## Logic Design

Chapter 1: Binary Numbers

## McMaster

University

## Decimal vs. Binary Numbers

- Decimal number system
$D=d_{n-1} d_{n-2} \cdots d_{1} d_{0}$
$V(D)=d_{n-1} \times 10^{n-1}+d_{n-2} \times 10^{n-2}+\cdots+d_{1} \times 10^{1}+d_{0} \times 10^{0}$
As a digit has 10 possible values (human hands!), decimal numbers are said to be of base-10 or radix-10
- Electronic circuits can conveniently code two possible values, hence binary or base-2 numbers are used in hardware
$B=b_{n-1} b_{n-2} \cdots b_{1} b_{0}$
$V(B)=b_{n-1} \times 2^{n-1}+b_{n-2} \times 2^{n-2}+\cdots+b_{1} \times 2^{1}+b_{0} \times 2^{0}$


## Machine Representation of Numbers/Data

- In logic circuits, numbers (and data in general) are coded as electronic signals
- Each signal provides one bit of information
- A bit can take on only two possible values, 0 and 1
- Human cultures are more familiar with decimal numbers consisting of digits of 10 possible values, 0 , $1, \ldots, 9$

$$
8547=8 \times 10^{3}+5 \times 10^{2}+4 \times 10^{1}+7 \times 10^{0}
$$

