Fast Algorithms for MAP Decoding of VLC-coded Markov Sequences over Noisy Channels

Xiaolin Wu
Department of Electrical and Computer Engineering

McMaster
University

Joint Source-Channel Decoding

In practice, due to the constraint of system complexity, the compression algorithm is almost always suboptimal in the sense that it fails to remove all the redundancy from the source.

This residue redundancy makes it possible for the decoder to detect and correct channel errors, even in the absence of channel code.

Consider a Markov source sequence $\left\{X_{i}\right\}$ compressed by Huffman code that only approaches the self-entropy $H\left(X_{i}\right)$. The residue redundancy $H\left(X_{i+1} \mid X_{i}\right)=H\left(X_{i}, X_{i+1}\right)-H\left(X_{i}\right)$ can be use to combat channel noise.

MAP decoding is to estimate the channel input that maximizes the a posterior probability of the channel output. In other words, the decoder examines all the possible channel input sequences and finds the one with the maximal a posterior probability.

Channel Model

- Binary symmetric channel (BSC) of crossover probability p_{c}.
- input $\mathbf{b}=b_{1} b_{2} \cdots b_{k} \in\{0,1\}^{k}$.
- output $\mathbf{b}^{\prime}=b_{1}^{\prime} b_{2}^{\prime} \cdots b_{k}^{\prime} \in\{0,1\}^{k}$
- probability of receiving \mathbf{b}^{\prime} when \mathbf{b} is sent:

$$
\begin{align*}
P_{e}\left(\mathbf{b}^{\prime} \mid \mathbf{b}\right) & =\prod_{i=1}^{k} P_{e}\left(b_{i}^{\prime} \mid b_{i}\right) \tag{1}\\
& =p_{c}^{h\left(\mathbf{b}^{\prime}, \mathbf{b}\right)} \cdot\left(1-p_{c}\right)^{k-h\left(\mathbf{b}^{\prime}, \mathbf{b}\right)}
\end{align*}
$$

where $h\left(\mathbf{b}^{\prime}, \mathbf{b}\right)$ is the Hamming distance between the two binary sequences \mathbf{b}^{\prime} and \mathbf{b}.

Encoding and Decoding System

Markov Sequence Coded by a VLC

- VLC codebook: $C=\left\{c_{1}, c_{2}, \ldots, c_{N}\right\}$.
- first order Markov source with conditional probabilities $P\left(c_{j} \mid c_{k}\right)$, $1 \leq j, k \leq N$.
- for an arbitrary sequence $\mathbf{x}=x_{1} x_{2} \cdots x_{I} \in C^{I}$, we have:

$$
\begin{equation*}
P(\mathbf{x})=P\left(x_{1}\right) \prod_{i=2}^{I} P\left(x_{i} \mid x_{i-1}\right) \tag{2}
\end{equation*}
$$

- The Markov sequence is coded by VLC C.

Markov Sequence Sent through the BSC

- the Markov sequence $\mathbf{x}=x_{1} x_{2} \cdots x_{I} \in C^{I}$ is sent through the BSC.
- channel output: $\mathbf{y}=y_{1} y_{2} \cdots y_{M} \in\{0,1\}^{M}$, where M equals the number of bits of the VLC-coded input sequence.
- a unique parsing of \mathbf{y} exists s.t. the parsed i-th word is the output corresponding to the i-th codeword in the input sequence:

$$
\begin{equation*}
y_{m_{0}+1 . .} y_{m_{1}}, y_{m_{1}+1} . . y_{m_{2}}, \ldots, y_{m_{I-1}+1 . .} y_{m_{I}} \tag{3}
\end{equation*}
$$

where $m_{0}=0$ and $m_{i}-m_{i-1}=\left|x_{i}\right|$ for all $1 \leq i \leq I$. Let subsequence $y_{m_{i-1}+1} . . y_{m_{i}}$ be $y\left(m_{i-1}, m_{i}\right]$, then

$$
\begin{equation*}
P_{e}(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{I} P_{e}\left(y\left(m_{i-1}, m_{i}\right] \mid x_{i}\right) \tag{4}
\end{equation*}
$$

Objective of MAP Decoding

- given an output ternary sequence produced by the BSC channel,

$$
\mathbf{y}=y_{1} y_{2} \cdots y_{M} \in\{0,1\}^{M}
$$

infer the channel input sequence

$$
\mathbf{x}=x_{1} x_{2} \cdots x_{I} \in C^{I}
$$

such that $|\mathbf{x}|=M$ and the a posteriori probability $P(\mathbf{x} \mid \mathbf{y})$ is maximized.

Bayes' Theorem:

$$
P(\mathbf{x} \mid \mathbf{y})=\frac{P(\mathbf{x}) P_{e}(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}
$$

Since $P(\mathbf{y})$ is fixed

$$
\begin{aligned}
P(\mathbf{x}) P_{e}(\mathbf{y} \mid \mathbf{x})= & P\left(x_{1}\right) P_{e}\left(y\left(m_{0}, m_{1}\right] \mid x_{1}\right) \\
& \prod_{i=2}^{I} P\left(x_{i} \mid x_{i-1}\right) P_{e}\left(y\left(m_{i-1}, m_{i}\right] \mid x_{i}\right)
\end{aligned}
$$

Optimization Problem:

$$
\begin{aligned}
& \hat{\mathbf{x}}=\underset{\mathbf{x} \in C^{*},|\mathbf{x}|=|\mathbf{y}|}{\arg \max }\left\{\left(\log P\left(x_{1}\right)+\log P_{e}\left(y\left(m_{0}, m_{1}\right] \mid x_{1}\right)\right.\right. \\
& \left.+\sum_{i=2}^{I}\left(\log P\left(x_{i} \mid x_{i-1}\right)+\log P_{e}\left(y\left(m_{i-1}, m_{i}\right] \mid x_{i}\right)\right)\right\} .
\end{aligned}
$$

Graph Representation

- weighted directed acyclic graph G with $N M+1$ vertices, $M=|\mathbf{y}|$.
- a unique starting node s,
- other vertices grouped into M layers.
- each layer corresponds to a bit location in the received sequence y .
- the nodes at the M-th (last) layer are so-called final nodes. Denote by F the set of all final nodes.
- n_{i}^{m} labels the i-th node at layer $m, 1 \leq i \leq N$, which corresponds to codeword c_{i} parsed out of \mathbf{y} at the $m^{t h}$ bit of \mathbf{y}.
- From n_{j}^{m} to $n_{i}^{m+\left|c_{i}\right|}, 1 \leq m \leq M-\left|c_{i}\right|, 1 \leq i, j \leq N$, there is an edge corresponding to decoding $y\left(m, m+\left|c_{i}\right|\right]$ as codeword c_{i},
given that the previously decoded codeword is c_{j}.
- The weight of this edge is $\log P\left(c_{i} \mid c_{j}\right)+\log P_{e}\left(y\left(m, m+\left|c_{i}\right|\right] \mid c_{i}\right)$.
- Generally, for a node n_{i}^{m}, there are N incoming edges, one from each of the N nodes on layer $m-\left|c_{i}\right|$; there are N outgoing edges emitted from n_{i}^{m}, one to each of the nodes $n_{j}^{m+\left|c_{j}\right|}, 1 \leq j \leq N$.
- Any input sequence \mathbf{x} of $|\mathbf{y}|$ bits, can be mapped to a distinct path from s to F such that the weight of the path equals the value of the objective function in \mathbf{x}. Moreover, this mapping is one-to-one.
- The problem of MAP decoding is thus converted to finding the single-source longest path in the weighted directed acyclic graph G, from s to F.

Computing the Longest Path in G

- Let $\omega(m, i)$ be the weight of the longest path from s to the node n_{i}^{m}, then

$$
\begin{gather*}
\omega(m, i)=\max _{1 \leq j \leq N}\left\{\omega\left(m-\left|c_{i}\right|, j\right)+\log P\left(c_{i} \mid c_{j}\right)+\right. \\
\left.\log P_{e}\left(y\left(m-\left|c_{i}\right|, m\right] \mid c_{i}\right)\right\} \tag{5}
\end{gather*}
$$

for all $1 \leq i \leq N$ and $\left|c_{i}\right| \leq m \leq M$,

- with initial values

$$
\begin{equation*}
\omega\left(\left|c_{i}\right|, i\right)=\log P\left(c_{i}\right)+\log P_{e}\left(y\left(0,\left|c_{i}\right|\right] \mid c_{i}\right) \tag{6}
\end{equation*}
$$

and $\omega(m, i)=-\infty$ if $m<\left|c_{i}\right|, 1 \leq i \leq N$.

- The MAP decoding is determined by

$$
\begin{equation*}
\tilde{\omega}(M)=\max _{1 \leq i \leq N} \omega(M, i) . \tag{7}
\end{equation*}
$$

Dynamic Programming solution

- At each stage $m, 1 \leq m \leq M$, weights $\omega(m, i)$ are computed for $1 \leq i \leq N$, using (5).
- $\log P\left(c_{i} \mid c_{j}\right)$ and $\log P_{e}\left(y\left(m-\left|c_{i}\right|, m\right] \mid c_{i}\right)$ in (5) can be precomputed and stored in look-up tables so that they will be available to DP process in $O(1)$ time.
- The search in (5) takes $O(N)$ time for fixed m and i. Each stage is completed in $O\left(N^{2}\right)$ time and all the M stages in $O\left(N^{2} M\right)$ time. The step of (7) clearly takes $O(N)$ time. Therefore, the time complexity of this algorithm is $O\left(N^{2} M\right)$.

Complexity Reduction by Matrix Search

- Organize the computations in a different way: at each stage m compute the weights $\omega\left(m+\left|c_{i}\right|, i\right)$ for all $i, 1 \leq i \leq N$:

$$
\begin{align*}
\omega\left(m+\left|c_{i}\right|, i\right)= & \max _{1 \leq j \leq N}\left\{\omega(m, j)+\log P\left(c_{i} \mid c_{j}\right)+\right. \\
& \left.\log P_{e}\left(y\left(m, m+\left|c_{i}\right|\right] \mid c_{i}\right)\right\} \tag{8}
\end{align*}
$$

for all $1 \leq i \leq N$ and $1 \leq m \leq M-\left|c_{i}\right|$.

- For each $1 \leq m \leq M-\max _{i, 1 \leq i \leq N}\left|c_{i}\right|$, consider the matrix G_{m} of dimension $N \times N$, with elements $G_{m}(i, j)$

$$
\begin{align*}
G_{m}(i, j)= & \omega(m, j)+\log P\left(c_{i} \mid c_{j}\right)+ \\
& \log P_{e}\left(y\left(m, m+\left|c_{i}\right|\right] \mid c_{i}\right) \tag{9}
\end{align*}
$$

- Then relation (8) is equivalent to

$$
\begin{equation*}
\omega\left(m+\left|c_{i}\right|, i\right)=\max _{1 \leq j \leq N} G_{m}(i, j) \tag{10}
\end{equation*}
$$

- Computing all $\omega\left(m+\left|c_{i}\right|, i\right)$ for given m and all $1 \leq i \leq N$, is equivalent to finding all row maxima of the matrix G_{m}.
- Straightforward solution: $O\left(N^{2}\right)$ time.
- If the matrix G_{m} is so-called totally monotone then the problem of row maxima can be solved in $O(N)$ time by a fast matrix search technique introduced by Aggarwal et al. in 1987 (Algorithm SMAWK).

Total monotonicity

- The matrix G_{m} is said to be totally monotone with respect to row maxima if the following relation holds:

$$
\begin{gather*}
G_{m}(i, j) \leq G_{m}\left(i, j^{\prime}\right) \Rightarrow G_{m}\left(i^{\prime}, j\right) \leq G_{m}\left(i^{\prime}, j^{\prime}\right) \\
i<i^{\prime}, j<j^{\prime} \tag{11}
\end{gather*}
$$

- If all the matrices G_{m} are totally monotone, then the MAP decoding problem can be solved in $O(N M)$ time.

Algorithm SMAWK

- If a $k \times n$ matrix A with $k \leq n$, is totally monotone then the column index $j(i)$ corresponding to the maximum entry of row i, increases with i.
- If the maxima of all even rows are known, then the maxima of remaining odd rows can be computed in $O(n)$ time since for each odd row $2 i+1$ the search is restricted to the interval between $j(2 i)$ and $j(2 i+2)$ and $\sum_{1 \leq i<k / 2}(j(2 i+2)-j(2 i))=O(n)$.
- The elegant technique introduced by Aggarwal et al. in 1987 (SMAWK) can delete $n-k$ columns containing no row maxima of a $k \times n$ totally monotone matrix with $k<n$, in $O(n)$ time.
- The size of the matrix search problem can be reduced from $k \times n$ to $k \times k$ in $O(n)$ time. Then the $k \times k$ problem is reduced to $k / 2 \times k / 2$ in $O(k)$ time. The size of the new problem is further
reduced to $k / 4 \times k / 4$ in $O(k / 2)$ time and so on.
- Let $T(k)$ be the time for solving the $k \times k$ problem and $c k$ be the cost of the size reduction from $k \times k$ to $k / 2 \times k / 2$, then the following recurrence holds: $T(k)=T(k / 2)+c k$, which clearly implies $T(k)=O(k)$.
- The solution of the $k \times n$ problem is obtained in $O(n)$ time.

Condition for total monotonicity

A sufficient condition for total monotonicity) is the Monge condition:

$$
\begin{gather*}
G_{m}\left(i, j^{\prime}\right)+G_{m}\left(i^{\prime}, j\right) \leq G_{m}\left(i^{\prime}, j^{\prime}\right)+G_{m}(i, j) \\
i<i^{\prime}, j<j^{\prime} \tag{12}
\end{gather*}
$$

which is equivalent to

$$
\begin{gather*}
\log P\left(c_{i} \mid c_{j^{\prime}}\right)+\log P\left(c_{i^{\prime}} \mid c_{j}\right) \leq \log P\left(c_{i^{\prime}} \mid c_{j^{\prime}}\right)+ \\
\log P\left(c_{i} \mid c_{j}\right), \quad i<i^{\prime}, j<j^{\prime} \tag{13}
\end{gather*}
$$

This condition does not depend either on the channel statistics or on the output sequence, but only on the source statistics. Therefore, the decoder can check if the condition holds before deciding whether to use the fast matrix search algorithm or the standard dynamic programming algorithm for MAP decoding.
Checking the Monge condition takes only $O\left(N^{2}\right)$ time. Indeed, in
order for (13) to hold, we only need the inequality

$$
\begin{gather*}
\log P\left(c_{i} \mid c_{j+1}\right)+\log P\left(c_{i+1} \mid c_{j}\right) \leq \\
\log P\left(c_{i+1} \mid c_{j+1}\right)+\log P\left(c_{i} \mid c_{j}\right) \tag{14}
\end{gather*}
$$

to be valid for each pair $i, j, 1 \leq i, j \leq N$.
The fast matrix search approach can still be applied if there are two permutations ϕ and ψ on the integers between 1 and N, such that

$$
\begin{gathered}
\log P\left(c_{\phi(i)} \mid c_{\psi\left(j^{\prime}\right)}\right)+\log P\left(c_{\phi\left(i^{\prime}\right)} \mid c_{\psi(j)}\right) \leq \\
\log P\left(c_{\phi\left(i^{\prime}\right)} \mid c_{\psi\left(j^{\prime}\right)}\right)+\log P\left(c_{\phi(i)} \mid c_{\psi(j)}\right) \\
i<i^{\prime}, j<j^{\prime}
\end{gathered}
$$

In this case the rows and columns of each matrix G_{m} have to be permuted by using ϕ, respectively ψ.
$O\left(N^{2}\right)$ time suffices to check if such permutations exist [Burkard et
al. 1996].

Markov Sources Satisfying the Monge Condition

Assume that the codewords c_{i} are the output of a scalar quantizer applied to a continuous Markov source.

Monge condition (13) is equivalent to

$$
\begin{gather*}
P\left(c_{i} \mid c_{j^{\prime}}\right) P\left(c_{i^{\prime}} \mid c_{j}\right) \leq P\left(c_{i^{\prime}} \mid c_{j^{\prime}}\right) P\left(c_{i} \mid c_{j}\right) \\
i<i^{\prime}, j<j^{\prime} \tag{15}
\end{gather*}
$$

Multiplying both sides by $P\left(c_{j}\right) P\left(c_{j^{\prime}}\right)$, we have

$$
\begin{gather*}
P\left(c_{j^{\prime}}, c_{i}\right) P\left(c_{j}, c_{i^{\prime}}\right) \leq P\left(c_{j^{\prime}}, c_{i^{\prime}}\right) P\left(c_{j}, c_{i}\right) \\
i<i^{\prime}, j<j^{\prime} . \tag{16}
\end{gather*}
$$

For each $i, 1 \leq i \leq N$, let S_{i} denote the quantization cell (interval) represented by the codeword c_{i}. Assume that for all $i<i^{\prime}$ we have $u<v$ for all $u \in S_{i}$ and all $v \in S_{i^{\prime}}$.

Relation (16) is equivalent to

$$
\begin{gather*}
\int_{S_{j^{\prime}}} \int_{S_{i}} f\left(v^{\prime}, u\right) d u d v^{\prime} \int_{S_{j}} \int_{S_{i^{\prime}}} f\left(v, u^{\prime}\right) d u^{\prime} d v \leq \\
\int_{S_{j^{\prime}}} \int_{S_{i^{\prime}}} f\left(v^{\prime}, u^{\prime}\right) d u^{\prime} d v^{\prime} \int_{S_{j}} \int_{S_{i}} f(v, u) d u d \tag{17}
\end{gather*}
$$

further equivalent to

$$
\begin{gather*}
\int_{S_{j^{\prime}}} \int_{S_{i}} \int_{S_{j}} \int_{S_{i^{\prime}}} f\left(v^{\prime}, u\right) f\left(v, u^{\prime}\right) d u^{\prime} d v d u d v^{\prime} \leq \\
\int_{S_{j^{\prime}}} \int_{S_{i}} \int_{S_{j}} \int_{S_{i^{\prime}}} f\left(v^{\prime}, u^{\prime}\right) f(v, u) d u^{\prime} d v d u d v^{\prime} \tag{18}
\end{gather*}
$$

A sufficient condition for (18)

$$
\begin{equation*}
f\left(v^{\prime}, u\right) f\left(v, u^{\prime}\right) \leq f\left(v^{\prime}, u^{\prime}\right) f(v, u) \tag{19}
\end{equation*}
$$

or equivalently

$$
\begin{gather*}
\log f\left(v^{\prime}, u\right)+\log f\left(v, u^{\prime}\right) \leq \\
\log f\left(v^{\prime}, u^{\prime}\right)+\log f(v, u) \tag{20}
\end{gather*}
$$

for any real values $u<u^{\prime}$ and $v<v^{\prime}$.
If the second partial derivative $\partial^{2}(\log f) / \partial u \partial v$ exists, then 20$)$ holds iff $\partial^{2}(\log f) / \partial u \partial v \geq 0$ [Burkard et al. 1996].

Clearly $\partial^{2}(\log f) / \partial u \partial v \geq 0$ holds when the joint $\operatorname{pdf} f(\cdot, \cdot)$ is Gaussian.

MAP Decoding with Length Constraint

- Assume that the number K of symbols of the input Markov sequence is known (transmitted reliably as side information).
- The objective of MAP decoding with length constraint is to find the Markov sequence \mathbf{x} of exactly K symbols, of maximal a posterior probability $P(\mathbf{x} \mid \mathbf{y})$.
- The problem is equivalent to the maximum-weight K-link path in the graph G.
- Dynamic programming solution: $O\left(N^{2} M^{2}\right)$ time complexity [Park, Miller'98].

Technique Based on Parameterized Search

- For any real number τ, define a new weighted directed acyclic graph $G(\tau)$ that is derived from the same sets of nodes and edges as G. The weight of an edge e in $G(\tau)$ is the sum of the weight of e in G and τ.
- The following results were proved in [Aggarwal, Schieber, and Tokuyama'94].
- Lemma 1: If for some real τ, the maximum-weight path in $G(\tau)$ has k edges, then this path is the maximum-weight k-link path in G.
- Lemma 2: Denote by $k(\tau)$ the number of edges in the maximum-weight path in $G(\tau)$. Then $k(\tau)$ is non-decreasing as τ increases.

Length-constrained MAP Decoding

- Find the maximum-weight path in $G(\tau)$ in conjunction with a binary search on τ until $k(\tau)=K$.
- No guarantee that a real value τ exists to satisfy $k(\tau)=K$. But in this case the algorithm will converge quickly to such a τ that $k(\tau)=K+\alpha$, where α is an integer whose absolute value is very small.
- To reduce the computational complexity, we limit the number of iterations in the binary search to be L, then the overall time complexity is $O\left(L M N^{2}\right)$.

Complexity Reduction by Matrix Search

The fast matrix search technique can be applied to find the longest path in $G(\tau)$ too.
The correspondent of matrix G_{m} is now the matrix $G_{m, \tau}$:

$$
\begin{gather*}
G_{m, \tau}(i, j)=\omega_{\tau}(m, j)+\log P\left(c_{i} \mid c_{j}\right)+ \\
\log P_{e}\left(y\left(m, m+\left|c_{i}\right|\right] \mid c_{i}\right)+\tau \tag{21}
\end{gather*}
$$

where $\omega_{\tau}(m, j)$ denotes the weight of the longest path from s to the node n_{j}^{m} in $G(\tau)$.
If the Monge condition:

$$
\begin{gather*}
G_{m, \tau}\left(i, j^{\prime}\right)+G_{m, \tau}\left(i^{\prime}, j\right) \leq G_{m, \tau}\left(i^{\prime}, j^{\prime}\right)+G_{m, \tau}(i, j) \\
i<i^{\prime}, j<j^{\prime} \tag{22}
\end{gather*}
$$

holds for all m, then the longest path in $G \tau$ can be found in $O(N M)$
time, leading to an $O(L M N)$ time algorithm for length-constrained MAP decoding.

The Monge condition (22) is equivalent to

$$
\begin{gather*}
\log P\left(c_{i} \mid c_{j^{\prime}}\right)+\log P\left(c_{i^{\prime}} \mid c_{j}\right) \leq \\
\log P\left(c_{i^{\prime}} \mid c_{j^{\prime}}\right)+\log P\left(c_{i} \mid c_{j}\right) \\
i<i^{\prime}, j<j^{\prime} \tag{23}
\end{gather*}
$$

i.e., the same condition as for MAP decoding without length constraint.

Experimental Results

- Measurement
- Symbol-by-symbol difference (PSNR)
- Alignment with minimum Edit distance
- Example

$$
\begin{array}{ll}
\mathbf{I}: & 121020010-2 \\
\hat{\mathbf{I}}: & -2110001022 \\
\tilde{\mathbf{I}}: & \text { d--ss---i- }
\end{array}
$$

$-\hat{\mathbf{I}}$ is adjusted to $\tilde{\mathbf{I}}=\cdots s_{i} s_{d} s_{j} \cdots$;

* s_{i} and s_{j} agree with I symbol-by-symbol;
* s_{d} differs from \mathbf{I} in all of its symbols.
- Mean error propagation length \bar{e}_{l};
- Number of error propagation e_{n}.

Experiment Configuration

- A zero-mean, unit-variance, first-order Gaussian-Markov process of correlation coeficient 0.9 ;
- Uniform scalar quantizer with 9 code cells;
- Sequences of different lengths $K=50,100,500$ generated by the source model;
- Variable length encoded at average rate of about 3 bits per sample;
- Binary symmetric channel of various crossover probabilities.
- Averages of 1000 simulation;
- Comparison algorithms
- M. Park and D. J. Miller - Approximate algorithm in [7];
- Z. Wang and X. Wu - MAP without length constraint in [11].

Probability of Finding the Optimal Solution

Mean Error Propagation Length

Number of Error Propagations

