Logic Design

Flip Flops, Registers and Counters

McMaster
University

Introduction

- Combinational circuits: value of each output depends only on the values of inputs
- Sequential Circuits: values of outputs depend on inputs and past behavior of the circuit
- Circuit contains storage (memory) elements
- Example: an alarm system in which the alarm stays on when triggered even if the sensor output goes to zero

Basic Latch

- Simplest memory element: basic latch
- Can be built with NAND or NOR gates

Basic Latch

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$ (no change)
0	1	0	1
1	0	1	0
1	1	0	0

(b) Truth table

(c) Timing diagram

Basic Latch

- In basic latch, the state changes when the inputs change
- In many circuits we cannot control when the inputs change but would like the change in state happens at particular times
- We add a clock (clk) signal to the basic latch

Gated SR Latch

(a) Circuit

Clk	S	R	$\mathrm{Q}(t+1)$
0	X	X	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	x

(b) Characteristic table

(C) Timing diagram

(d) Graphical symbol

Gated Latch with NAND

- Behavior of the circuit is the same as the one with NOR
- Clock is gated by NAND gates rather than AND gates
- S and R inputs are reversed

D latch

- D latch is based on gated SR latch
- Instead of two inputs, has one input

D Latch

(a) Circuit

$$
\begin{array}{cc|c}
\mathrm{Clk} & \mathrm{D} & \mathrm{Q}(t+1) \\
\hline 0 & \mathrm{x} & \mathrm{Q}(t) \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

(b) Characteristic table

(c) Graphical symbol

(d) Timing diagram

D Latch

- Since the output of gated D latch is controlled by the level of clock, it is called level sensitive
- In the window of $\mathrm{clk}=1$, the output Q tracks the changes of input D . This is undesirable.
- It is possible to design storage elements for which the output changes only when clock changes from one value to the other.
- Those circuits are called edge triggered

Propagation delay

- D latch: stores the value of D input at the time clock goes from 1 to 0 .
- It operates properly if input is stable (not changing) at the time clk goes from 1 to 0 .

Q \qquad

Master-slave D flip-flop

- Master-slave D flip-flop: two gated D latches
- First one, called master, changes its state when clk=1
- Second one, called slave, changes its state when clk=0
- From external point of view, master-slave flip-flop changes its state at the negative edge of clock

Master-slave D flip-flop

Edge-triggered D flip-flop

Figure 7.11. A positive-edge-triggered D flip-flop.

D flip-flop with clear and preset

- An example of application of flip-flops: counters
- We should be able to clear the counter to zero
- We should be able to force the counter to a known initial count
- Clear: asynchronous, synchronous
- Asynchronous clear: flip-flops are cleared without regard to clock signal
- Synchronous clear: flip-flops are clear with the clock signal

Figure 7.13. Master-slave D flip-flop with Clear and Preset.

Edge triggered D flip flop with clear \& preset

(b) Graphical symbol

Figure 7.14. Positive-edge-triggered D flip-flop with Clear and Preset.

T Flip-Flop

(a) Circuit

$$
\begin{array}{c|c}
\mathrm{T} & \mathrm{Q}(t+1) \\
\hline 0 & \mathrm{Q}(t) \\
1 & \mathrm{Q}(t)
\end{array}
$$

(b) Truth table

(c) Graphical symbol

(d) Timing diagram

Figure 7.16. T flip-flop.

JK flip flop

- $D=J Q^{\prime}+K^{\prime} Q$
- When $J=S$ and $K=R$ it will behave like a SR flip-flop

Summary

- Basic latch- a feedback connection of two NOR or NAND gates to store 1-bit information. $\mathrm{S} » 1 ; \mathrm{R} » 0$.
- Gated latch- a basic latch with a control (clk). clk $=0$: the existing state maintains; $\mathrm{clk}=1$: the existing state may change
- Gated SR latch. S»1; R»0.
- Gated D latch. The D input forces the state to be the same as D
- Flip-flop- a storage element. Its output state changes only on the edge of clk.
- Edge-triggered flip-flop
- Master-slave flip-flop. The master is active in $1^{\text {st }}$ half of a clock cycle; The slave active in $2^{\text {nd }}$ half.
- Regardless how many times the D input to the master changes, the slave output can only change at the negative edge of clk.

Registers

- Register: a set of n flip-flops used to store n bits of information
- A common clock is used for all the flip-flops
- A register that provides the ability to shift its contents is called a shift register
- To implement a shift register, it is necessary to use edgetriggered or master-slave flip-flops

Shift register

(a) Circuit

	In	Q_{1}	Q_{2}	Q_{3}	$\mathrm{Q}_{4}=$ Out
t_{0}	1	0	0	0	0
t_{1}	0	1	0	0	0
t_{2}	1	0	1	0	0
t_{3}	1	1	0	1	0
t_{4}	1	1	1	0	1
t_{5}	0	1	1	1	0
t_{6}	0	0	1	1	1
t_{7}	0	0	0	1	1

(b) A sample sequence

Figure 7.18. A simple shift register.

- In computer systems it is often necessary to transfer n-bit data
- Using n separate wires: parallel transmission
- Using a single wire and performing the transfer one bit at a time in n consecutive cycles: serial transmission

Parallel access shift register

Figure 7.19. Parallel-access shift register.

Counters

- Counter: a circuit that can increment or decrement a count by 1
- Applications: generating time intervals, count the number of occurrence of an event,
- Counters can be build using T and D flip-flops

Up counter with T flip-flop

(a) Circuit

Figure 7.20. A three-bit up-counter.

Up counter with T flip-flop

- The counter has three flip flops
- Only the first one is directly connected to the clock
- The other two respond after a delay
- For this reason it is called an asynchronous counter

Down counter with T flip-flops

(a) Circuit

(b) Timing diagram

Figure 7.21. A three-bit down-counter.

Synchronous counters

- Problem with asynchronous counters: long delays for large number of bits
- Solution: clock all the flip-flops at the same time (synchronous counter)

- Q0 changes on each clock cycle
- Q 1 changes only when $\mathrm{Q} 0=1$
- Q2 changes only when $\mathrm{Q} 1=1$ and $\mathrm{Q} 0=1$
- $\mathrm{T}_{0}=1$;
- $\mathrm{T}_{1}=\mathrm{Q}_{0}$
- $\mathrm{T}_{2}=\mathrm{Q}_{0} \mathrm{Q}_{1}$
- $\mathrm{T}_{3}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2}$

Figure 7.22. A four-bit synchronous up-counter.

Enable and clear capability

Figure 7.23. Inclusion of Enable and Clear capability.

Synchronous counter with D flip flop

- Formal method: chapter 8

$$
\begin{aligned}
& D_{0}=Q_{0} \oplus \text { Enable } \\
& D_{1}=Q_{1} \oplus Q_{0} \cdot \text { Enable } \\
& D_{2}=Q_{2} \oplus Q_{1} \cdot Q_{0} \cdot \text { Enable } \\
& D_{3}=Q_{3} \oplus Q_{2} \cdot Q_{1} \cdot Q_{0} \cdot \text { Enable }
\end{aligned}
$$

Synchronous Counter with D Flip Flop

Figure 7.24. A four-bit counter with D flip-flops.

Counter with parallel load

- Sometimes it is desirable to start the counter with an initial value

Counter with parallel load

Figure 7.25. A counter with parallel-load capability.

Reset Synchronization

- How can we design a counter that counts modulo some base that is not a power of 2 (e.g., modulo- 6 counter counting 0,1 , $2,3,4,5,0,1, \ldots$)
- Detect 5 and then load zero into the counter

Figure 7.26. A modulo-6 counter with synchronous reset.

Figure 7.27. A modulo-6 counter with asynchronous reset.

BCD counter

- In a BCD counter, the counter should be reset after the count of 9 has been obtained

BCD Counter

Figure 7.28. A two-digit BCD counter.

Ring Counter

- In all the previous counters the count is indicated by the state of the flip-flops in the counter
- It is possible to design a counter in which each flip-flop reaches the state of $\mathrm{Qi}=0$ for exactly one count while for other counts Qi=0
- This is called a ring counter and it can be built from a shift register

Ring Counter

(a) An n-bit ring counter

Figure 7.29. Ring counter.

Johnson Counter

- If instead of Q output we take the Q' output of the last stage in a ring counter and feed it back to the first stage we get a Johnson counter.
- It counts to a sequence of length $2 n$
- For example for 4-bit the sequence would be: 0000,0001 , $1100,1110,1111,0111,0011,0001,0000$.

Johnson counter

Figure 7.30. Johnson counter.

