Dynamic Programming

- Dynamic Programming is a generic method to design algorithms. It constructs the solution from solutions of "(slightly) smaller" problems.
- E.g. Fibonacci number computation. $F(n)=F(n-1)+F(n-2)$.
- However, the recurrence relation is not so obvious in many problems.
- We will consider three examples.
\dagger Coin Selection
\dagger Knapsack
\dagger Longest Common Subsequence

Coin Selection

- Problem Sufficient coins with k values, $v_{1}<v_{2}<\ldots<v_{k}$. A value N. We want to find a collection of coins so that their values total up to N. There may be multiple coins with the same value in the collection.
- Naive Solution:

For every possible $0 \leq c_{1}, c_{2}, \ldots, c_{k} \leq \frac{N}{v_{1}}$, check whether $N=c_{1} v_{1}+\ldots+c_{k} v_{k}$.

- Time Complexity: There are $\left(\frac{N}{v_{1}}\right)^{k}$ possibilities, each requires $O(k)$ time to check. Therefore, the time complexity is $O\left(\left(\frac{N}{v_{1}}\right)^{k} \times k\right)$.
- Exponential to k. Not a good solution.
- Here, the recurrence relation is not obvious.

Induction:

- Let $S(N)$ be one collection of coins that total up to value N.
- Instead of computing a solution $S(N)$ directly, we try to compute $S(N)$ from solutions of $S(i), 0 \leq i<N$.
$S(N)=$ null
for j from k to 1 do
if $S\left(N-v_{j}\right) \neq$ null
$S(N)=S\left(N-v_{j}\right)+\left(v_{j}\right)$
break
- If $S(i)$ has been correctly computed for $0 \leq i<N$, then the above pseudo-code computes $S(N)$ correctly.

Dynamic Programming:

Algorithm DP:

Input: $v_{1}, \ldots, v_{k} ; N$.
Output: A collection of values that total up to N.

1. $S[0]=()$
2. for i from 1 to N
3. $S[i]=$ null
4. for j from k to 1 do
5. \quad if $i-v_{j} \geq 0$ and $S\left[i-v_{j}\right] \neq$ null
6. $\quad S[i]=S\left[i-v_{j}\right]+\left(v_{j}\right)$
7. break
8. output $S[N]$

- Correctness of the algorithm:
(1) $S[0]$ is correct.
(2) If $S[i]$ is correct for $0 \leq i<n$, then $S[n]$ is also correct.

Therefore, by induction, $S[i]$ is a correct solution for every i. Hence $S[N]$ is a correct solution for value N.

- Time complexity:

The major part of the running time is spent on the block consisting of line 5,6,7, which will repeat $k N$ times. Suppose each repeat takes time T. The total time complexity is $O(k N T)$.

- Space complexity:

We need a linked list for each $S[i], i=1, \ldots, N$. Therefore, the space complexity is N linked list.

- The above algorithm and analysis show the basic idea of DP. However, DP is usually done with two steps: one step fills the DP table, and the other step is a backtracking step to construct the solution.

Dynamic Programming with Backtracking

- The following algorithm determines whether a value N can be achieved:

Algorithm DP:

Input: $v_{1}, \ldots, v_{k} ; N$.
Output: true or false.

1. $S[0] \leftarrow$ true
2. for i from 1 to N
3. $S[i] \leftarrow$ false
4. for j from k to 1 do
5. if $i-v_{j} \geq 0$ and $S\left[i-v_{j}\right]$
6. $S[i] \leftarrow$ true
7. break
8. output $S[N]$

- To find the actual collection of coins, we need backtrack in the DP array $S[0 . . N]$, as follows:
- The Pseudo-code (Suppose $S[N]$ is true.)

Backtrace ($N, S[0 . . N]$)

1. $i \leftarrow N$
2. while $(i>0)$
3. for j from k to 1 do
4. if $i-v_{j} \geq 0$ and $S\left[i-v_{j}\right]$
5. $\quad \operatorname{print}\left(v_{j}\right)$
6. $\quad i \leftarrow i-v_{j}$
7. break //break for loop

- Correctness:

If $S[i]$ is true, there must be j s.t. $S\left[i-v_{j}\right]$ is true. We print v_{j} and then the rest of the while loop will print the collection of coins that total up to $i-v_{j}$. Hence the backtracking is correct if $S[0 . . N]$ is correct.

- Time Complexity: DP takes $O(k N)$ time. Backtracking takes $O(k N)$ time. In total $O(k N)$ time.
- Space Complexity: DP takes $O(N)$ bits. Backtracking takes $O(1)$. Total space complexity is $O(N)$.
- Here N is not the problem size!!!

Exercise

- Does our algorithm finds the minimum number of coins that total up to N ?

Positive evidence: we try the coin with the largest value first.
Negative evidence: using the largest value coin is a good choice at the current step, but it may screw up the future steps.

- If yes, prove it.
- If no, give a counter-example, and try to design an algorithm to find the minimum number of coins.

Knapsack problem

- Knapsack is an extended version of our previous "Coin Selection" problem.
- Suppose a thief enters a store and has a knapsack with a capacity of W (i.e., can hold up to W kilograms).
- There are n items to choose from, with each item having weight w_{i} and value v_{i}.
- The idea is to fill the knapsack with as much weight as possible and maximize the value of the payload. Items cannot be broken down.
- This again can be solved by Dynamic Programming. Consider an optimal solution. If we remove item j from the load, then the remaining load must be the most valuable load possible that uses weight $W-w_{j}$ from the remaining $n-1$ items.
- Let $c[i, w]$ be the value of the optimal solution for items $1, \ldots, i$ with maximum weight w. Then

$$
c[i, w]=\left\{\begin{array}{l}
0, \quad \text { if } i=0 \text { or } w=0 \\
c[i-1, w], \quad \text { if } w_{i}>w \\
\max \left(v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right), \quad \text { else. }
\end{array}\right.
$$

DP:

1. for i from 1 to n
2. $c[i, 0] \leftarrow 0$
3. for w from 1 to W
4. $c[0, w] \leftarrow 0$
5. for i from 1 to n
6. for w from 1 to W
7. if $w_{i}>w$
8. $c[i, w] \leftarrow c[i-1, w]$
9. else
10. $c[i, w] \leftarrow \max \left\{v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right\}$.
11.output $c[n, W]$.

Backtracking

- Backtracking assumes $c[i, w]$ has been computed for all valid i and w.
- Backtrace ($c[0 . . n, 0 . . W])$

1. $i \leftarrow n, w \leftarrow W$.
2. while $i \neq 0$ and $w \neq 0$
3. if $w_{i}>w$
//item i is not used

$$
i \leftarrow i-1
$$

4. $\quad i \leftarrow i-1$
5. else if $v_{i}+c\left[i-1, w-w_{i}\right]<c[i-1, w]$
//item i is not used
6. $\quad i \leftarrow i-1$
7. else
//item i is used
8. $\operatorname{print}(i)$
9. $\quad i \leftarrow i-1, w \leftarrow w-w_{i}$

- Time complexity: Filling DP table $O(n W)$. Backtracking $O(n)$. Total $O(n W)$.
- Space complexity: $O(n W)$.
- Are the following two strings similar?

ACCGGTCGAGGCGCGGAAGCCGGCCGAA GTCGTTGGAATGCCGTTGCTCTGTAAGG

- Hamming distance: No, they are not.

ACCGGTCGAGGCGCGGAAGCCGGCCGAA

- In another sense, they are:

ACCGGTCGAGGCGCGGAA GCCG GC C G AA
\|ll |l|| |l| || | | ||

GTCGTT GGAATGCCGTTGCTCTGTAAGG

- In Bioinformatics, when people compare two DNA (or protein) sequences, hamming distance cannot be used because one sequence may be resulted from inserting a few letters into another.
- Instead, measurements like edit distance, sequence alignment, or longest common subsequence are used. Sequence alignment is the most common.
- We introduce the longest common subsequence since it is easier to understand.
- We are given two sequences of characters, A and $B, A=a_{1} a_{2} \ldots a_{n}$, $B=b_{1} b_{2} \ldots b_{m}$. (Assume that the characters come from a finite alphabet.) We want to find the longest common subsequence.
- That is, $a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}=b_{j_{1}} b_{j_{2}} \ldots b_{j_{k}} ; i_{1}<i_{2}<\ldots<i_{k}, j_{1}<j_{2}<\ldots<j_{k}$; and k is maximized.
- We again use Dynamic Programming to solve this problem.
- Let us look at a_{n} and b_{m}. There are two cases:
- Case 1. $a_{n}=b_{m}$. Then $\operatorname{LCS}(A, B)$ is $\operatorname{LCS}\left(a_{1} \ldots a_{n-1}, b_{1} \ldots b_{m-1}\right)+a_{n}$.
- Case 2. $a_{n} \neq b_{m}$. Then $\operatorname{LCS}(A, B)$ is either the $\operatorname{LCS}\left(a_{1} \ldots a_{n-1}, B\right)$ or $\operatorname{LCS}\left(A, b_{1} \ldots b_{m-1}\right)$, depending on which one is longer.
- Let $L(i, j)$ be the length of $L C S\left(a_{1} \ldots a_{i}, b_{1} \ldots b_{j}\right)$. Then

$$
L(i, j)=\left\{\begin{array}{l}
1+L(i-1, j-1), \quad a_{i}=b_{j} \\
\max \{L(i-1, j), L(i, j-1)\} \quad a_{i} \neq b_{j}
\end{array}\right.
$$

- Pseudo-code

1. for i from 0 to n
2. $L[i, 0] \leftarrow 0$,
3. for j from 0 to m
4. $L[0, j] \leftarrow 0$,
5. for i from 1 to n
6. for j from 1 to m
7. if $a_{i}=b_{j}$
8. $L(i, j) \leftarrow 1+L(i-1, j-1)$
9. else
10. $L(i, j) \leftarrow \max \{L(i-1, j), L(i, j-1)\}$

Exercise

- Write the backtracking pseudo-code for the LCS problem.
- In the textbook, p.394, in addition to an array $c[i, j]$ (the same as our $L[i, j]$), an array $b[i, j]$ is used to assist the backtracking. Is it necessary?
- The time and space complexity of the DP for LCS.
- Read the other dynamic programming algorithms introduced in Chapter 15 of the textbook.

