Dr. X. Wu COE2DI4 Midterm Test \#2 Nov. 042013

Instructions: This examination paper includes 7 pages and 18 multiple-choice questions starting on page 2. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator. Each question is worth one mark. The answers for all the questions must be indicated by filling the corresponding circle on the optical scanning (OMR) examination sheet. Answer all questions. There is no penalty for guessing. This is a closed book exam. No reference material of any kind is permitted. No calculators of any kind are permitted. Time allowed is $\mathbf{5 0}$ minutes.

Note: A' and \bar{A} are used interchangeably.

Multiple choice questions (numbered 1 to 18) - indicate your answer by filling the corresponding circle on the OMR answer sheet

1. The decimal equivalent of $(11111010)_{2}$ represented in sign 1 's complement format is:
2. $(-6)_{10}$
3. $(-5)_{10}$
4. $(-122)_{10}$
5. $(-250)_{10}$
6. $(250)_{10}$
7. What is the decimal equivalent of
8. $N=2^{n}+2^{-n}+1$

9. $N=2^{n}-1+2^{-n}$
10. $N=2^{n}-2^{-n}$
11. $N=2^{n-1}-2^{-n}$
12. $N=2^{n}-2^{-(n-1)}$
13. Convert the decimal numbers $73,-91$ into 2 's complement of 12-bit numbers:
14. $(000001001000)_{2},(111110100100)_{2}$
15. $(000001001001)_{2},(111110100100)_{2}$
16. $(000001001001)_{2},(111110100101)_{2}$
17. $(000001001001)_{2},(100010100101)_{2}$
18. none of the above
19. What is the output for the circuit shown in Figure 1?
20. $w=\bar{b} c$
21. $w=b \oplus c$
22. $w=\overline{b \oplus c}$
23. $w=\bar{b}+\bar{c}$
24. $w=b c$

Figure 1 - Circuit for question 4.
5. The circuit shown in Figure 2 is:

1. $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\Pi \mathbf{M}(0,2,13,15)$
2. $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\Pi \mathbf{M}(0,4,11,15)$
3. $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\Pi \mathbf{M}(0,5,10,15)$
4. $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\Pi \mathbf{M}(0,7,8,15)$
5. none of the above

Figure 2 - (a) Circuit for question 5. (b) Truth table of the decoder with inverted outputs
6. How many minterms does function $f\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{4}$ include:

1. 2
2. 4
3. 8
4. 12
5. 16
6. In Figure 3, if $A_{3} A_{2} A_{1} A_{0}=1001, B_{3} B_{2} B_{1} B_{0}=1101$ and $S=1$ then the output is:
7. Sum $=0110$ and $C_{4}=0$
8. Sum $=0110$ and $C_{4}=1$
9. Sum $=1100$ and $C_{4}=0$
10. Sum $=1100$ and $C_{4}=1$
11. none of the above

Figure 3 - Circuit for questions 7 to 11. Note, c_{0} is carry in and c_{4} is carry out for the 4-bit adder.
8. In Figure 3, both A and B are 2's compliment number inputs, and Sum is 2's compliment number output. If $A_{3} A_{2} A_{1} A_{0}=0000, S=B_{3}$, then Sum is:

1. $\operatorname{Sum}=B$
2. Sum =-B
3. Sum $=|B|$ (absolute value of B)
4. $\operatorname{Sum}=1111$
5. none of the above
6. In Figure 3, overflow occurs for:
7. $A_{3} A_{2} A_{1} A_{0}=0100, B_{3} B_{2} B_{1} B_{0}=1010$ and $S=0$
8. $A_{3} A_{2} A_{1} A_{0}=0100, B_{3} B_{2} B_{1} B_{0}=0110$ and $S=1$
9. $A_{3} A_{2} A_{1} A_{0}=1100, B_{3} B_{2} B_{1} B_{0}=0110$ and $S=0$
10. $A_{3} A_{2} A_{1} A_{0}=1100, B_{3} B_{2} B_{1} B_{0}=1010$ and $S=1$
11. none of the above
12. In Figure 3, detecting a zero result can be achieved by connecting the output Sum to a:
13. 4-input AND gate
14. 4-input NAND gate
15. 4-input XOR gate
16. 4-input XNOR gate
17. 4-input NOR gate
18. Compared with an n-bit ripple-carry adder, an n-bit carry-lookahead adder:
19. reduces delay while increasing complexity (of the circuit)
20. reduces delay and reduces complexity
21. increases delay and increases complexity
22. increases delay but reduces complexity
23. none of the above
24. A four-variable logic function $F(A, B, C, D)$ equals to 1 if input A is different from input B and if input C is identical to input D. Function $F(A, B, C, D)$ can be written as:
25. $F(A, B, C, D)=\Sigma m(4,7)$
26. $F(A, B, C, D)=\Sigma m(8,11)$
27. $F(A, B, C, D)=\Pi M(0,1,2,3,5,6,9,10,12,13,14,15)$
28. $F(A, B, C, D)=\Pi M(0,1,2,3,5,8,9,10,12,13,14,15)$
29. none of the above
30. What is the minimum number of logic gates required if we convert the circuit in Figure 4 to a circuit with NAND gates ONLY?

Figure 4

1. 4
2. 5
3. 6
4. 7
5. none of the above
6. Determine the minimum-cost SOP expression for the function $F(x 1, x 2, x 3, x 4)=$ $\sum m(4,6,8,10,11,12,15)+D(3,5,7,9)$
7. $\mathbf{f}=\overline{\mathbf{x}_{1}} \mathbf{x}_{\mathbf{2}}+\mathbf{x}_{\mathbf{1}} \overline{\mathbf{x}_{\mathbf{2}}}+\mathbf{x}_{\mathbf{3}} \mathbf{x}_{\mathbf{4}}+\mathbf{x}_{\mathbf{1}} \overline{\mathbf{x}_{\mathbf{3}}} \overline{\boldsymbol{x}_{\mathbf{4}}}$
8. $\mathbf{f}=\overline{\mathbf{x}_{1}} \mathbf{x}_{\mathbf{2}} \mathbf{x}_{\mathbf{3}}+\mathbf{x}_{\mathbf{1}} \overline{\mathbf{x}_{\mathbf{2}}}+\mathbf{x}_{\mathbf{3}} \mathbf{x}_{\mathbf{4}}+\overline{\mathbf{x}_{1}} \mathbf{x}_{\mathbf{3}} \mathbf{x}_{\mathbf{4}}$
9. $\mathbf{f}=\overline{\mathbf{x}_{1}} \mathbf{x}_{\mathbf{2}}+\mathbf{x}_{\mathbf{1}} \overline{\mathbf{x}_{\mathbf{2}}}+\mathbf{x}_{\mathbf{3}} \mathbf{x}_{\mathbf{4}}+\overline{\mathbf{x}_{\mathbf{3}}} \mathbf{x}_{\mathbf{4}}$
10. $\mathbf{f}=\overline{\mathbf{x}_{1}} \mathbf{x}_{\mathbf{2}}+\mathbf{x}_{\mathbf{1}} \overline{\mathbf{x}_{\mathbf{2}}}+\overline{\mathbf{x}_{\mathbf{3}}} \mathbf{x}_{\mathbf{4}}+\mathbf{x}_{\mathbf{3}} \overline{\mathbf{x}_{\mathbf{4}}}$
11. none of the above
12. The number of prime implicants of $F(A, B, C, D)$ shown in Figure 5 is:
13. 3
14. 4
15. 5
16. 6
17. none of the above

AB				
00	1	1	0	0
01	0	1	1	0
11	0	1	1	0
10	0	0	1	1

Figure 5 - Karnaugh map for a logic function $F(A, B, C, D)$ for questions 16, 17.
16. The number of essential prime implicants of $F(A, B, C, D)$ shown in Figure 5 is:

1. 1
2. 3
3. 4
4. 5
5. none of the above
6. If input $z=1$ then the output T_{6} in Figure 6 is:
7. 0
8. $x^{\prime} y$
9. $x y^{\prime}$
10. 1
11. none of the above

Figure 6
18. You are asked to implement the following four functions with half-adders:

```
f
f
f
f
```

What is the minimum number of half-adders required to implement all four functions simultaneously? (you are not allowed to use any other logic element). Hint: the circuit of a half-adder is shown in Fig. 7.

1. 2
2. 3
3. 4
4. 5
5. 6

Figure 7 - Half-adder

- THE END -

