Some issues relating to ATE features used for compression were discussed in Section

2.1. Because of the higher cost of testers with special features we desire a compression

methodology which does not rely on ATE features to improve compression, by allow-

ing the ATE to operate in a simple stream mode as illustrated in Figure 3.5. The

upper half of the figure shows how a repeat per pin feature can reduce the amount of

data which needs to be stored, but the additional processing capability of each chan-

nel increases the cost of the tester. On the other hand, if the compression method

used is suited to a simple stream mode tester as in the lower half of the figure, more

memory may be required (which can be compensated by increased compression) but

the tester will be much less expensive. Furthermore, if a tester with repeat features is

already available it may be used in conjunction with the on-chip compression method,

that is, it can be applied to the system level compressed streams to further reduce

the volume of test data stored on the tester.

3.2 Key Observations

Figure 3.6 shows the most basic observation which enables this work. This figure

illustrates the fundamental ways in which multiple cores in an SOC can be tested.

In part (a) all the cores are given independent tester channels so that they may

be accessed and tested in parallel. Although this leads to favorable test times, the

number of tester channels required is large which results in a large volume of test data

and may conflict with the number of device pins available. In part (b), the number
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Figure 3.6: Choices for SOC test application (each square = 1 core).

of tester channels required is much fewer as one set of channels is allocated and used

by the cores in sequence, i.e., the cores are tested in series. However, the test time

now becomes a problem and the volume of test data is still large. Both problems are

solved through part (c) of the figure, where a small number of tester channels are

allocated and the cores are tested simultaneously. This is only possible if the cores

being tested do not demand 100% exclusivity of the tester channels. In other words,

cores may only be tested simultaneously provided that for each core there are times

during which the core does not need the channels, an issue addressed in the next

paragraph.

In order to exploit the observation that simultaneously tested cores use fewer tester

channels and require less time to test (reducing VTD), the test sets of the cores must

satisfy the condition that the cores do not require 100% bandwidth from the tester

during 100% of the testing time. Figure 3.7 shows empirically how this is enabled

(notes: the test set used here is from the ISCAS’89 Benchmark set [12], and Comp-

(number) gives a relative average care bit density of the test set, both will be discussed

further in Section 3.6). In Figure 3.7(a), a test set has been broken into blocks1 which

1A block is a set of consecutive clock cycles and will be further detailed in Section 3.3.
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Figure 3.7: Non-uniform distributions enabling improved compression.

are binned according to care bit density, and the number of blocks in each bin is

plotted on the vertical axis against the care bit density of that bin. It is immediately

clear that a large percentage of the blocks have a very low care bit density while only a

few have a very high care bit density. Recalling from Section 2.6 that there is a direct

correlation between care bits and seed bits required from the tester, we would expect

a correlation between the care bit density and the required density of reseeds. This

correlation can be seen in Figure 3.7(b). This figure was obtained in a similar way

to Figure 3.7(a), each pattern from the test set was broken into blocks and as many

blocks as possible were satisfied from a single seed, so some patterns were reseeded

frequently (those with high care bit densities) and some reseeded infrequently (those

with low care bit densities). The patterns were then binned according to number of

reseeds per pattern and graphed as number of patterns against number of reseeds.

As expected, nearly all of the patterns have very few reseeds while only a few require

reseeding in every block. Because the tester operates in the stream mode the test data

in the time during which reseeding is not required is wasted, i.e., the tester channels

are under-utilized. It is this fact that we exploit: during the time in which one core

does not require the seed channels for reseeding, we use the same tester channels to

reseed another core and thereby improve the tester channel utilization, which leads to

reduced VTD.

Since the intuition behind what has been done may seem obvious, some of the

obstacles which needed to be overcome in order to enable this approach are discussed

here along with an overview of how we have addressed these challenges. The first and
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most obvious challenge is the design of a hardware architecture which can support

this time-multiplexing of tester channels. Because the cost in area should be kept

to a minimum, the hardware should be relatively simple yet it must be robust and

modular so that it can be generated in an automated way. This desire for automation

brings to light the other main challenge of enabling this work, the CAD support. In

addition to being able to generate efficient hardware structures automatically, we

want an integrated flow into which we can dump the test specifications and then

collect our compressed data which we can transfer directly to the tester. In order

to cope with ever increasing volumes of test data, human involvement in managing

design and test flows should be kept to a minimum. On the hardware front, ideas have

been borrowed from the previous work in compression with modifications to suit the

time-multiplexing proposed. With this hardware in mind an algorithmic framework

for compression at the core level has been developed which we call StreamBIST, and

a pattern reordering algorithm which we call StreamPack for merging of the core

level compressed streams has been tackled at the system level. In the next section,

these hardware, core level CAD and system level CAD solutions are discussed in more

detail.

3.3 Seed-only Packing

This section introduces the central contribution of this thesis. It presents a novel

hardware architecture for EDT and the CAD support at the core and system levels

that will fully leverage the proposed hardware for improved compression. It is im-

portant to note seed-only refers to sharing only the seeds transferred from the tester

in contrast to sharing the mux lines used by a more elaborate decompressor intro-

duced in the next section. Before getting into the details of the decompressor, we

define the term frame to mean the data in a slice across all the scan chains during

one clock cycle. Said another way, during one clock cycle, a single frame of the test

pattern is loaded into the scan chains. We next define a block as being a collection

of consecutive frames. Figure 3.8 illustrates these definitions.
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Figure 3.8: Illustration of frames and blocks.

3.3.1 Seed-only Hardware

Figure 3.9 shows the hardware proposed for time-multiplexing of tester channels for

seed-only sharing. Figure 3.9(a) shows the decompressor at the core level, based on

the same architecture used in [105]. In the duration of a block, a seed is shifted into

the Seed Register on the Seed Lines. In the clock cycle where the Reseed Indicator

is asserted, the seed in the seed register will be loaded into the LFSR. For any clock

cycle where the reseed indicator is not asserted, the LFSR will continue to cycle and

produce a pseudo-random sequence through the phase shifter. Thus, for any given

block, there is an option to pick up a new seed or to continue expanding the next block

from the previous seed, thus allowing some slack to be introduced in the demand for

tester channels by a single core. As a note, work done in [6] has sought to establish

theoretical limits in compression through the use of entropy. Their work shows that

LFSR based approaches such as [105] which compress a fixed size block of data onto

a fixed size seed approach the compression limit determined by the test set entropy.

Where our approach is subtly different from [105] is the compression of variable sized

blocks of test data onto fixed size seeds (enabled by the reseed indicator line) for

which determination of entropy is left as an open problem by [6]. It is from this

variable to fixed encoding that the slack arises, and as the next paragraph describes

it is this slack that enables improved compression.

In Figure 3.9(b) we see the system level architecture which exploits the slack cre-

ated at the core level, by trading off demand for the tester channels among the cores.

Note that the small blocks with “DCMP” inside refer to the core level decompressors

of Figure 3.9(a). The architecture is similar in concept to the Illinois Scan Architec-

ture [33] discussed in Section 2.6.1, however some control must be added to regulate
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Figure 3.9: Decompression scheme for seed-only packing.

which core is using the tester channels during any given block. As shown in the figure

this can be accomplished relatively simply, a control register is used to buffer the

control stream and a periodic reseed signal is generated in every block. Depending on

what value is in the control register when the reseed signal arrives, the decoder will

allow only one core to use the buffered seed during that block. On this point a note

should be made about the buffering of seeds. Figure 3.10(a) shows how the decom-

pressors constructed at the core level would be linked at the system level (only the

seed portion has been shown for clarity). Because time-multiplexing is used only one

core will reseed during a given block and the other cores will ignore the seed, and thus

the buffer may be shared at the system level as shown in Figure 3.10(b). This would

not be possible if the cores were tested in parallel so not only does time-multiplexing

reduce the volume of test data required, it also reduces the area of the decompressor.

Note that in the following two sections, the architectures are given with the seed

buffer near the core level decompressor for illustrative purposes, however, the same

principle applies to those methods as well. It can be seen that the hardware used in

this compression methodology is not exceedingly elaborate, especially at the system

level. This simplicity of the hardware involved however is misleading, such simple

hardware is only made possible by sophisticated CAD support as discussed next.
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3.3.2 Seed-only CAD Support - Core Level

The CAD flow for compressing test sets for an SOC onto this decompression ar-

chitecture begins with calculation of seeds at the core level. Before discussing seed

calculation, we will first cover hardware modeling. Figure 3.11 shows explicitly how

the model equations for a given hardware configuration are obtained. Since the XOR

gate is equivalent to addition in GF2 the operations are linear and may be represented

as matrix manipulations. The LFSR feedback polynomial determines which LFSR

FFs are used to calculate the value of the most significant bit of the LFSR in the

next clock cycle, and as such becomes the top row of the LFSR transition matrix

(shown in the figure). Since the remainder of the LFSR is a simple shift register, each

remaining row in the matrix is simply the basis vector corresponding to the imme-

diately adjacent LFSR cell. This matrix therefore can be used to compute the next

LFSR state from the current state, and of course multiplication of the current state

with the nth power of the transition matrix will give the state after n clock cycles. It

follows that the LFSR matrix is a square matrix with number of rows and columns

equal to the LFSR size.
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Figure 3.11: Modeling of LFSR and phase shifter in GF2.

Moving past the LFSR we find the phase shifter. Since each phase shifter output

is a GF2 linear combination of the LFSR outputs, we may model this with a matrix

as well. Each column of the matrix corresponds to an LFSR output and each row

to a phase shifter output. For the example in Figure 3.11, the bottom output of the

phase shifter is L3⊕L2 and thus the bottom row of the phase shifter matrix is 1 1 0

0. Although in this example the phase shifter matrix is square, this is not necessary.

In general, the number of columns = LFSR size, and the number of rows = number

of scan chains (typically larger than LFSR size).

Having discussed how the hardware is modeled it is natural to wonder how the

test cubes are mapped onto equations corresponding to the hardware. Figure 3.12

shows the process of extracting equations from a test cube and solving them to obtain

a seed (initial state of the LFSR - compressed test data). The upper left portion of

the figure shows the GF2 model of the hardware as derived in the previous paragraph.

Immediately to the right of this the matrix multiplication is given explicitly which

allows calculation of the outputs of the phase shifter from a given seed (a3a2a1a0)

provided at time t = 0. Since we know how to calculate the decompressor outputs at

a given time, we simply match the specified bits in the test cube to the equations (in

terms of the seed variables) for the same outputs/times. Down the left part of the

figure the matrix products have been calculated for the given times. This then gives a

matrix which when multiplied with the seed vector, will give the decompressor output

for that time frame. The lower middle section of the figure shows matching specified
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Figure 3.12: Generating equations for a test cube.

bits to the corresponding equations to obtain the system of equations in the center

of the figure. Applying Gaussian elimination to this system yields values 1,1,1,0 for

a3, a2, a1, a0, i.e., the seed. Thus we can conclude that if we seed the decompressor

shown in Figure 3.11 with the seed 1110, the expanded pseudo-random sequence will

match the test cube shown in Figure 3.12 in all care bit positions.

Coming back to the clustering feature of test sets as discussed in Section 3.2, this

paragraph will outline how the basic seed calculation procedure just described can

be modified to produce “packable” compressed sequences for each core. The basic

procedure (named StreamBIST) is described by Algorithm 1 where Table 3.1 may

be consulted for symbol descriptions. As its input, the algorithm takes a set of test

cubes and a set of parameters describing the test hardware setup, that is, what size

LFSR should be used, what characteristic polynomial, how many scan chains, the

length of the scan chains, the block size, etc. Using this information, the function

GenerateCoreHardware constructs the hardware and generates an HDL (VHDL
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Variable Name Representation
Pi The ith test pattern
test cubes The set of all Pi

Compressed Pi The set of seeds and ressed locations for Pi

parameters The set {Blocksize, NumSC , SClen, ...}
NULL The empty set
Bk The kth block of the test pattern
Blocksize The length of a block
Blockcount Indicates the starting block of the current block chain
Chaincount Indicates the number of blocks in the current block chain
prev equations The accumulated equations of a block chain
new equations Equations of the most recent block added to a block chain

Chaini Group of cores tested simultaneously
INi Patterns still waiting to be placed for core chain i
OUTi Patterns that have been placed for core chain i
NOOP An empty block requiring no reseeding

Table 3.1: Terminology for StreamBIST and StreamPack algorithms.

Algorithm 1: StreamBIST

Input : test cubes, parameters (see table 3.1)

Output: compressed streamcore, incompressiblecore, decomp hardwarecore

1 decomp hardwarecore = GenerateCoreHardware(parameters);
2 compressed streamcore = NULL;
3 incompressiblecore = NULL;
4 foreach test pattern Pi in test cubes do

5 compressed Pi = CompressPattern(Pi, parameters) // Algorithm 2;
6 if (compressed Pi 6= NULL) then

7 Add compressed Pi to compressed streamcore;
else

8 Add Pi to incompressiblecore;
end

end
9 Return compressed streamcore, incompressiblecore, decomp hardwarecore;

64



3.3. Seed-only Packing M.A.Sc. - A.B. Kinsman - McMaster

and/or Verilog HDL) description (decomp hardwarecore) to which the core can be

connected at the system level. Actual compression begins in the next step, as the al-

gorithm progresses through the test set one pattern at a time attempting to compress

each one. For each pattern that is compressible with the given hardware configura-

tion, the compressed data or seed (compressed Pi) is stored in the overall compressed

stream for the core (compressed streamcore). At the end, a list of all incompressible

patterns (incompressiblecore) is provided in addition to the compressed stream and

the decompression hardware description. Note that the presence of incompressible

patterns will negatively affect fault coverage since the faults in the incompressible

patterns which cannot be applied may not be covered by other patterns. In this case

the designer has the option to increase the size of the LFSR and thus decrease the

probability of an incompressible pattern however, this results in poorer compression.

This has motivated the modifications to the architecture which will be discussed in

Sections 3.4 and 3.5. In the next paragraph we will focus on the details involved in

compressing a single pattern, the CompressPattern function which is actually the

core of the compression engine, where the “packability” of patterns is augmented.

Algorithm 2 gives the core of the compression procedure for a single pattern which

augments slack in the demand for seed bits, thus facilitating the packing algorithm

which will be used later to merge the compressed streams of all the cores at the system

level. The pattern to be compressed (Pi) is first divided into blocks according to the

block size determined by the designer (Blocksize). The basic idea behind making

patterns easier to pack is reducing the number of reseed points required, that is,

expanding as many blocks as possible from the same seed. To do this blocks are

checked for compatibility and strung together in a chain (if compatible). The counter

Blockcount keeps track of the starting point of the current chain, and the counter

Chaincount keeps track of how many blocks are in the current chain. Let us examine

the algorithm in detail with an example.

Example 1 Figure 3.13 illustrates the process of compressing a pattern using Al-

gorithm 2. The test pattern shown in the figure has been divided (line 1) into blocks

with Blocksize = 4 (upper right portion of the figure). Line 2 assigns Blockcount =

1 and the outer WHILE loop (line 3) is entered. Next, loop conditions for the inner
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Algorithm 2: CompressPattern

Input : Pi, parameters

Output: compressed Pi

1 Divide Pi into Numblocks blocks (Bk) of length Blocksize;
2 Blockcount = 1;
3 while (Blockcount ≤ Numblocks) do

4 prev equations = NULL;
5 compressible = TRUE;
6 Chaincount = 0;
7 k = Blockcount+Chaincount;
8 while ((k ≤ Numblocks) AND (compressible)) do

9 new equations = GenerateEquations(Bk, parameters);
10 compressible = CheckEquations(prev equations, new equations);
11 if (compressible) then

12 prev equations = prev equations
⋃

new equations;
13 if (k = Numblocks) then

14 Seedk = CalculateSeed (prev equations);
15 Add Seedk to compressed Pi;
16 Assign ressed point at Blockcount in compressed Pi;

end
17 Chaincount = Chaincount + 1;
18 k = Blockcount+Chaincount;

else

19 if (Chaincount 6= 0) then

20 Seedk = CalculateSeed (prev equations);
21 Add Seedk to compressed Pi;
22 Assign ressed point at Blockcount in compressed Pi;
23 Blockcount = k;

else

24 compressed Pi = NULL;
25 Blockcount = Numblocks+1;

end
end

end
end

26 Return compressed Pi;
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WHILE loop (line 8) are set up. Inside the inner WHILE loop we begin with generat-

ing the equations for block number k - Bk (line 9). Since at this point Blockcount = 1,

Chaincount = 0 and k = Blockcount + Chaincount, k = 1, we generate equations for

the first block. Equations are generated in the same way as the example given above

in Figure 3.12 in fact the B1 in this figure is the same block from Figure 3.12, so the

call GenerateEquations(B1, parameters) would follow precisely the steps outlined

in Figure 3.12 (with the exception of seed calculation since we intend to string multi-

ple blocks together if possible). In line 10 the consistency of the equations is checked

by CheckEquations which determines whether there are any linear incompatibilities

among the equations in new equations and prev equations. Since we are on the first

block of a chain at the moment, prev equations is still empty so we are checking for

linear inconsistencies in just the equations of B1. Since the equations for this block

(as shown in Figure 3.13) are consistent, CheckEquations returns TRUE to com-

pressible and so the first branch of the IF statement on line 11 is taken. On line

12, the equations of the block are merged to the rest of the equations in the chain

(again, this is currently the first block in the chain so after line 12 prev equations

will contain only the equations for B1). Line 13 checks if we are currently at the

last block, and if so assigns a seed since there are no more blocks to chain. Lines

17 and 18 update Chaincount to 1 and k to 2 respectively. We now begin the second

iteration of the inner WHILE loop. The equations for B2 (since k = 2) are obtained

as shown in the figure beside the equations for B1. Only the first equation for B2

has been given in the figure since this equation causes an linear inconsistency. As

a result of the inconsistency, the second branch of the IF on line 11 is taken. The

check at line 19 is to ensure that this is not the first block of the chain. If this were

the case, the equations for a single block would be inconsistent and thus the pattern

would be incompressible (and thus a NULL would be returned by the algorithm). Since

Chaincount = 1 at this point, the first branch is taken. At line 20 CalculateSeed

uses Gaussian elimination to obtain the reduced set of equations (not including those

of the most recent block) and thereby the seed. As the figure shows, (uppermost two

streams) the resulting seed is assigned to the compressed stream and a reseed point is

asserted to accompany the seed. Also, Blockcount which indicates the starting position

67



3.3. Seed-only Packing M.A.Sc. - A.B. Kinsman - McMaster

of the current chain, is updated to block B2, the block which could not be added because

of a linear inconsistency to prev equations.

Because at this point compressible is false, the inner WHILE loop exits and a

second iteration of the outer WHILE loop is performed. This is illustrated as the

second row of systems of equations (middle of the three) in the figure, beginning with

a3 ⊕ a2 = 1. It should be noted that this equation is different from the equation for

the same care bit when that block (B2) was in the previous chain - a2 ⊕ a1 ⊕ a0 = 1.

This is because in the last chain B2 was the second block, so the LFSR power (t from

figure 3.12) for the associated care bit would have been 4. Now, B2 is the first block

in the chain, so t = 0 for the care bit in question (bottom left 1 of B2). Moving on to

the next iteration of the inner WHILE loop we have the next set of equations in figure

3.13 corresponding to block B3, where Blockcount = 2 and Chaincount = 1. Since the

equations remain consistent, we move to the next block B4 with Blockcount = 2 and

Chaincount = 2. Finally for Blockcount = 2 and Chaincount = 3 (B5), an inconsistency

arises. The seed is calculated (line 20) and passed to the compressed stream at position

2 (Blockcount). Notice that the seed is calculated based on prev equations which at

this point contains equations for B2, B3 and B4. Next the outer WHILE loop iterates

again, with Blockcount = 5. This process continues until either an inconsistency arises

in a single block (Chaincount = 0) in which case the pattern is incompressible, or

until all the blocks have been covered in which case the compressed stream is returned

(compressed Pi).

By applying this method to every pattern in the test set, a compressed stream

containing gaps during which the seed lines are not needed can be formed for each

core. The next section details the CAD support at the system level which reorders

the patterns from the multiple cores to enable sharing of a single set of tester channels

among all the cores, by interlacing periods of activity on the seed lines for one core

with periods of inactivity for the other cores.
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XXX0XXX1XX1XXXXXXX0X1XX0
X0XXX0X1X1XXXX1XX00XXX0X
XX1XXXXXXX11X10XXXXXX0XX
XX101XXXX0XXXXX1X1XXXX1X

XXX0 XXX1 XX1X XXXX XX0X 1XX0 ...
X0XX X0X1 X1XX XX1X X00X XX0X ...
XX1X XXXX XX11 X10X XXXX X0XX ...
XX10 1XXX X0XX XXX1 X1XX XX1X ...

a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 0    a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1
a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1
a3 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a0 = 1    Fail      (a0..a3)
⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 a3 ⊕⊕⊕⊕ a2 = 0    prev seed = 0111
⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a0 a3 ⊕⊕⊕⊕ a1 = 0    Next reseed after block 1 

a3 ⊕⊕⊕⊕ a2 = 1    a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1    a1 ⊕⊕⊕⊕ a0 = 1    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 0
a1 ⊕⊕⊕⊕ a0 = 0    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 = 0    a3 ⊕⊕⊕⊕ a1 = 1    a3 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1
a3 ⊕⊕⊕⊕ a2 = 1    a3 ⊕⊕⊕⊕ a3 ⊕⊕⊕⊕ a1 = 1    a2 ⊕⊕⊕⊕ a1 = 0    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a2 = 0
a3 ⊕⊕⊕⊕ a2 = 1    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 = 1    a2 ⊕⊕⊕⊕ a2 = 1
a3 ⊕⊕⊕⊕ a2 = 1    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a2 = 1    a2 ⊕⊕⊕⊕ a1 = 0 Fail – prev seed = 0110
a1 ⊕⊕⊕⊕ a0 = 0    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 = 0    a3 ⊕⊕⊕⊕ a1 = 1 Next reseed after block 4 

a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 0    a3 ⊕⊕⊕⊕ a3 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1
a3 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 0
a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 = 0    a3 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 = 0
a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 = 0    a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1
a0 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 1 a3 ⊕⊕⊕⊕ a2 ⊕⊕⊕⊕ a1 ⊕⊕⊕⊕ a0 = 0

…. Fail – prev seed = 0001
Next reseed ...

Test Vector

Resultant Seed Stream: 0111 0110 XXXX XXXX 0001 XXXX ...Reseed LFSR (generated on-chip): 1000 1000 0000 0000 1000 0000 ...
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Figure 3.13: Calculation of seeds for StreamBIST.

3.3.3 Seed-only CAD Support - System Level

After performing StreamBIST on all the cores in the system, a collection of core

level decompressors (decomp hardware1,2,...) and accompanying compressed streams

(compressed stream1,2,...) are obtained. The process of merging all this information

into a system level test architecture and data stream (named StreamPack) is illus-

trated in Figure 3.14. As with StreamBIST, the hardware is kept relatively simple and

the complexity of the problem is handled by concentrating effort on stream calcula-

tion which is done in software (CAD tools). The StreamPack algorithm for reordering

patterns to enable seed line sharing (time-multiplexing) is given as Algorithm 3. In

addition to each cores’ StreamBIST results, some system level detail (core connect)

is provided which indicates how the cores are connected to the test infrastructure.

This simply permits cores to be grouped into chains, so that instead of all cores in
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StreamPack

StreamBISTStreamBIST

SOC

Core 1/Test 1 . . . . . . . . Core n/Test n

compressed_stream1 compressed_streamndecomp_hardware1 decomp_hardwaren

Core Test setCore Test set

Pattern
Reordering

Hardware
Generation

HDL Description Tester Data Stream
decomp_hardwareSOC compressed_streamSOC

Figure 3.14: Compression flow for StreamPack.

the SOC being tested simultaneously (as in Figure 3.6(c)), each chain is tested simul-

taneously with all other chains while cores within a single chain are tested serially

(as in Figure 3.6(b)). This can be useful if for example there are certain constraints

on what cores may be active at the same time, but the simplest and most frequently

used configuration is one core per chain. This feature also enables smooth integration

of multi-mode StreamPacking as will be discussed in Section 3.5.

The first step in StreamPack is to generate the system level hardware which con-

nects all the individual core level compressors. This is the purpose of the GenSOCHW

function cited in the algorithm which acts in essentially the same way as the Gener-

ateCoreHardware function from StreamBIST (Algorithm 1), the structure of the

hardware is generated based on the information from the cores and core connect and

an HDL description is automatically generated. After this step the actual packing

begins. First, each chain (as discussed above) is analyzed to determine which cores it

contains after which all the patterns from all the cores in Chaini are loaded into a sin-

gle list called INi, i.e., there is one IN list for each chain. Once all the patterns have

been loaded, the patterns in each IN list are sorted in descending order of number

of reseeds. The intuition behind this step is that patterns with more reseeds will be
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Algorithm 3: StreamPack

Input : compressed stream1,2,..., decomp hardware1,2..., core connect

Output: compressed streamSOC , decomp hardwareSOC

1 decomp hardwareSOC = GenSOCHW(decomp hardware1,2..., core connect);
2 foreach Chaini in core connect do

3 foreach Corej in Chaini do

4 foreach Patternk in compressed streamj (Corej) do

5 Read reseed profile for Patternk into list INi;
end

end
6 Sort patterns in INi by decreasing number of reseed points;
7 List OUTi = NULL;

end
8 while Some INi still contains patterns do

9 Current OUT = Shortest OUTi | INi still contains patterns;
10 Current IN = INi which corresponds to Current OUT ;
11 Fit = FALSE;
12 while (Fit 6= TRUE) do

13 Current pattern = First pattern in Current IN ;
14 Fit = FALSE;
15 while ((Fit 6= TRUE) AND (not end of Current IN)) do

16 Fit = CheckFit(Current pattern, OUT1,2,...);
17 if (Fit = TRUE) then

18 Move Current pattern from Current IN to Current OUT ;
else

19 Current pattern = Next pattern in Current IN ;
end

end
20 if (Fit 6= TRUE) then

21 Insert NOOP block in Current IN ;
end

end
end

22 {Data,Control} = ParseLists(OUT1,2,...,decomp hardwareSOC);
23 compressed streamSOC = Data

⋃
Control;

24 Return compressed streamSOC , decomp hardwareSOC ;
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Re-arranged to
enable sharing 

Core 1: 0100 XXXX XXXX XXXX XXXX XXXX XXXX 1111 ... 
Core 2: 1101 XXXX XXXX 1001 XXXX XXXX XXXX 0001 ...
Core 3: 0111 XXXX XXXX XXXX 0001 XXXX XXXX XXXX ...

Core 1: 0100 XXXX XXXX XXXX XXXX XXXX XXXX 1111 ... 
Core 2: NOOP 1101 XXXX XXXX 1001 XXXX XXXX XXXX 0001 ...
Core 3: NOOP NOOP 0111 XXXX XXXX XXXX 0001 XXXX XXXX XXXX ...

Data: 0100 1101 0111 0110 1001 0111 0001 1111 0001 1010 XXXX ...
Control: 00XX 10XX 01XX 11XX 10XX 11XX 01XX 00XX 10XX 11XX XXXX ...

Core 4: 0111 XXXX 0111 XXXX XXXX XXXX 1010 XXXX ...

Core 4: NOOP NOOP NOOP 0110 XXXX 0111 XXXX XXXX XXXX 1010 XXXX ...

compressed_stream1

compressed_stream2

compressed_stream3

compressed_stream4

compressed_streamSOC

Figure 3.15: Packing of seed streams and generation of control.

more difficult to pack, and since the lists are traversed in order when trying to pack

we desire to pack the more difficult patterns early, to leave more packing flexibility

later in the packing process. The core of the algorithm which consists of moving

patterns from the IN lists to the OUT lists is discussed in the next paragraph.

The basic principle of merging seed streams is shown in Figure 3.15. Each of the

compressed streams in the upper part of the figure has been generated by StreamBIST

which has produced discontinuous data requirement on the seed lines. By shifting

the patterns with respect to one another an arrangement can be found where there

are no seed conflicts, only one core requires the seed lines at a time. In Algorithm

3, the WHILE loop on line 8 ensures that the algorithm continues as long as there

are unplaced patterns and line 9 chooses the chain in which the next pattern will be

placed to the be the shortest chain which still has unplaced patterns (the shortest

OUTi such that INi is not empty). The purpose of this is to ensure even treatment

among the chains. If the patterns for one chain were fully assigned before the others,

there would be too much rigidity to effectively assign patterns to the remaining chains.

Starting with the WHILE loop on line 12 we come to the core of the pattern reordering

algorithm. Because in reality patterns are much more difficult to pack than in the

simple example in Figure 3.15, we must provide a means to deal with seed sharing

conflicts. Figure 3.16 shows how this core part of the algorithm deals with these

conflicts.
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1st of remaining patterns for a 
given core has a conflict 

Pattern 1 (remaining) Pattern n (remaining)

Pattern 1 (remaining) Pattern k (remaining)NO
OP

Try successive patterns until 
one fits or run out 

If no patterns fit, insert a 
NOOP and repeat – costs in 

test time

NO
OP

NO
OP

Eventually, a pattern will fit 
even if it needs to be pushed 

past all existing patterns 

NO
OP

Figure 3.16: NOOP insertion to address reseed conflicts.

Starting at the upper right hand corner of Figure 3.16 and moving to the right,

we can see the operation of the WHILE loop on line 15 where all the un-placed

patterns in the placement chain (Current IN) are tried in the current placement

slot (Current OUT ). Each pattern is evaluated against the already placed patterns

by CheckFit to see if there are any seed conflicts. If a seed conflict arises, the

next pattern is tried and so on. If all the patterns have been tried and none fit,

the WHILE loop on line 15 exits and a NOOP is inserted (line 21) as shown in the

lower left portion of Figure 3.16. A NOOP is a single block on one chain where no

seed is provided, which guarantees that it will not conflict with any other chain. The

WHILE loop on line 15 then repeats and all the patterns are tried after the inserted

NOOP, meaning they have been shifted by one block and therefore might no longer

be in conflict with the already placed patterns. The process repeats with NOOPs

continually being added until finally there are no seed conflicts. This is guaranteed

to happen since eventually the NOOPs will push the placement location past the end

of all the previously assigned patterns. Once a pattern fits it is transferred from its

IN list to the corresponding OUT list and, as mentioned above, this continues until

all the IN lists are empty.
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Test time if perfect sharing (with 
no conflicts) could be achieved 

Test time if no sharing is used 

Testing time when NOOPs
must be inserted to 
overcome conflicts 

Figure 3.17: Test time comparison for StreamPack.

Although insertion of NOOPs does a good job of solving the seed conflict problem,

they adversely affect test time by delaying the placement of vectors whenever conflicts

occur. This effect can accumulate significantly as shown in Figure 3.17. In the case

where perfect packing can be achieved (i.e. there are no seed conflicts at all), the

test time as shown in the upper section of the figure is obtained. In contrast to this,

the middle section of the figure shows the test time required if the cores were tested

serially. The test time resulting from the insertion of NOOPs is longer than the case

where no seed conflicts arise, but it is still significantly better than serial testing.

Note that all three cases in Figure 3.17 use a single set of seed lines, the test time for

parallel testing is the same as for no seed conflicts, but independent tester channels

would be required for each chain. Thus even with NOOP insertion, StreamPack is

able to provide improved VTD.

Once pattern reordering has been completed it is a very straightforward job to

merge the seed streams and calculate the control streams. This step is given on

lines 23 and 24 of Algorithm 3, and is illustrated in the bottom part of Figure 3.15.

The hardware generated by StreamPack and the compressed test data/control stream

thus provide the end product of the StreamBIST/StreamPack flow. In the next two

sections, some modifications to StreamBIST and StreamPack are discussed which en-

able reduction of lockout probability, thereby reducing the number of incompressible

patterns while avoiding substantial cost in compression.
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Figure 3.18: Core level decompressor for seed and mux packing.

3.4 Seed and Mux Packing

As extensively covered thus far in the thesis, the use of linear machines as test data

decompressors is largely a result of the reduced complexity of seed calculation enabled

by the use of Gaussian elimination. Unfortunately, this benefit comes at the cost of

increased probability of lockout caused by correlations (linear dependencies) between

different points in the test set. If one of these linear dependencies is violated by

a given test pattern, that pattern cannot pass through the decompressor. In order

to cope with these linear dependencies, the most immediately obvious solution is to

introduce some non-linearity into the output sequence of the decompressor to enable

compression of an extended set of patterns. That is precisely the approach that has

been used in the seed and mux packing architecture, described in this section.

3.4.1 Seed-mux Hardware

Figure 3.18 shows the architecture proposed for reduced probability of lockout. Notice

the similarity to the seed-only architecture of the previous section, the only difference

being the addition of multiplexers on either side of the phase shifter network. The

multiplexers on the input side of the phase shifter (input muxes) enable connection of

each phase shifter output either to its respective LFSR output or the adjacent LFSR
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output. Likewise on the output (output muxes), each scan chain may be driven ei-

ther by its respective phase shifter output or the adjacent one. The Mux Lines allow

selection of what configuration in which to place the phase shifter. The end result of

this additional hardware is increased flexibility in what equations may be used when

calculating a seed. Each configuration value on the mux lines corresponds to a differ-

ent phase shifter, accompanied by a distinct phase shifter matrix. Thus if equations

in one frame conflict with equations from another, the value on the mux lines may be

altered during one of the clock cycles to break the linear dependency. This brings a

great deal of benefit as much denser test cubes can now be compressed however, this

comes at the cost slightly increased area, extra data required and computational over-

head. The additional computational complexity is addressed in Section 3.4.2 while

area is covered in the next paragraph.

Observing Figure 3.18, the additional hardware required amounts to two muxes

per scan chain and two AND gates (discussed in the next paragraph). Note that

although 2-to-1 muxes are shown in the figure, any size mux may be used. The choice

of 2-to-1 has been made for a few reasons. First, by keeping only 2-to-1 muxes the

area overhead is kept relatively low. Also, it has been observed that as the size of

the mux is increased more mux lines are obviously needed, and the benefit of solving

denser blocks is lost against the increased data which must be supplied. In addition,

the size of the mux used has a severe impact on computational complexity as will be

seen in Section 3.4.2. As a result of these facts, 2-to-1 muxes are preferred. Now we

will discuss hardware at the system level.

In the same way that sometimes seeds are frequently demanded, while at other

times seed requirements are scarce, it has been observed that some blocks are satis-

fiable without the need for a reconfigurable phase shifter while some require it. This

stems from exactly the same reasons as in the case of seeds, the clustering of care

bits. As a result, the mux lines can be shared in the same way as the seed lines.

Analogous to the reseed enable signal for the LFSR which instructs the it either to

accept or ignore the seed buffered in its seed register, the Mux EN signal tells the

core to either use the values coming on the mux lines or ignore them. This is accom-

plished through a simple AND gate, when the Mux EN signal is 0 the mux lines are

76



3.4. Seed and Mux Packing M.A.Sc. - A.B. Kinsman - McMaster

masked and the phase shifter configuration is the same as the case for seed-only. Also

similar to the reseed enable, the mux enable must be driven at the system level by

some control. The control is almost identical to that for seeds, consisting of a control

register to buffer the incoming control stream and a decoder implemented for both

input and output muxes, which allows the input and output mux lines to be passed

independently between cores on a block by block basis (during one block, one core

may receive the seed lines, another the input mux lines and another the output mux

lines). Although the area of the control logic is now in triplicate of the control area

for the seed-only case, it is still well within the acceptable overhead range. Next we

detail some of the implications on CAD when using this approach.

3.4.2 Seed-mux CAD Support - Core Level

With changes to the core level architecture it is expected that changes will be required

to the algorithmic framework. This is in fact the case. Although at the conceptual

level the changes are minor there are some issues at the practical level that have

needed to be addressed. Most importantly, in keeping with our established paradigm

we have sought to keep the hardware simple by pushing complexity into the algorithms

that do the compression.

The major change to the algorithm involves calculation of equations for multiple

systems of equations, since now the phase shifter may be reconfigured. The major

challenge here, as mentioned above, is the issue of computational complexity. To see

why computational overhead increases with the use of a reconfigurable phase shifter

consider the case where that mux lines are used, one for the input muxes and one

for the output muxes (as in Figure 3.18). This means that in each clock cycle, a

choice of 4 distinct phase shifter matrices exists. Over two clock cycles, 16 systems

of equations may be formed (any of 4 matrices in the first clock cycle with any of 4

in the second). Extrapolating, it is easy to see that the number of potential systems

of equations which must be checked grows exponentially with the block length. At

the algorithmic level this is manifested through backtracking as shown in the next

paragraph.
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To solve for a seed to a block when a reconfigurable phase shifter is used, the

equations are added frame by frame as is the case for the seed-only architecture. The

difference is that for the seed-only case, once the equations for a frame have been

added there is no room to maneuver. If a linear inconsistency exists the block must

be abandoned. In the case of the reconfigurable phase shifter, if adding a frame causes

a linear inconsistency the other configurations are tried for that frame. If the linear

inconsistency occurs for all the configurations in that frame the algorithm will back-

track, change the configuration for the previous frame and try all the configurations

again. Having recorded what configuration the phase shifter used in each clock cycle,

the mux line stream can be determined immediately in the case that the block is

compressible. It is clear that if a block is incompressible all the configurations will

have to be tried, resulting in explosive runtimes. In order to combat this, a backtrack

limit has been imposed which allows only a set number of reconfiguration trials be-

fore abandoning the block. Although this moderately affects the compression since

some patterns which may be compressible after a large number of reconfigurations

are abandoned, the runtime is significantly improved. The loss of compression arising

from the backtrack limit is more than balanced by the increase in block length which

is permitted by it. Since a seed (of fixed width = LFSR size) is loaded during one

block, if the block length is increased the number of seed lines required is reduced.

Thus we desire a longer block length for improved compression, however this would

seriously impact computational time during compression if the backtrack limit were

not in place.

It is therefore for both the reasons of area overhead and computational complexity

that 2-to-1 muxes are preferred. As for hardware, we have discussed the hardware

at the system level which moderates whether the mux lines driven from the ATE

(outside the chip) are observed by a given core or ignored. In the next section we

discuss the impact of this modification on the algorithm at the system level.
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3.4.3 Seed-mux CAD Support - System Level

Unlike the modifications to the algorithm required at the core level which are concep-

tually simple but practically complex, the modifications to the system level algorithm

are simple in both aspects. Recall that the StreamPack algorithm (Algorithm 3) tra-

verses the lists of patterns attempting to slot them in at progressively increasing

times. This process hinges on the CheckFit function (line 16) which determines

whether a pattern will fit at the current location, by checking if during any block of

the pattern, more than 1 core requires reseeding. With the modified streams from

StreamBIST with muxes, we now have an in-mux profile and an out-mux profile in

addition to the reseed profile. CheckFit now simply checks to ensure that not more

than 1 core requires reseeding, not more than 1 core requires the in-mux lines, and

not more than 1 core requires the out-mux lines during any block of the test pattern.

This generally results in more NOOP insertion, since there is an increased probability

of conflict between any of three sets of lines than when there is just one set of lines

as for seed-only. This increased level of NOOPs and the extra data and control for

the muxes should be offset however by the reduced data per seed which is enabled

by the longer block length. In addition to the changes to the CheckFit algorithm

just described, the only other major difference is the generation of control streams

for passing the mux lines between cores in addition to the seed lines.

Although this method is able to improve compression somewhat by enabling in-

creased block lengths, the difference is not substantial as will be discussed in the

experimental results (Section 3.6). For this reason, another method of addressing

linear dependencies has been proposed, multi-mode scan chain reconfiguration as

outlined in the next section.

3.5 Multi-mode Packing

As we have seen in the previous section, introduction of non-linearity (muxes and

mux data streams) in the decompressor has enabled better compression by improving

block length. As discussed however, the improvement in compression is not substan-

tial. This is a result of the fact that an increased number of data streams to be packed
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Figure 3.19: Multi-mode core level decompressor.

together translates to an increased probability of conflict, and therefore a larger num-

ber of NOOPs inserted. Thus the extra NOOPs dilute the effect of the increased

block length. This section proposes another way to address the linear dependencies

responsible for lockouts which reduce compression.

Figure 3.19 shows the modifications made to the decompressor of the last section

to outfit it for multiple mode scan chain reconfiguration. Recall that the number of

seed bits provided translates roughly to how many care bits may be expanded by that

seed. In the last section, we have attempted to boost the number of care bits which
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may be expanded by increasing the set of equations from which we may choose in any

clock cycle. The architecture given here uses reconfiguration to reduce the number

of care bits which should appear in any block by reducing the size of the block by

shrinking the number of scan chains. Note that both varieties of decompressor may

employ scan chain reconfiguration, both the seed-only packing (Figure 3.19(a) and

the seed-mux packing (Figure 3.19(b)). In the forthcoming discussion explanations

will be centered around the seed-only architecture for clarity, but anything discussed

applies equally to the multi-mode seed-mux architecture.

To see scan chain reconfiguration in effect, consider a design using 32 scan chains

and a 32 bit LFSR using a block length of 4. This results in 8 seed lines being needed.

During a given block, 4 × 32 = 128 bits are expanded from the LFSR while only 4

× 8 = 32 are shifted in on the seed lines. This indicates that the block may contain

32 care bits and still remain compressible - this translates to 32/128 = 25% care bit

density. After the first reconfiguration (we are now in mode 2), the muxes between

the phase shifter outputs and the scan chain inputs in Figure 3.19(a) are activated

through the Re-Config Control. This is done in such a way as to link the input of

every second scan chain to the output of the previous chain thereby doubling the

length of each chain, but cutting the number of chains in half. If the block length is

kept at 4, we now have 4 × 16 = 64 care bits expanded in each block but the number

of blocks which we must expand per pattern has doubled. Since the seed end has

not changed, we may still satisfy 32 care bits and so the maximum tolerable care bit

density is 32/64 = 50%. Thus by reducing the number of scan chains, the allowable

care bit density is increased at the expense of scan time which lowers compression for

the patterns tested in later modes.

In a sense, this architecture also exploits clustering of care bits within a test set but

across patterns instead of within a pattern. It has been observed that some patterns

have very high average care bit densities while others are very sparse. Thus we can

use the high compression mode (which will tolerate only lower care bit densities) to

compress the sparse patterns, and only the very dense patterns need to suffer the

reduced compression of the later scan chain reconfiguration modes. In this way the

average compression of the entire test set is improved. Of high importance in this

81



3.5. Multi-mode Packing M.A.Sc. - A.B. Kinsman - McMaster

approach is that reconfiguration can be performed a sufficient number of times to

enable any pattern to be passed through it, so long as one is willing to pay the penalty

in reduced compression. This means that application of a pattern with 100% care

bit density would be straightforward with this architecture whereas other approaches

(including the seed-only and seed-mux without reconfiguration as discussed earlier)

might not be able to apply the pattern. This fits well with the programmability feature

which we desire as discussed in Section 3.1.4.

3.5.1 Multi-mode Hardware

In terms of hardware overhead it is clear that the penalty is small at the core level.

Another mux per scan chain is required, bringing the total to three 2-to-1 muxes

per scan chain if the multi-mode seed-mux (the greatest area overhead) approach is

used. Before discussing the system level implications, it should be noted that all these

approaches may be used in the case of a single core. Although they are presented here

in light of decompression for the system level, they will still provide data reduction if

applied to a single circuit. If this approach in particular is used for a single core, no

data overhead is required for the scan chain reconfiguration signals (re-config control).

This is due to the fact that all the patterns for one mode may be tested, then the

scan chains can be reconfigured and all the patterns of the next mode tested and so

on. Because the re-config control signals do not have to be updated every clock cycle

they are deemed static, and may be accessed through some means other than the

tester channels. A method of accessing such signals is through a JTAG interface [73],

first developed for board testing and is now used for many applications similar to this

(eg. programming FPGAs). In this way, reconfiguration can come at no additional

data cost when used on a stand-alone core.

On the other hand, when reconfiguration is used for multiple cores in a system

under the StreamPack methodology, we desire the ability to switch between modes

during any given block for reasons that will be explained in Section 3.5.3. To enable

this, the mode information must be provided in the configuration (control) stream

which comes on the tester channels. How this is handled is shown in Section 3.5.3.
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Algorithm 4: MMStreamBIST

Input : test cubes, parameters

Output: compressed stream1,2,...
core , decomp hardwarecore

1 decomp hardwarecore = GenerateCoreHardware(parameters);
2 Patternsremain = test cubes;
3 Mode = 1;
4 while (Patternsremaining 6= NULL) do

5 {compressed streamMode
core ,incompressibleMode

core } =
StreamBIST(Patternsremain, parameters) // Algorithm 1;

6 Patternsremain = Reformat(incompressibleMode
core );

7 Mode = Mode+1;
end

8 Return compressed stream1,2,...
core , decomp hardwarecore;

3.5.2 Multi-mode CAD Support - Core Level

As far as CAD support for the multi-mode approach is concerned, at the core level

not much different needs to be done. Algorithm 4 shows how an algorithm wrapped

around the StreamBIST algorithm (Algorithm 1) can enable simple calculation of the

multi-mode streams. In this case, the hardware description is generated first as usual.

Then, starting with the test patterns formatted for the first mode, StreamBIST is

run to compress what patterns can be compressed and return a list of incompressible

patterns. Next, the incompressible patterns are reformatted by the Reformat func-

tion (line 6) which simply parses the incompressible test patterns and writes them

with half the scan chains of the original test set, that is, the way they would appear

to the decompressor looking through the scan chain reconfiguration hardware. These

reformatted patterns are passed again through StreamBIST and the cycle continues

until all patterns have been compressed. This gives a set of streams, one for each

mode, and a reconfigurable hardware architecture which can expand the streams. In

the next section, use of these streams in StreamPack at the system level is discussed.
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3.5.3 Multi-mode CAD Support - System Level

When packing streams from multiple mode decompressors, the feature of the core

connection scheme discussed with the introduction of StreamPack for seed-only be-

comes of significant importance. The very convenient feature of this ability to connect

cores into chains of exclusive test activity enables different modes of the same core

to be placed in the same chain as virtual cores. In this way, no mode of any core

will be tested at the same time as another mode of itself. Thus we can directly reuse

the same StreamPack algorithm to obtain multi-mode packed streams. Some care

must be taken during parsing to re-create the control streams, to ensure that the

virtual core signals which are generated are hooked up in the appropriate way to

the re-config control signals of a single multi-mode core. Aside from this detail the

algorithm is completely reusable. This point also emphasizes the importance of hav-

ing block-by-block access to the reconfiguration signals. By allowing this freedom to

test the core in one mode during one pattern and another in the next at will reduces

the probability of NOOP insertion and thus the overall test time. These effects are

reflected in the experimental results as discussed in the following section.

3.6 Experimental Results

In this section, experimental results pertaining to the methods proposed in the previ-

ous sections are provided. A brief setup (Section 3.6.1) details some specifics relating

to our experiments after which tester channel utilization results are given (Section

3.6.2). This is followed by compression, hardware area overhead and central pro-

cessing unit (CPU) runtime results presented in light of the seed-only, seed-mux and

multi-mode compression schemes. Most importantly, relation to prior work and rele-

vance are addressed in Section 3.6.8.
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3.6.1 Experimental Setup

With respect to experimental setup, a couple of issues must be addressed. First note

that the experiments were carried out on the test sets of the ISCAS’89 benchmark

circuits [12]. To determine the effects of care bit density the experiments were per-

formed on different versions of the same test set, which had undergone different levels

of static compaction. These test sets are denoted with the label Comp-(num), where

(num) indicates the maximum allowed specified bits per pattern. For example, in the

Comp-50 test set merging of two patterns was only permitted if this would result in

a vector with less than 50 specified bits. In this way, compaction could be moderated

to produce test sets with varying degrees of average care bit density, Comp-50 being

the most sparse and Comp-1000 being the most dense. Another compacted version

of the test set was obtained through the use of MINTEST [30], for which compaction

was unconstrained resulting in much denser patterns.

For setup of the experiments themselves, we have used a hypothetical SOC com-

prised of the 5 largest ISCAS’89 benchmark circuits: s13207, s15850, s35932, s38417

and s38584. The experiments have been carried out for 8, 16 and 32 scan chains for

seed-only and seed-mux packing, and in each case the LFSR size was kept equal to the

number of scan chains. The multi-mode (both seed-only and seed-mux) results used

a 32 bit LFSR with 32 scan chains in the first mode, 16 in the second and 8 in the

final mode of reconfiguration. Finally, different block lengths were used in different

experiments, and are reported in parenthesis alongside each VTD result.

3.6.2 Tester Channel Utilization

In this section, we discuss the effect of time-multiplexed tester channels on the tester

channel utilization first discussed in Section 3.2. Figure 3.20 shows how employing

StreamPack can substantially improve the utilization of the tester channels which

was calculated in the following way. Before packing, StreamBIST was first applied to

each core and utilization was taken as the ratio of the total number of reseeded blocks

across the 5 cores from our hypothetical SOC to the number of blocks in total for

the 5 cores, giving the No Packing result in the figure. Post packing utilization was

85



3.6. Experimental Results M.A.Sc. - A.B. Kinsman - McMaster

Effect of Packing on Tester Channel Utilization

0

10

20

30

40

50

60

Comp 50 Comp 150 Comp 400 Comp 1000 Mintest

Compaction Level
T

es
te

r 
C

h
an

n
el

 U
ti

liz
at

io
n No Packing

Packing

Figure 3.20: Tester channel utilization improvement.

taken (after running StreamPack) as the number of active (reseeded) blocks against

the total blocks in the StreamPack output stream. The reason for the improvement

is that during StreamPack the algorithm attempts to use the inactive periods on each

core (the unseeded blocks) to reseed another core. This reduces the overall number of

unused blocks and thus improves the utilization. Another way to consider this point

is that the number of reseeds contained in the pre- and post-packed streams is the

same, while reducing the total amount of test time from the serial case (as in Figure

3.17). The total number of blocks (the denominator of the utilization expression) is

reduced while the numerator remains constant, thus utilization increases.

Presentation of results for utilization are meaningless if not accompanied by a

tangible effect, reduction of VTD or test time for example. Improvement of tester

channel utilization is not the goal in and of itself, we have focused on its improvement

to facilitate improved compression. How tester channel utilization can produce better

compression is presented next.

3.6.3 Uncompressed Test Sets

All VTD results reported were on an hypothetical SOC of the 5 largest ISCAS’89

benchmarks, as mentioned above. Table 3.2 shows the uncompressed volumes of test

data for this SOC, obtained by taking the simple sum of the VTDs of the individual

cores, which is slightly optimistic for an uncompressed solution2. Test time is then

2The VTD reported as the sum in this way could only be realistically achieved by serial testing
where each core has only a single scan chain, resulting in exceedingly long test times. Nevertheless,
we report our results for multiple scan chains against this value and therefore our results appear
slightly more pessimistic that what may actually be achieved in practice.
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Uncompressed VTD
Compaction No. SC Scan Time VTD

8 1980667
Comp-50 16 990334 15845330

32 495167
8 488078

Comp-150 16 244039 3904623
32 122020
8 199724

Comp-400 16 99862 1597792
32 49931
8 168267

Comp-1000 16 84134 1346136
32 42067
8 77904

Mintest 16 38952 623230
32 19476

Table 3.2: Uncompressed VTD for 5 ISCAS’89 benchmarks.

calculated as VTD / number of scan chains. Also, in this scheme the number of

data lines is the same for the uncompressed and compressed cases which shows more

clearly the tradeoff between control information overhead and test application time.

Said another way, additional control channels from the ATE increase VTD but si-

multaneously enable packing which reduces scan time (as in Figure 3.17) and thereby

VTD. By keeping the number of seed channels the same in compressed and uncom-

pressed cases we can more clearly see whether the benefit in scan time outweighs the

cost in extra control channels, thus we can evaluate the effect of packing directly. In

the next section, VTD and scan time are discussed for the seed-only and seed-mux

decompressors not using scan chain reconfiguration.

3.6.4 Single Mode Testing VTD

In this section the compression results for the seed-only and seed-mux cases as shown

in Table 3.3 are discussed. For the Comp-50 and Comp-150 test sets, both seed-only

and seed-mux provide improved test time and VTD results. Starting with Comp-

400, seed-only continues to provide compression while seed-mux falls behind even the

uncompressed VTD, but still outperforms seed-only in test time. The reason for this

is as follows. In seed-only StreamBIST the demand for data must be satisfied on only
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Seed-only (Section 3.3) Seed-mux (Section 3.4)
Compaction No. SC Scan Time VTD Scan Time VTD

8 1314950 15779400 (1) 1441552 5766208 (8)
Comp-50 16 660630 13212600 (1) 700776 3503880 (8)

32 337016 6066288 (2) 346624 2426368 (8)
8 260975 3131700 (1) 268482 2684820 (2)

Comp-150 16 131536 2630720 (1) 152972 1223776 (4)
32 69980 1259640 (2) 74580 894960 (4)
8 109251 1311012 (1) 108966 2397252 (1)

Comp-400 16 66167 1323340 (1) 55263 1657890 (1)
32 36991 1331676 (1) 28502 1311092 (1)
8 86157 1033884 (1) 87192 1918224 (1)

Comp-1000 16 48137 962740 (1) 44039 1321170 (1)
32 26250 945000 (1) 22200 1021200 (1)
8 38564 462768 (1) 37294 820468 (1)

Mintest 16 20695 413900 (1) 18655 559650 (1)
32 11658 419688 (1) 9612 442152 (1)

Table 3.3: Seed-only and seed-mux packing VTD and scan time.

the seed lines, while seed-mux StreamBIST can distribute the demand over seed, input

mux and output mux lines. As a result, the seed lines are less utilized and therefore

easier to pack. The mux lines must be simultaneously packed however, which is why

the improvement in scan time is not substantial. The test time is therefore slightly

lowered at the expense of significant additional mux lines (to modify the phase shifter)

and control overhead (to distribute the mux lines to the appropriate core).

The main advantage that seed-mux packing has over seed-only packing is on the

programmability front (Section 3.1.4) since patterns with higher care bit density may

be passed through the seed-mux architecture, as made clear by the increased block

length (reported in parenthesis in the table) for the Comp-50 and Comp-150 test sets.

This fact also explains why VTD is improved for the Comp-50 and Comp-150 test

sets. While in these two cases the addition of the mux lines enabled increased block

length (and therefore reduced number of tester data channels), from Comp-400 on the

mux lines were not able to allow a larger block to be used than in the seed-only case,

and thus the compression suffered at the hands of increased number of tester channels.

So in light of programmability, even though seed-mux cannot provide the same level

of compression the better compression obtained through seed-only StreamBIST may

not matter if the test set contains patterns which cannot be passed by the seed-only
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Seed-only Seed-mux
Compaction Scan Time VTD Scan Time VTD

Comp-50 438752 1316256 (16) 422128 2110640 (16)
Comp-150 120752 603760 (8) 122240 855680 (8)
Comp-400 56464 564640 (4) 81720 653760 (8)
Comp-1000 49300 493000 (4) 42968 558584 (4)

Mintest 23480 234800 (4) 22172 288236 (4)

Table 3.4: Seed-only and seed-mux multi-mode VTD results (Section 3.5).

architecture. As we have seen earlier, multi-mode addresses incompressible patterns

in a different way than seed-mux and the next section shows the benefits of multi-

mode testing in this respect, that any pattern may be applied and at the same time

the VTD and scan time can be further reduced.

3.6.5 Multi-mode Testing VTD

In Table 3.4, VTD and scan time for both the seed-only and seed-mux multi-mode

approaches are shown. Note that the results are not given for varying numbers of

scan chains, since the multi-mode approach uses different numbers of scan chains in

different modes to enable application of any pattern. One may wonder why the seed-

mux architecture is kept, now that any pattern may be passed using reconfiguration.

The answer is that although seed-mux does not bring any added programmability

benefit, it may still enable increased packing by sharing the load of test data delivery

among the seed, in-mux and out-mux lines instead of just the seed lines as discussed

in the previous section. This is reflected here where we see a similar trend between the

seed-only and seed-mux VTD results as for the case without reconfiguration. Notice

that for the most part the scan times for seed-mux in Table 3.4 are on par with,

and usually slightly better than, those for seed-only. Despite longer scan times seed-

only still performs better in VTD, since the overhead of mux lines and additional

control are not present. As before, the slightly increased ease of packing does not

sufficiently compensate for the additional data overhead in the streams which drive

the muxes, and control overhead to determine which core observes the mux lines. An

important distinction to be made here is that where the last section pointed out the

case for seed-mux in light of the ability to satisfy more specified patterns, that need

89



3.6. Experimental Results M.A.Sc. - A.B. Kinsman - McMaster

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5
Block size

A
re

a 
(2

-i
n

p
u

t 
N

A
N

D
)

16 bit LFSR, seed-mux
16 bit LFSR, seed-only
8 bit LFSR, seed-mux
8 bit LFSR, seed-only

Figure 3.21: Core level area (8,16 bit LFSRs).

is no longer here since the multi-mode feature takes care of programmability. Since

any pattern may be passed through the reconfigurable seed-only architecture and the

VTD is improved, it is obviously the best choice for the decompression methodology.

In short, the preceding discussion on VTD results for the differing implementations

has allowed us to conclude that 1) the benefits brought about by the addition of mux

lines barely justify the incurred overhead (if at all) and 2) the multi-mode seed-only

architecture performs the best overall since it gives the best compression and the near

best scan time all while satisfying the programmability objective. In the next section

we discuss the impact to on-chip area for each decompressor type.

3.6.6 Area Overhead Estimation

To obtain results for area, the HDL descriptions generated by StreamBIST and

StreamPack for each different sized decompressor were compiled for TSMC [93] 0.18µm

CMOS technology using Synopsys Design Compiler [92] for synthesis to obtain the

results which are given as equivalent number of 2-input NAND gates.

The relationship between block length and decompressor area is shown for 8 and

16 bit LFSR decompressors (with 8 and 16 scan chains respectively) in Figure 3.21

and for 32 bit LFSR and multi-mode decompressors (with 32 scan chains) in Figure

3.22. Note first of all the large jump between the decompressor area for a block
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Figure 3.22: Core level area (32 bit LFSR, multi-mode).

length of 1 and that for a block length of 2. This results from the fact that use of

a block length of 1 removes the need for a seed buffer since no variables need to be

buffered, they are all passed from the seed lines to the LFSR in a single clock cycle.

When the block length is increased beyond 1 the area for the seed buffer must be

added (resulting in the noticeable jump) however, once the buffer has been added

the area remains relatively constant with the block size. The small variations in area

that appear across different block sizes in the 8, 16 and 32 bit LFSR cases result

from a different phase shifter being generated for differing block sizes and although

always responsible for an increase in the figures shown, may just as well cause a small

decrease in area. In the case of multi-mode decompressors the phase shifter area

may still decrease however, as the block size increases the number of reconfiguration

modes which must be provided increases, and thus the number of reconfiguration

muxes added increases which adds to the overall area. In the worst case however,

the number of reconfiguration muxes (2-to-1) required is one less than the number of

scan chains and so remains acceptable. Note that the area reported here is pessimistic

since no optimization of the phase shifter has been done, as in [79]. Because of this,

our phase shifter area exceeds the lower bound of one gate per scan chain and as a

result if the phase shifter were optimized, our area results would be improved.
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Notice also in Figures 3.21 and 3.22 the trend between a given sized seed-only de-

compressor and its respective seed-mux counterpart. In each case the gap between the

two is essentially constant and it is greater for larger decompressors. The difference

in area directly reflects the presence of the multiplexers on either side of the phase

shifter as shown in Figures 3.18 and 3.19(b). The number of multiplexers added does

not depend at all on the block length, it is equal to twice the number of scan chains

which explains the constancy of the gaps for a given number of scan chains and the

larger gap when there are more scan chains. Since the 32 bit LFSR and multi-mode

decompressors share the same sized LFSR, number of scan chains and phase shifter,

additional muxes are also responsible for the increased area between these two shown

in Figure 3.22. The gap here is smaller than between seed-only and seed-mux since

the worst case area added for scan chain reconfiguration is one 2-to-1 multiplexer for

each scan chain instead of two.

In Figure 3.23, some system level considerations are illustrated. The most notable

feature of the graph is the minuscule area of the control hardware. As mentioned

before, this area consists only of a small register and some decoding logic and it

grows logarithmically with the number of cores in the system. Note that because the

hardware is discrete, the control hardware size is the same for 4 cores or 7 cores and

for 8 cores or 15 cores etc. Despite this, as the upper two curves in the graph show

the control area can be neglected when compared to the total system level area.
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The uppermost curve (control+cores, individual seed buffers) of Figure 3.23 shows

the total area required at the system level, as the sum of the system level decom-

pressors and the control hardware. Since the area is dominated by the core level

decompressors, it is no surprise that it grows linearly with the number of cores. This

case includes a seed buffer for each core (see Figure 3.10(a)) however, earlier discus-

sion surrounding Figure 3.10(b) showed how the seed buffer can be shared because

the channels are time-multiplexed. As a result the area may be reduced to the values

shown in the middle curve (control+cores, shared seed buffer) of Figure 3.23. It should

be noted that the system level area for our approach is not dependent on the circuit

size, only on the number of scan chains and the number of cores. In the case of 30

cores and 32 scan chains per core, we may make a pessimistic assumption of 100 FFs

per scan chain and 20 gates per FF giving 1 920 000 gates for the total circuit area.

Figure 3.23 shows an area overhead of ≈ 20 000 gates for this case which amounts

to an overhead of ≈ 1% and it is expected that even with variations in FFs/chain

and gates/FF it is very unlikely that the overhead will exceed 2%. Furthermore, as

the number of cores is increased the area saved will increase (i.e. the number of seed

buffers replaced by a single seed buffer will increase), and if the phase shifter area

is optimized as mentioned before the seed buffer will constitute a greater portion of

each core level decompressor and as a result the savings will further increase. In this

way, time-multiplexing has enabled increased compression not at the expense of extra

area, but with reduced area compared to using [105] for each core.

3.6.7 Algorithm Execution Time

Most of the results seen thus far pertain more directly to the implementation and

application of the decompressor than to its CAD flow. Execution time on the other

hand is related mainly to the CAD flow. The time spent on computation for com-

pression of test data in this approach can be divided into four main steps. Input test

data from each core is parsed into a form acceptable to StreamBIST, StreamBIST

is applied to each core individually to produce packing amenable streams, streams

from all the cores are collected together and reordered (packed) by StreamPack, and
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finally the resulting stream is parsed into the form required by the user (e.g. func-

tional simulation streams or ATE pin vector sequences). The core processing in terms

of sophistication occurs in the middle two steps and in terms of execution time in

StreamBIST in particular. Input parsing and output parsing are straightforward al-

gorithms which essentially run in linear time (they make a single pass through the

test set to process it). For the experiments provided, the duration was less than a

second (per core) for input parsing and less than 1 minute for output parsing at the

system level. Experiments were performed on a 3.06 GHz Pentium 4 Xeon processing

node with 1GB of memory running Red Hat Linux 7.3.

As just mentioned, StreamBIST dominated the overall execution time. This was

a result of a number of factors. First, it is the complexity of StreamBIST which

produces the streams of increased packability and thereby facilitates easier and faster

execution on StreamPack’s part. In addition, StreamPack operates once at the system

level while StreamBIST must be performed on each core in the system. At the heart

of StreamBIST (Algorithm 1) is the CompressPattern function (Algorithm 2). The

number of calls to CompressPattern is clearly linear in the number of test patterns

in the test set. Inspecting CompressPattern it can be seen that the number of calls

to CheckEquations is essentially linear in the number of blocks per pattern. At the

core of CheckEquations, Gaussian elimination is performed to reduce the system

of equations and check for linear inconsistencies which is of worst-case quadratic

complexity in the number of equations. Since the number of equations depends on

the number of care bits it is difficult to quantify, however it is strongly linked to the

block size. In the seed-only case then, we can say the entire algorithm is dependent

linearly on the total number of blocks in the test set and quadratically on the size

of each block, not entirely unmanageable. In the seed-mux case however, recall that

backtracking is used to search the possible systems of equations leading to explosive

runtimes if left uncapped (Section 3.4.2). To avoid this a backtrack limit has been

imposed but runtimes remain significantly longer than the seed-only case. For the

experiments performed, the runtimes per core for StreamBIST ranged anywhere from

under a minute to in excess of 40 hours, which can become serious since StreamBIST

must be performed on each core. At the same time this large result of 40 hours is for
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the seed-mux case just mentioned, and as we have seen in the VTD discussion earlier,

seed-only packing actually provides better compression removing the need for the

computationally expensive seed-mux case especially since reconfiguration takes care

of the programmability issue which seed-mux was devised to address. If seed-mux

packing were required, this CPU runtime bottleneck could be considered a limitation

of this methodology as discussed in Section 4.2 however, the next paragraph discusses

why it is more important to have fast system level algorithms over core level ones.

Just before moving on, note that in multi-mode StreamBIST, StreamBIST is called

iteratively but with a reducing number of patterns each time. The execution times for

the multi-mode StreamBIST approaches essentially matched their respective single

mode partners, largely due to the fact that incompressible patterns are often spotted

before to much wasted execution time is spent trying to compress them.

The good news in light of the above is that once time has been spent generating

the streams for StreamPack, its operation is very fast. Noting Algorithm 3, it can be

seen that lists of patterns awaiting placement are cycled through, calling CheckFit

each time. Because CheckFit is a very simple function which checks only the reseed

points of the pattern to be placed against other placed patterns, it runs quickly. With

each placed pattern reducing the size of the remaining lists, operation continuously

accelerates. For this reason StreamPack execution times have been well below a

minute for all the experiments run. This can be used advantageously to address

StreamBIST runtime, by storing with each core its StreamBIST compressed test

set and simply plugging it in to StreamPack when the core is used in a system.

StreamBIST would only need to be run when there are changes to the test set, likely

an infrequent occurrence especially for IP-protected cores (at which this method is

targeted). So in this case it is advantageous to have the runtime intensive part at

the core level where changes are less frequent, as per the design reuse philosophy.

With it likely that the core will be used more times in its lifetime than it will undergo

changes, increased cost to the test set at the core level is acceptable provided it comes

to facilitate less cost at the system level, which is exactly the case here.
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Having summarized the main aspects of the proposed test methodology and dis-

cussed tradeoffs and their influencing factors within the methodology, we will now

turn attention to how this method fits in the framework of test data compression

methods at large by comparison with other methods.

3.6.8 Comparison to Existing Solutions

Although a fair amount has been said about VTD and compression in this thesis,

we have also tried to emphasize the other aspects which contribute to the practical

viability of a compression method. By narrowing the scope of comparison, impor-

tant issues can be missed and good work with desirable features may be overlooked.

Even within this work, as mentioned earlier when discussing compression results for

single mode seed-only and seed-mux methods (Section 3.6.4), it was noted that al-

though the seed-only approach delivers smaller VTDs it is less programmable when

compared to the seed-mux architecture (for block lengths greater than 1), and thus if

programmability is of utmost importance the seed-mux method may be chosen over

seed-only despite poorer compression. It is mainly for reasons such as these that we

have enumerated the desirable criteria for test data compression toward the beginning

of this chapter. By understanding what is required in a test compression solution,

the problem can be solved more effectively and solutions provided which meet the

needs of those who use them, keeping in mind that different features are required in

different situations.

In light of the above, the following discussion details some representative ap-

proaches to test data compression not only with respect to the compression which

they achieve but also what features they provide. Having established the importance

of IP-consistency, modularity, scalability, programmability and a low cost test plat-

form, the methods presented here are evaluated in terms of these 5 criteria. Table

3.5 summarizes the VTD comparison for the approaches we discuss, and Table 3.6

summarizes their compliance to the established criteria. Noting that all the methods

respect the low cost test platform criteria, it will be omitted from the discussion on

each circuit.
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Before discussing other approaches with distinct features, note first of all that since

this method builds off the architecture proposed in [105] (see Section 3.3.1) a com-

parison against their work has been given inherently in the tester channel utilization

discussion in Section 3.6.2. The improved tester channel utilization showed how VTD

could be reduced from the case in [105] while simultaneously reducing the area (and

thereby providing scalability) through system level exploitations as discussed in Sec-

tion 3.6.6. Furthermore, the modifications we have provided enable programmability

and IP-consistency. Nevertheless, [105] can be deemed modular, having established

the modularity of our approach and given that [105] provided a good starting point

for the modifications we have made. The remainder of this section gives comparison

against other works with a variety of combinations of the desired features.

The first method shown in Table 3.5 was proposed by [95] and uses a very simple

compression code consisting of nine codewords. Because the circuit is not modified in

any way, the method is IP-consistent. A fairly significant drawback of this approach

is that it requires an acknowledgement signal to drive the tester for the sake of syn-

chronization. Because this means the design cannot be integrated easily into a test

infrastructure the method is not modular. In spite of this, the method is scalable and

programmable due to well scaling hardware sizes and a codeword set up to allow any

word of test data to be passed. Since results for the circuit s35932 were not provided

by [95], comparison against the proposed approach is done for a different hypotheti-

cal SOC discussed in the next paragraph which yields a total VTD of 212160 for our

approach, ≈ 12% more than [95] but without the need for an acknowledgement signal

from the tester.

The hypothetical SOC mentioned in the preceding paragraph is composed of only

s13207, s15850, s38417 and s38584 from the ISCAS’89 benchmark circuits3. The same

comparison applies for [5, 41, 59, 80] in the forthcoming paragraphs. The s35932

benchmark circuit is commonly neglected in experimental results for compression

methods (especially linear decompressor based methods) since it is random-pattern

resistant, which means the patterns contain long runs of 1s and 0s and are there-

fore not easily encodable in pseudo-random sequences like those produced by linear

3 VTDs marked by + in the table indicate s35932 is not included.
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[95] [41] [59] [5] [80] Proposed
s13207 29224 17160 11285 9708 10585 -
s15850 25883 14560 12438 10726 9805 -
s35932 - - - - - -
s38417 64857 37206 34767 36864 31458 -
s38584 68631 40406 29397 27555 18568 -
Total 188595+ 109332+ 87887+ 84853+ 70416+ 212160+

[28] [84] [68] [63] [82] Proposed
s13207 - 74423 33605 8517 14145 -
s15850 - 26021 21534 13873 13919 -
s35932 - 7222 804 1400 4492 -
s38417 - 45003 51156 62939 52793 -
s38584 - 73464 43320 53287 26644 -
Total 279837∗ 226133 150419 140016 111993 234800

Table 3.5: VTD for compared approaches (+ = footnote 3, ∗ = footnote 4).

[95] [41] [59] [5] [80] [28] [84] [68] [63] [82] Proposed
IP-consistent

√
X

√
X X

√ √
X

√
X

√
Modular X X X

√ √ √
X X X X

√
Scalable

√ √ √ √ √ √
X X

√
X

√
Programmable

√
X X X X

√ √ √ √
X

√
Low cost ATE

√ √ √ √ √ √ √ √ √ √ √

Table 3.6: Criteria satisfied for compared approaches.

decompressors. In light of the programmability criteria any complete compression

method should be able to address random pattern resistant circuits as well as ran-

dom pattern amenable ones, and lack of results for s35932 is often an indicator of

lack of programmability. Although [95] is programmable, it will be shown in the

following paragraphs that [5, 41, 59, 80] are not programmable. A strength of our

approach is the ability to apply test sets for random pattern resistant circuits, even

if some patterns in the test set are 100% specified (containing no x-bits), hence the

programmability of our method. Furthermore, application of these fully specified pat-

terns can be done with a reduced VTD, both by providing compression to the other

partially specified patterns in the test set and by time-multiplexing at the system

level.

The next approach listed in the table was proposed in [41], which forms a virtual

scan chain appearing shorter than the number of actual scan cells contained therein,
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accomplished through the use of an LFSR. A drawback of the approach is the use of

integrated fault simulation/ATPG to obtain compressible test cubes, removing IP-

consistency. A very nice feature of this approach on the other hand is that after

compression, the virtual scan chain appears exactly like a regular scan chain but

shorter (and with different values of course). Such an approach would certainly

be modular aside from the fact that there is no apparent system level exploitable

feature of the test sets. The method is scalable since the overhead in hardware and

computation are reasonable but since no mechanism for application of any pattern

has been provided, the method is not programmable. This method is able to achieve

lower VTD than our approach by compromising on the features of IP-consistency,

modularity and programmability.

Next in the table is [59] which proposes a multi-level scheme using Huffman de-

coders to decompress LFSR seeds, which LFSRs then expand into test patterns. This

method provides IP-consistency since no details internal to the circuit are required.

Modularity is lacked however because the Huffman compression takes advantage of

seed stream features for compression leaving little to exploit at the system level. With

regard to scalability, no challenges should be faced since the hardware and algorithms

seem manageable for increased design sizes however this is difficult to assess since no

details regarding implementation for the statistical coding part have been provided.

Statistical coding methods by in large are known to suffer from either synchronization

difficulty as a result of different ATE and CUT clock frequencies, or from requirement

of a synchronization signal from the CUT to the ATE and so this method is likely

to meet with methodology issues when implemented. Finally, the method cannot be

classified as programmable since the patterns must pass through the LFSR which

fails when the care bit density is high. Again, the VTD obtained is better than the

proposed method but it comes at the cost of modularity and programmability.

Another method against which we compare is [5]. In this approach the output

space of the linear decompressor is analyzed with the test set to determine a set of

scan cells to invert, which will increase the alignment between the output space and

the test set. An advantage of this method is that is can be applied to any linear type

decompressor (LFSRs, ring generators, etc.) and can guarantee improved encoding.
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However, this comes at the cost of IP-consistency as a result of scan hardware modifi-

cations requiring access to internal circuit details, and programmability since there is

no mechanism for application of patterns outside the output space of the decompres-

sor. On the other hand, this method may still leave some un-specified bits in seeds

or allow multiple patterns to be expanded from a single seed, so it leaves room for

exploitation at the system level and is therefore modular. In addition, the method

is scalable since 1) the heart of the method is scan cell inversion used to improve

the compression of the linear decompressor which does not add any appreciable area

and 2) the algorithmic framework is centered around Gaussian elimination which is

tractable. By not remaining IP-consistent or programmable, this method is also able

to improve VTD.

The next method we consider is [80] which uses ring generator structures to provide

compression through variable injection as discussed much earlier along with Figure

2.13. During compression, ATPG and fault simulation are employed and so the

method is not IP-consistent, and no mechanism for application of high care bit density

patterns is provided so the method is not programmable. Explicit techniques for VTD

reduction by the exploitation of ATE features are provided in the work but they are

not required to achieve the reported compression, so the method can be used on

a low cost test platform. At the same time, although the framework for results

reported on the ISCAS circuits is not scalable the method is targeted at large circuits

indicating good scalability of the method on the whole. This method also exhibits

good modularity since there is a slack present in the variable streams which drive

the ring generator. Such streams could be packed using StreamPack, and thus this

method could be plugged immediately into the core level in our approach. As in the

previous paragraph, this method achieves very good compression in the case where

IP-consistency and programmability are of no concern.

The previously discussed approaches neglected reporting of results for s35932. In

[28], the opposite is true - more cores have been included than in our experimental

SOC4. This method uses statistical coding not reliant on the internal circuit details in

4VTDs marked by ∗ in the table indicate s5378 and s9234 have also been included.
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any way and thus is IP-consistent. The issue of ATE stall synchronization (require-

ment of the Sync data signal of Figure 2.5 - see Section 2.5) has been addressed in this

method by passing data from the tester to other cores on the chip while a given core

is still busy decompressing. This system level exploitation of a feature is indicative of

modularity, and in essence makes this method the temporal analogue of our spatial

approach. The method also scales reasonably, one decompressor per core and some

system level decompression logic, and as is usually the case with statistical coding any

test set may be applied giving programmability. On the whole this approach meets

all the criteria. The only drawback here is the issue of synchronizing the ATE clock

and CUT clock which run at different frequencies. In addition power issues can arise

due to fast clocking of the scan chains as discussed before. With respect to VTD, this

method reports 279837 bits for the 7 largest ISCAS89 cores: s5378, s9234, s13207,

s15850, s35932, s38417. Our result for VTD in this case is 262000, an improvement

of ≈ 6%.

The approach given in [84] places a register and decoder before the scan chains,

and compresses data by encoding the bits which need to change from the previous

vector. Since no netlist interaction is required, this method can be considered IP-

consistent. However, because the compressed streams leave no room for maneuvering

there can be no system level exploitation and thus the method cannot be considered

modular. At the same time, although hardware remains small increased numbers of

scan chains will lead to large runtimes to determine the mapping of care bits and

the order in which mutations should be applied, making this method not scalable. A

benefit is that the decoder architecture allows as many bits to be mutated as desired

and this approach is therefore programmable. With respect to VTD comparison, it

should be noted that due to a statement in the paper there is some ambiguity as

to what data has been included in the reported results (some control information

is used by the decompressor which must be driven by the tester and it is not clear

whether this has been reported). In the best case, if all the data has been reported

this method is only about 4% better than the proposed approach while not providing

as many features as shown in the Table 3.6.
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Scan trees are used by [68] to reduce volume of test data, and as a result access

to the scan structure is required which renders the method without IP-consistency.

Because the main benefits come from dependencies in the test set, the compressed

data will likely not have any features which are sufficiently exploitable at the system

level to deem this approach modular. In addition, large MISRs for response collection

from a larger number of scan tree outputs makes this method not scalable. With

respect to programmability however, a serial mode is provided by which any pattern

may be scanned in and thus the method is programmable. Although the reported

VTD is quite good, the number of features suffers significantly.

A dictionary based coding method is used in [63] which does not require internal

circuit details and is thus IP-consistent. The decompression hardware may potentially

leave some room for system level exploitation, but due to some other methodology

related issues (such as scan clock gating) the method cannot be deemed modular. In

this approach, the hardware does not appear to scale too quickly with the number

of scan chains and at the same time, provision is made to apply patterns which do

not appear in the dictionary so this method is programmable. With most of the

desired features in place the method performs well at ≈ 40% better than StreamPack

in VTD for the same configuration. Unfortunately as mentioned just above, the

method suffers from methodology issues related to scan clock gating but if these can

be overcome the method has good value.

The final approach against which we make a comparison is [82]. Table 3.5 shows

that this method provides superior results for VTD. However, as Table 3.6 shows,

this comes at the high cost of all features except the low cost test platform. VTD is

improved through 1) integrated fault simulation (removing IP-consistency), 2) craft-

ing the phase shifter around the test set (removing programmability) and 3) using

unreasonably short internal scan chains (removing scalability). After squeezing out

this level of compression through exploitation of these multiple facets, there is noth-

ing left to exploit at the system level, and thus the approach lacks modularity. In

addition, the scheme is in some respects similar to that from [84] and like that ap-

proach it is unclear whether control data has been reported in the totals or not. It

is important to note that our results for VTD may likewise be improved through the
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application of techniques used by this approach and others (e.g., fault simulation) but

we have deemed provision of desired features as more important than VTD reduction

only. Nevertheless, this method will provide good compression where IP-consistency,

modularity, scalability and programmability are un-important.

In light of all these discussed methods, what is clear is that tradeoffs exist be-

tween all aspects of a compression methodology, features and compression results

included. Many approaches exist which allow a system integrator with carefully for-

mulated requirements to judiciously select a method that ensures they are getting the

compression they can, while still retaining all the features they need.

3.7 Summary

In this chapter we have devised five basic objectives for test data compression method-

ologies by analyzing the needs which EDT is set up to address in the first place. These

objectives of IP-consistency, modularity, scalability, programmability and the use of

low cost test platforms have been set up as criteria for the design of a new test data

compression scheme. As a result, StreamBIST and StreamPack have been proposed

to address challenges in core based SOC testing and improvements have been made

to the architecture with accompanying discussion. The new architecture and sophis-

ticated algorithmic support have been developed and described in detail. We have

seen how this new architecture is able to produce improved tester channel utilization,

which results in lower VTD. In many cases, the VTD for StreamPack has rivaled

other approaches, but it has been achieved with the presence of all five criteria as

discussed in the first part of the chapter. In light of this fact, some comparison to

other approaches in terms of both VTD and the features which they provide has been

given. It has been shown that some levels of compression come at the expense of one

or more features, and it is up to the system integrator to make careful decisions when

planning for test. Advantages and drawbacks of this method have also been provided,

and will be discussed further in the next chapter.
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Chapter 4

Conclusion

In this thesis, we have provided a justification for manufacturing test of digital inte-

grated circuits. Volume of test data considerations for those circuits have led us to

conclude that test data compression methods must be applied to keep up with scaling

trends in both circuit size and volume of test data. In light of this conclusion, a survey

of recent test data compression methods has been given which provides a structured

framework for evaluation of these methods. This has led to the development of five

desirable criteria for compression methods, specifically those in a core based SOC

design paradigm. A new method for test data compression in core based SOCs called

StreamBIST/StreamPack has been proposed in this thesis which provides competi-

tive compression while simultaneously addressing all five of the key objectives laid

out for compression methods. The proposed method achieves this compression at

acceptable expense in area and computational complexity, by sharing tester channels

among cores in an SOC at the system level, made possible by the discontinuous de-

mand for data which occurs at the core level. In proposing this method, we have

opted to ensure that we provide the five discussed criteria as features rather than

focus narrowly on minimization of test data. As comparison with other methods in

the previous chapter shows, we have been able to accomplish provision of all five

features at a comparable level of compression. In this final chapter, the advantages

and limitations of the proposed method are discussed leading to considerations for

future work.
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4.1 Advantages

As has been emphasized throughout this thesis, the main advantage of this work is the

enabling of the five criteria set forth for compression methods in core based SOCs. By

providing compression in a way that does not require any internal details the method

is particularly suitable for SOCs containing IP-protected cores. The structured way

in which compression is done, and in which the decompression hardware is generated

enables smooth integration into existing tool flows making this method conducive to

automation. Furthermore, the scalability considerations which have been provided

will enable this method to be applied to SOCs of the future, not just the present

and the past. Moreover, movement toward widespread use of the core based SOC

paradigm has received recent attention through an initiative to standardize test data

compression [24]. Because of the features provided by StreamBIST / StreamPack,

the compression methodology proposed in this thesis fits very well in a standardized

framework and thus has significant potential for applicability to designs conforming to

potentially emerging standards. Furthermore, although our compression method does

not rely on some techniques (e.g., fault simulation) which compromise the provision

any of the five discussed features, our method does not inherently exclude these

techniques. As a result, these techniques could be applied to our method to further

reduce the volume of test data in the case that some features are not required. Having

discussed the advantages of this work, we discuss its limitations in the next section.

4.2 Limitations

As with all things in design, there is always room for improvement. Test data com-

pression methods can be summarized by the four fundamental aspects of compression

achieved, area overhead, CPU runtime and the features they provide. Having ex-

hausted discussion on the features provided, focus will be given here to how the other

three aspects may be improved.
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The issue of CPU runtime was addressed in Chapter 3 and notice was made that

the complexity of StreamBIST can lead to excessive runtimes in some cases and as

such, there is obvious room for improvement here. As a brief example, the branch and

bound portion of StreamBIST for seed-mux is a clear processing bottleneck. Instead

of approaching each block naively frame by frame, equations could be added according

to number of care bits since those with more are likely to be the source of lockout.

In this way, the solution space of the branch and bound algorithm is pruned more

effectively leading to shorter runtimes. Other aspects of the overall runtime may be

reduced in a similar way, by development of more sophisticated algorithms which

exploit a feature of the tasks to which they are applied.

Turning attention to area overhead, we have seen that at the system level control

overhead is miniscule compared to the overhead brought about by the core level

decompressors. Thus although there is not much room for improvement on the control

end, area may be improved by focusing on the core level decompressor. Again as a

single example, the phase shifter within the core level decompressor which consists of

many XOR gates can play a significant role in the overhead of the entire decompressor.

By exploiting overlap in the linear expressions which describe the channels of the

phase shifter portions of the network may be shared and thus the overall area reduced.

As before, other opportunities for area improvement exist as well.

With respect to compression, comparison to prior work in the previous chapter

has made it clear that improvement can be made in terms of VTD. The challenge is to

provide improvement without compromising any features. One way in particular that

this could be achieved is by mutual integration of StreamBIST and SteamPack. By

providing feedback between the two processes, reseed positions could be recalculated

as needed, thus reducing the insertion of NOOPs and improving test time and VTD.

This comes with its own challenges, and would require significant effort. Another

avenue of opportunity for improved VTD is multi-level compression as discussed in

the next section.
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4.3 Future Work

With the list of limitations just described, opportunities for future work are abundant.

In addition to improvement in the aspects of area, CPU runtime and compression ratio

mentioned, practical opportunities exist as well. The concept of multi-level compres-

sion as mentioned in the last section provides opportunities for future work by asking

what can be done once the limit of care bits = seed bits imposed by linear decompres-

sors is reached. Multi-level approaches, for example LFSR seed compression ([59]),

have been proposed before but implemented and verified solutions are not easily ob-

tained. We have seen that the volume of test data continues to scale much faster

than the equipment used to deliver it, and so increased levels of compression will be

required just to meet VTD demands, to say nothing of reducing cost. Furthermore,

by tackling multi-level compression embedded test technology can be enabled through

pushing of the complexity of the test generation and application process into powerful

on-chip and off-chip computing engines. In light of these challenges and opportuni-

ties, it is apparent that there exist sufficient problems for test data compression to

remain an active area of research well into the foreseeable future.
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