Number representation

Logic Design

Number Representation and Arithmetic
Circuits

McMaster
University

Number representation

Number representation

- Numbers that are positive only are called unsigned
- Numbers that can be positive or negative are called signed
- Conversion from decimal to binary: successively divide by 2
- Numbers could be integer or real
- In each step the remainder is the next binary digit
- Simplest: unsigned integer
- A decimal integer:
$D=d_{n-1} d_{n-2} \ldots d_{1} d_{0}$
$V(D)=d_{n-1} \times 10^{n-1}+d_{n-2} \times 10^{n-2}+. .+d_{1} \times 10^{1}+d_{0} \times 10^{0}$
- The process continue until the quotient becomes zero

$$
\begin{aligned}
& V=b_{n-1} \times 2^{n-1}+b_{n-2} \times 2^{n-2}+. .+b_{1} \times 2^{1}+b_{0} \times 2^{0} \\
& \frac{V}{2}=b_{n-1} \times 2^{n-2}+b_{n-2} \times 2^{n-3}+. .+b_{1} \times 2^{0}+\frac{b_{0}}{2}
\end{aligned}
$$

Number representation

- Binary numbers
$B=b_{n-1} b_{n-2} \ldots b_{1} b_{0}$
$V(B)=b_{n-1} \times 2^{n-1}+b_{n-2} \times 2^{n-2}+. .+b_{1} \times 2^{1}+b_{0} \times 2^{0}$

1101
$V=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=13$
$(1101)_{2}=(13)_{10}$

Number representation

Convert (857$)_{10}$

		Remainder	
$857 \div 2$	$=$	128	1

Number representation

- The most common bases in addition to decimal are:
- base 2 (binary) $\{0,1\}$
- base 8 (octal) $\{0,1, \ldots 7\}$
- base 16 (hexadecimal) $\{0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}$, C, D, E, F \}
- Reason for using octal and hexadecimal systems: useful shorthand notation for binary numbers

Addition of Unsigned Numbers

$$
\begin{array}{rll}
X & =x_{4} x_{3} x_{2} x_{1} x_{0} & 01111 \\
+Y & =y_{4} y_{3} y_{2} y_{1} y_{0} & \begin{array}{l}
(15)_{10} \\
\\
S
\end{array} \\
=s_{4} s_{3} s_{2} s_{1} s_{0} & \frac{111010}{11001} & (10)_{10} \\
\text { Generated carries }
\end{array}
$$

Number representation

- One octal digit represents three bits
- Conversion from binary to octal: starting from the LSB replace every group of three digits with their corresponding octal digit
- Conversion from binary to hexadecimal: starting from the LSB replace every group of four digits with their corresponding hexadecimal digit
- Conversion from octal to binary: substitute each octal digit by corresponding three bits
- Conversion from hexadecimal to binary: substitute each hex digit by four bits

Addition of Unsigned Numbers

Decomposed Full Adder

(a) Block diagram

(b) Detailed diagram

Ripple Carry Adder

- When operands X and Y are applied as inputs to the adder, it takes some time before output sum S is valid.
- Each full-adder has a delay before its s_{i} and $\mathrm{c}_{\mathrm{i}+1}$ are valid
- If this delay is Δt the complete sum will be valid after a delay of $n \Delta t$
- Because of the way the carry signal "ripple" through the fulladder, this circuit is called a ripple-carry adder

Signed Numbers

- One of the bits (usually the left-most bit) is reserved for the sign of the number.
- Usually a 1 indicates negative and 0 indicates positive.

Signed Numbers

- Extending the 'natural' binary representation of positive integers to negative integers can be done in at least 3 different schemes: sign-magnitude, one's complement and two's complement.
- Sign-and-magnitude: The most significant bit (MSB) is reserved to the sign, 0 is positive, 1 is negative. All other bits are used to store the magnitude in the natural representation.
- Addition and subtraction are complicated.
- There are two representations for zero!

Signed Numbers

- One's complement Positive integers are like in the natural representation, negative numbers are obtained by complementing each bit of the corresponding positive number (i.e. the absolute value).
- There are two representations for zero! Bitwise addition of N and -N gives -0 .
- Positive integers still have MSB $=0$, and negative integers have MSB=1.
- 1 's complement of an n-bit negative number K is obtained by subtracting its equivalent positive number P from $2^{\mathrm{n}}-1$
- $\mathrm{K}_{1}=\left(2^{\mathrm{n}}-1\right)-\mathrm{P}$

Signed Numbers

- Two's complement Like one's complement, but negative numbers are having 1 added after complementation.
- Bitwise addition of N and -N gives 0 if you ignore the carry out of the MSB.
- Positive integers still have MSB $=0$, and negative integers have $\mathrm{MSB}=1$. Only one representation for zero!
- 2's complement of an n-bit negative number K is obtained by subtracting its equivalent positive number P from 2^{n}
- $\mathrm{K}_{2}=2^{\mathrm{n}}-\mathrm{P}$

Signed Numbers

- Relationship between 2's complement and 1's complement
- $\mathrm{K}_{2}=\mathrm{K}_{1}+1$
- A simple way of finding the 2's complement is to find 1's complement and add 1
- Rule for finding 2's complement:
- Given signed number $B=b_{n-1} b_{n-2} \cdots b_{1} b_{0}$
- 2's complement: $K=k_{n-1} k_{n-2} \ldots k_{1} k_{0}$
- Examine bits of B from right to left, copy all bits of B that are 0 and the first bit that is 1 , then complement the rest of the bits

$+N$	$\begin{gathered} \text { Positive } \\ \text { Integers } \\ \text { (all systems) } \end{gathered}$	$-N$	Negative integers		
			Sign and Magnitude	$\underset{N^{*}}{2 \text { 2's Complement }}$	1's Complement
$+0$	0000	-0	1000	-	1111
+1	0001	-1	1001	1111	1110
+2	0010	-2	1010	1110	1101
+3	0011	-3	1011	1101	1100
+4	0100	-4	1100	1100	1011
+5	0101	-5	1101	1011	1010
+6	0110	-6	1110	1010	1001
+7	0111	-7	1111	1001	1000
		-8		1000	

2's complement signed numbers
 $B=b_{n-1} b_{n-2} \ldots b_{1} b_{0}$
 $V=\left(-b_{n-1} \times 2^{n-1}\right)+b_{n-2} \times 2^{n-2}+. .+b_{1} \times 2^{1}+b_{0} \times 2^{0}$

Largest negative number: $-2^{\mathrm{n}-1}$
Largest positive number: $2^{\mathrm{n}-1}-1$

Addition and Subtraction

- Addition of 1's complement numbers might need a correction
- Time needed to add two 1's complement numbers may be twice as long as time needed to add two unsigned numbers

Adder and Subtractor Unit

Radix-complement schemes

- Complements - general theory
- The r's complement of an n-digit number N in base r is: $K_{r}=r^{n}-N \quad$ for $N \neq 0$ (0 for $\mathrm{N}=0$)
- The (r-1)'s complement, $\mathrm{K}_{\mathrm{r}-1}$ is defined as: $\mathrm{K}_{\mathrm{r}}=\left(\mathrm{r}^{\mathrm{n}}-1\right)-\mathrm{N}$
- The concept of subtracting a number by adding its radixcomplement is general

Arithmetic Overflow

- If n bits are used to represent signed numbers, result must be in the range -2^{n-1} to $2^{n-1}-1$
- If the result does not fit in this range, we say that arithmetic overflow has happened
- We should be able to detect overflow
- The key to determining the overflow is carry-out from MSB position and carry-out from the sign bit
- If they are the same no overflow has happened.

$$
\text { overflow }=c_{n-1} \oplus c_{n}
$$

Arithmetic Overflow

Fast Adders

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i} \\
& c_{i+1}=g_{i}+p_{i} c_{i} \\
& g_{i}=x_{i} y_{i} \\
& p_{i}=x_{i}+y_{i}
\end{aligned}
$$

$$
c_{i+1}=g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+\ldots .+p_{i} p_{i-1} \ldots p_{2} p_{1} g_{0}+p_{i} p_{i-1} \ldots p_{1} p_{0} c_{0}
$$

Performance Issue

- Speed of any circuit is limited by the longest delay along the paths through the circuit
- This is called the critical path delay
- Critical path for the ripple adder is from input y, through the XOR gate and through the carry circuit of each stage.

$$
\begin{aligned}
& \begin{aligned}
(+7) \\
+(+2)
\end{aligned} \quad \begin{array}{r}
0111 \\
+0010 \\
\hline(+9)
\end{array} \begin{array}{r}
1001 \\
\\
\\
\\
\\
c_{4}=0 \\
c_{3}=1
\end{array}
\end{aligned}
$$

Fast Adders

- In an n-bit carry-look ahead adder the final carry-out signal would be produced after three gate delays
- The total delay in an n-bit carry-look ahead adder is four gate delays.
- Complexity of an n-bit carry look ahead adder increases rapidly as n becomes larger
- We can use a hierarchical approach in designing large adders.

Fast Adders

$c_{8}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2}+$ $p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}$
$P_{0}=p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0}$
$G_{0}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2}+$ $p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0}$
$c_{8}=G_{0}+P_{0} c_{0}$
$c_{16}=G_{1}+P_{1} c_{8}=G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0}$

Fast Adders

Figure 5.17. A hierarchical carry-lookahead adder with ripple-carry between blocks.

Fast Adders

- A faster circuit can be designed in which a second-level carry-look-ahead is performed to produce quickly the carry signals between blocks.
- Instead of producing a carry-out signal from the most significant bit of the block, each block produces generate and propagate signals for the entire block

Technology Considerations

- So far we assumed gates with any number of inputs can be used
- Fan-in is limited to a small number
- More gates should be used to implement the logic
- Example: max fan-in is four
$c_{8}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2}+$ $p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}$
$c_{8}=\left(g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}\right)+$
$\left[p_{7} p_{6} p_{5} p_{4}\left(g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}\right)\right]+$
$\left(p_{7} p_{6} p_{5} p_{4}\right)\left(p_{3} p_{2} p_{1} p_{0}\right) c_{0}$
- Because fan-in limitation reduces the speed of carry-lookahead adder, some devices with low fan-in include dedicated circuit for implementing fast adders
- Example: FPGA

Multiplication of unsigned numbers

Each multiplier bit is examined: if 1 , a shifted version of the multiplicand is added to form the partial product; if zero nothing is added

Multiplicand M	(14)	1110
Multiplier Q	(11)	1011
		1110
		0000
		1110
	(154)	10011010

a) Multiplication by hand

Multiplication

- A number is multiplied by 2^{k} by shifting it left by k bit positions
- This is true both for unsigned and signed numbers
- Shifting to the right by k bit, is equivalent to dividing by 2^{k}
- For unsigned numbers the empty bit positions are filled with zero
- For signed numbers, in order to preserve the sign, the empty bit positions are filled with the sign bit
- $B=011000=24$
- $B / 2=001100=12$
- $\mathrm{B} / 4=000110=6$
- $B=101000=-24$
- $\mathrm{B} / 2=110100=-12$
- $B / 4=111010=-6$

Multiplication of unsigned numbers

Multiplicand M	(11)	1110
Multiplier Q	(14)	$\times 1011$
Partial product 0		1110
		+ 1110
Partial product 1		10101
		+ 0000
Partial product 2		01010
		+ 1110
Product P	(154)	10011010

(b) Multiplication for implementation in hardware

$$
\begin{aligned}
& M=m_{3} m_{2} m_{1} m_{0} \\
& Q=q_{3} q_{2} q_{1} q_{0} \\
& P P 0=p p 0_{3} p p 0_{2} p p 0_{1} p p 0_{0} \\
& P P 0 \quad 0 \quad p p 0_{3} \quad p p 0_{2} \quad p p 0_{1} \quad p p 0_{0} \\
& +\quad m_{3} q_{1} \quad m_{2} q_{1} \quad m_{1} q_{1} \quad m_{0} q_{1} \quad 0 \\
& \begin{array}{llllll}
P P 1 & p p 1_{4} & p p 1_{3} & p p 1_{2} & p p 1_{1} & p p 1_{0}
\end{array}
\end{aligned}
$$

Multiplication of Signed Numbers

- If multiplier is positive essentially the same scheme as unsigned numbers can be used
- Since shifting the multiplicand to the left results in one of the operands having $\mathrm{n}+1$ bits, the addition has to be performed using the second operand represented in $\mathrm{n}+1$ bits
- An n bit signed number is represented as an $n+1$ bit number by replicating the sign bit
- Replication of the sign bit is called sign extension

Fixed point

- A fixed point number consists of integer and fraction parts.
- The position of radix point is fixed

$$
\begin{aligned}
& B=b_{n-1} b_{n-2} \ldots b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots b_{-k} \\
& V(B)=\sum_{i=-k}^{n-1} b_{i} \times 2^{i}
\end{aligned}
$$

BCD

- BCD representation was used in some early computers
- Drawback: complexity of circuits that perform arithmetic operations
- BCD addition:
- X and Y two BCD digits (each four bits)
- $\mathrm{S}=\mathrm{X}+\mathrm{Y}$
- If $X+Y \leq 9$ the addition is the same as the addition of 2 unsigned binary numbers
- If $\mathrm{X}+\mathrm{Y}>9$ the result requires two BDC digits and the fourbit sum may be incorrect.
- Single precision
- Exponent=E-127
- Value=(+ or -)1.M x2 ${ }^{\text {E-127 }}$
- Double precision
- Exponent=E-1023
- Value=(+ or -)1.M x2E-1023

Binary coded decimal (BCD)

- Each digit in a decimal number is represented by its binary form
- Since there are 10 digits we need 4 bits per digit

Decimal digit	BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

ASCII code

- ASCII code: the most popular code for representing information in digital systems used for letters numbers and some control characters.
- Control characters: those needed in computer systems to handle and transfer data, e.g., return character
- ACII representation of numbers is not convenient for arithmetic operations
- It is best to covert ASCII numbers to binary for arithmetic operations

ASCII code

- ASCII uses 7-bit, natural size in computer systems is one-byte (8-bits)
- Two common ways on going to 8 -bits
- Set the eight bit to 0
- Use the eight-bit to indicate the parity of the other bits
- Even parity: the parity bit is given a value such that total number of 1 's is even
- Odd parity: the parity bit is given a value such that total number of 1 's is odd
- Even parity generator: $\quad p=x_{6} \oplus x_{5} \oplus \ldots \oplus x_{0}$
- Parity checker: $c=p \oplus x_{6} \oplus x_{5} \oplus \ldots \oplus x_{0}$

