Graph Algorithms

- Sets and sequences can only model limited relations between objects, e.g. ordering, overlapping, etc.
- Graphs can model more involved relationships, e.g. road and rail networks
- Graph: $G=(V, E), V$: set of vertices, E : set of edges
- Directed graph: an edge is an ordered pair of vertices, $\left(v_{1}, v_{2}\right)$
- Undirected graph; an edge is an unordered pair of vertices $\left\{v_{1}, v_{2}\right\}$

Graph representation

Adjacency matrix

Directed graph
$\begin{aligned} V & =\{1,2,3,4\} \\ E & =\{(1,2),(1,3),(1,4),(2,3),(3,4),(4,2)\}\end{aligned}$

	1	2	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	1	0	0

Undirected graph

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
\end{aligned}
$$

| | 1 | 2 | 3 | 4 | | | | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 4

Advantage: $O(1)$ time to check connection.

Disadvantages:

- Space is $O\left(|V|^{2}\right)$ instead of $O(|E|)$
- Finding who a vertex (node) is connected to requires $O(|V|)$ operations

Adjacency List

Example:

Example:

Advantages:

- easy to access all vertices connected to one vertex
- space is $O(|E|+|V|)$

Disadvantage:

- testing connection in worst case is $O(|V|)$
- space: $|V|$ header, $2|E|$ list nodes $\Longrightarrow O(|V|+|E|)$. There might be $|V|^{2}$ edges $\left(|E|=|V|^{2}\right)$ but probably not.

Another representation

Adjacency list with arrays

- For node i, use header $[i]$ and header $[i+1]-1$ as the indices in the list array. If header $[i]>$ header $[i+1]-1$ vertex i is not connected to any node.
- same advantage as adjacency list but save space
- binary search is possible to determine the connection: $O(\log |V|)$
- problem: difficult to update the structure

Traversal of a graph

Depth First and Breadth First

Depth First (most useful)
var visited $[1 \ldots|V|]$: boolean \longleftarrow false
Proc DFS(v);
(Given a graph $G=(V, E)$ and a vertex v, visit each vertex reachable from v)
visited $[v] \longleftarrow$ true
perform prework on vertex v

if not visited $[w]$ then
DFS (w)
perform postwork on edge (v, w)
(sometimes we perform postwork on all edges out of v)

- given a vertex v, we need to know all vertices connected to v
- stack space $\approx|V|-1$

Complexity

1) With adjacency list visited each vertex once visited each edge twice; once from v to w, once from w to v.
$O(|V|+|E|)$
2) With adjacency matrix visited each vertex once for each vertex, visit all vertices connected to this vertex needs $O(|V|)$ steps $O\left(|V|^{2}\right)$

Note: In graph, $O(|E|)$ is better than $O\left(|V|^{2}\right)$ in most cases.

Examples

1) DFS numbering

Initially DFS_num := 1
Use DFS with following prework prework
$v . D F S:=$ DFS_num;
DFS_num := DFS_num+1;

2) DFS tree

Use DFS with following postwork postwork:
add edge (v, w) to T

Topological Sorting

Task scheduling

- A set of tasks. Some tasks depend on other tasks
- Task a depends on task b means that task a cannot be started until task b is finished
- We want to find a schedule for tasks consistent with dependencies

Example: $x \rightarrow y: y$ cannot start until x is completed.

A B C E D A B C D E A B E C D
are all schedule for tasks $\{A, B, C, D, E\}$.
This graph must be acyclic!

The problem

Given a directed acyclic graph $G=(V, E)$ with n vertices, label the vertices from 1 to n such that, if v is labelled k, then all vertices that can be reached from v by a directed path are labelled with labels $>k$.

In other words, label vertices from 1 to n such that for any edge (v, w) the label of v is less than the label of w.

Lemma. A directed acyclic graph always contains a vertex with in-degree 0 . Proof. If all vertices have positive in-degrees, starting from any vertex v, traverse the graph "backward". We never have to stop. But we only have a finite number of vertices!
Consequently, there must be a cycle in the graph - a contradiction! (pigeonhole principle).

Algorithm:

By induction:
find one vertex with in-degree 0 . Label this vertex 1 , and delete all edges from this vertex to other vertices.
Now the new graph is also acyclic and is of size $n-1$. By induction we know how to label it.

Implementation.

1. Initialize in-degree of all vertices
2. Put all vertices with 0 in-degree into a queue or stack
$l \longleftarrow 0$
3. dequeue $v ; l \longleftarrow l+1$; v.label $\longleftarrow l$;
for all edge (v, w)
decrease in-degree of w by 1
if degree of w is now 0 enqueue w
until queue is empty
Time: $O(|E|+|V|)$

Single-Source Shortest-Paths

- Weighted graph
$G=(V, E)$ directed graph with weights associated with the edges
- The weight of an edge (u, v) is $w(u, v)$.

The weight of a path $p=<v_{0}, v_{1}, \cdots v_{k}>$ is the summation of the weights of its edges

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- We define the shortest-path weight from u to v by

$$
\delta(u, v)=\left\{\begin{array}{l}
\min \{w(p): p \text { is a path from } u \text { to } v\} \\
\infty \text { if there is no path from } u \text { to } v
\end{array}\right.
$$

- The shortest path from u to v is defined as any path p from u to v with weight $w(p)=\delta(u, v)$.
- The problem: Given the directed graph $G=(V, E)$ and a vertex s, find the shortest paths from s to all other vertices.
- For undirected graphs, change edge $\{u, v\}$ with weight w to a pair of edges (u, v) and (v, u) both with weight w.

Example:

- Negative weight cycle

In some instances of the single-source shortest-paths problem, there may be edges with negative weights.
\dagger If there is no negative cycle, the shortest path weight $\delta(s, v)$ is still well defined.
\dagger If there is negative cycle reachable from s, then the shortest path weight from s to any vertex on the cycle is not well defined.
\dagger A lesser path can always be found by following the proposed "shortest path" and then traverse the negative weight cycle.

- Cycles in shortest path?
\dagger A shortest path cannot contain a negative cycle.
Shortest path weight is not well defined.
\dagger A shortest path cannot contain a positive cycle.
Removing the positive cycle will produce a path with lesser weight.
\dagger How about 0 -weight cycle?
We can remove all 0 -weight cycles and produce a shortest path without cycle.
- We can assume that shortest paths we are looking for contain no cycle. Therefore any shortest path contains at most $|V|-1$ edges.

For each vertex v, we maintain two attributes, $\pi[v]$ and $d[v]$.

- $d[v]$ is an upper bound on the weight of a shortest path from source s to v.
\dagger During the execution of a shortest-path algorithm, $d[v]$ may be larger than the shortest-path weight.
\dagger At the termination of a shortest-path algorithm, $d[v]$ is the shortest-path weight from s to v.
- $\pi[v]$ is used to represent the shortest paths.
\dagger During the execution of a shortest-path algorithm, $\pi[]$ need not indicate shortest paths.
$\dagger \pi[v]$ is the last edge of a path from s to v during the execution of a shortest-path algorithm.
\dagger At the termination of a shortest-path algorithm, $\pi[v]$ represent the last edge of a shortest path from s to v.
\dagger Since sub-path of a shortest path is itself shortest path, therefore $<v, \pi[v], \pi[\pi[v]], \cdots, s>$ is the shortest path from s to v in reverse order.
- Initialization

Initialize_Single_Source (G, s)
1 For each vertex $v \in V[G]$ do
$2 d[v]=\infty$;
$3 \pi[v]=n i l ;$
$4 d[s]=0$;

- Relaxation
$\operatorname{Relax}(u, v, w)$
1 if $d[v]>d[u]+w(u, v)$ then
$2 d[v]=d[u]+w(u, v)$;
$3 \pi[v]=u$;

Relax (u, v, w) tests if we can improve the shortest path to v found so far by going through u.
If so, we update $d[v]$ and $\pi[v]$.

- Each algorithm for single-source shortest-path will begin by calling Initialize_Single_Source (G, s).
- And then $\operatorname{Relax}(u, v, w)$ will be repeatedly applied to edges.
- The algorithms differ in how many times they relax each edge and the order in which they relax edges.

The Bellman-Ford Algorithm

Bellman-Ford algorithm solves the single-source shortest-path problem in general case where graph may contains cycles and edge weights may be negative.

- If there is no negative cycle, the algorithm will compute the shortest-paths and their weights.
- If there is negative cycle, the algorithm will report no solution exists.
- The idea is to repeatedly use the following procedure to progressively decrease an estimate $d[v]$ of the weight of shortest path from s to v.
$\operatorname{Relax} \operatorname{All}(G, s)$
1 For each edge $(u, v) \in E$ do
$2 \operatorname{Relax}(u, v, w)$;

Lemma: Let $p=<s=v_{0}, v_{1}, \cdots, v_{k}=v>$ be a path from s to v of length k and weight $w(p)$, then after k applications of $\operatorname{Relax} \operatorname{All}(G, s), d[v] \leq w(p)$.

Proof:

Prove by induction on k.

- $k=1$.

In this case, $p=<s, v>$ and $w(p)=w(s, v)$. After $\operatorname{Relax}(s, v, w)$ is applied, $d[v] \leq d[s]+w(s, v)=w(s, v)=w(p)$.

- $k>1$.
\dagger Let $p_{1}=<v_{0}, v_{1}, \cdots, v_{k-1}>$, then p_{1} is a path of length $k-1$.
\dagger Therefore after $k-1$ applications of $\operatorname{Relax} \operatorname{All}(G, s)$, we have $d\left[v_{k-1}\right] \leq w\left(p_{1}\right)$.
\dagger After another application of $\operatorname{Relax} \operatorname{All}(G, s)$,

$$
d[v] \leq d\left[v_{k-1}\right]+w\left(v_{k-1}, v_{k}\right) \leq w\left(p_{1}\right)+w\left(v_{k-1}, v_{k}\right)=w(p)
$$

\square
Since shortest paths have lengths less than $|V|$, what we need to do is to apply Relax_All $(G, s)|V|-1$ times.

Bellman_Ford (G, w, s)
1 Initialize_SingleSource (G, s)
2 for $i:=1$ to $|V|-1$ do
3 for each edge $(u, v) \in E$ do $\operatorname{Relax}(u, v, w) ;$
5 for each edge $(u, v) \in E$ do
6 if $d[v]>d[u]+w(u, v)$ then
7 return False;
8 return True;

Lines $5-7$ test if the graph contains negative cycle reachable from s.

- If there is no such cycle, then there is no edge $(u, v) \in E$ such that $d[v]>d[u]+w(u, v)$ since otherwise $d[v]$ is not the shortest-path weight from s to v.
- If there is such a cycle $c=<v_{0}, v_{1}, \cdots, v_{k}>$ where $v_{0}=v_{k}$ and $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0$.
\dagger Suppose that (for the purpose of contradiction) for each edge $(u, v) \in E$, $d[v] \leq d[u]+w(u, v)$.
\dagger Then $d\left[v_{i}\right] \leq d\left[v_{i-1}\right]+w\left(v_{i-1}, v_{i}\right)$ for $1 \leq i \leq k$.
\dagger And $\sum_{i=1}^{k} d\left[v_{i}\right] \leq \sum_{i=1}^{k} d\left[v_{i-1}\right]+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$.
\dagger Therefore $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \geq 0$
- Time complexity: $O(|V||E|)$.

Acyclic Graph

- Suppose that graph G has no cycle.
- We first use topological sorting to order the vertices of G.
- If s has label k, then for any vertex v with label $<k$, there is NO PATH from s to v, so $d[v]=\infty$.
- We then consider each vertex with label $>k$ in the order of $k+1, k+2, \cdots,|V|$
- Consider a vertex v in the above order (with label $>k$).

We want to compute $d[v]$ and $\pi[v]$.
We need only consider those vertices u such that (u, v) is an edge in G.

$$
\begin{aligned}
& \text { For each }(u, v) \in E[G] \text { do } \\
& \quad \operatorname{Relax}(u, v, w)
\end{aligned}
$$

- This is correct since for any $(u, v) \in E$, label for u is less the label for v.
- Complexity: $O(|V|+|E|)$

Non-Negative Weights

- General graph with no negative weight edge.
- Graph now is not acyclic. Therefore there is no topological order.
- What is the main idea from acyclic case?

When we consider shortest path from s to v, the topological order enables us to ignore all vertices after v.

- Could we define an order for general graphs to do similar things?
- For general graphs,

Order the vertices by the weights of their shortest paths from s.
Unlike topological order, we do not know this order before we find shortest paths.

- We will find the order during the process of finding shortest paths.
- Can we first find the closest vertex w_{1} ?

Yes! w_{1} is the vertex satisfying following:
$w\left(s, w_{1}\right)=\min _{v} w(s, v)$
Why?
Consider the shortest path from s to w_{1}.
It must consist of only two vertices s and w_{1}.
Otherwise if

$$
s \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow w_{1}
$$

is the shortest path from s to w_{1}, then $d\left[v_{1}\right]=w\left(s, v_{1}\right) \leq \delta\left(s, w_{1}\right)=d\left[w_{1}\right]$

- either w_{1} is not closest - contradiction!
- or $\delta\left(s, w_{1}\right)=\delta\left(s, v_{1}\right)$, we can choose v_{1} to be the closest vertex.
- therefore we can determine $d\left[w_{1}\right]$ and find w_{1} this way.
- Can we find the second closest vertex w_{2} ?

YES! The only paths we need to consider are the edges from s (except $\left.\left(s, w_{1}\right)\right)$ and paths of two edges, the first one being $\left(s, w_{1}\right)$, and the second one being from w_{1}.

- Why? Again, consider a shortest path from s to w_{2}

$$
s \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow w_{2}
$$

- Consider the first vertex (from s to w_{2}) that is not s and w_{1}.
- It is either v_{1} or v_{2} (and in this case $v_{1}=w_{1}$).
- Therefore we choose the minimum of $w(s, v)\left(v \neq w_{1}\right)$ or $d\left[w_{1}\right]+w\left(w_{1}, v\right) \quad(v \neq s)$.
- this give us w_{2} and $d\left[w_{2}\right]$.

Induction

Induction hypothesis:

Give graph G and a vertex s, we know the $k-1$ vertices that are closest to s and we know the weights of the shortest paths to them.

Base case: done!

Inductive Step: We want to find the k th $\left(w_{k}\right)$ closest vertex and the weight of shortest path to it.
Let the $k-1$ closest vertices be $w_{1}, w_{2}, \ldots, w_{k-1}$.
Let $V_{k-1}=\left\{s, w_{1}, w_{2}, \ldots, w_{k-1}\right\}$
The shortest path from s to w_{k} can go only through vertices in V_{k-1}.
$\overline{\text { (If it goes through a vertex not in } V_{k-1} \text {, this vertex is closer than } w_{k} \text {) }}$
Therefore w_{k} is the vertex satisfying the following:
$w_{k} \notin V_{k-1}$ and the shortest path from s to w_{k} through V_{k-1} is less or equal to the shortest path from s to any other vertex $v \notin V_{k-1}$ through V_{k-1}.

For $v \notin V_{k-1}$, let

$$
d[v]=\min _{u \in V_{k-1}}(d[u]+w(u, v)) .
$$

$d[v]$ is the shortest path from s to v through V_{k-1}.
Therefore w_{k} is a vertex such that

$$
w_{k} \notin V_{k-1} \text { and } d\left[w_{k}\right]=\min _{v \notin V_{k-1}}\{d[v]\} .
$$

- Adding w_{k} does not change the weights of the shortest paths from s to u, $u \in V_{k-1}$, since u is closer than w_{k}
- The Algorithm is complete now.

We should consider how to implement it efficiently.

The main computation is for $d[v]$ for $v \notin V_{k-1}$.

- We do not have to compute all $d[v]$ for each V_{k}.

Most of $d[v]$ for V_{k} are equal to $d[v]$ for V_{k-1}.
We only need to update a few $d[v]$ when we add w_{k}.

- When we add w_{k}

For v, such that $v \notin V_{k}$ and $\left(w_{k}, v\right)$ is an edge.
$d[v]=\min \left\{d[v], \quad d\left[w_{k}\right]+w\left(w_{k}, v\right)\right\}$
(Note: this is the same as $\operatorname{Relax}\left(w_{k}, v, w\right)$.)
Consider a shortest path from s to v through V_{k}.
If the last edge is $\left(w_{i}, v\right), i<k$, then there is no change to $d[v]$.
If the last edge is $\left(w_{k}, v\right)$ then $d[v]=d\left[w_{k}\right]+w\left(w_{k}, v\right)$.

Blue: $\mathrm{V}_{\mathrm{k}-1}$
Green: V_{k}

What data structure should we use?

Heap is a good choice!

- We can keep $d[v]$ in a min_heap. Then we can find w_{k} in $O(1)$ time.
- After we find w_{k}, we update $d[v]$.
- Delete w_{k} from heap.
- For each v in the heap such that $\left(w_{k}, v\right)$ is an edge, change its key from $d[v]$ to $\min \left\{d[v], d\left[w_{k}\right]+w\left(w_{k}, v\right)\right\}\left(\operatorname{Relax}\left(w_{k}, v, w\right)\right)$.
- We need to use the heap with element locations (see notes for heap)!

Dijkstra's Algorithm

The above analysis gives us the Dijkstra's algorithm.
Dijkstra(G, w, s)
1 Initialize_Single_Source (G, s);
$S:=\emptyset$;
$Q:=V[G] ;$
while $Q \neq \emptyset$ do
$u:=$ Extract_Min (Q);
$S:=S \cup\{u\} ;$
for each $(u, v) \in E$ do
$\operatorname{Relax}(u, v, w) ;$
Update v in Q;

Time Complexity

With a binary heap:
$|V|$ delete min operations: $O(|V| \log (|V|))$
$|E|$ update operations: $O(|E| \log (|V|))$
TOTAL $O((|V|+|E|) \log (|V|))$
With a Fibonacci heap:
$|V|$ delete min operations: $O(|V| \log (|V|))$
$|E|$ update operations: $O(|E|)$
TOTAL $O(|V| \log (|V|)+|E|)$
Without a heap:
$|V|$ delete min operations: $O(|V||V|)$
$|E|$ update operations: $O(|E|)$
TOTAL $O\left(|V|^{2}+|E|\right)=O\left(|V|^{2}\right)$
(Compare with acyclic case $O(|V|+|E|)$)
(Compare with Bellman-Ford algorithm $O(|V||E|)$)

Minimum Spanning Trees

- Consider an undirected weighted graph $G=(V, E)$.
- A spanning tree of G is a connected subgraph that contains all vertices and no cycles.
- Minimum spanning tree of G : a spanning tree T of G such that the sum of the weights of edges in T is minimum.
- Applications:
- computer networks (e.g. broadcast path)
- there is a cost for sending a message on the link.
- broadcast a message to all computers in the network from an arbitrary computer
- want to minimize the cost

The Problem

Given an undirected connected weighted graph $G=(V, E)$, find a spanning tree T of G of minimum cost.

Idea.

Extend tree: always choose to extend tree by adding cheapest edge.

For simplicity, we assume all costs (weights) are distinct!
Base case: Let r be an arbitrarily chosen root vertex. The minimum-cost edge incident to r must be in the minimum spanning tree (MST)
\dagger Suppose this edge is $\{r, s\}$
\dagger if $\{r, s\}$ is not in MST, add $\{r, s\}$ to MST
\dagger Now we have a cycle
\dagger Delete the MST edge incident to r from the cycle. We have a new tree.
\dagger the cost of this new tree is less than the cost of MST. Contradiction!

Induction hypothesis

Given a connected graph $G=(V, E)$, we know how to find a subgraph T of G with k edges, such that T is a tree and T is a subgraph of the MST of G.

Extend T :
\dagger Find the cheapest edge from a vertex in T to a vertex not in T. Let it be $\{u, v\}$, such that $u \in T$ and $v \notin T$.
\dagger Add $\{u, v\}$ to T.
\dagger Claim: We now have a tree with $k+1$ edges which is a subgraph of the MST of G.

- Again add $\{u, v\}$ to the MST
- Consider the path from u to v in MST
- There must be an edge $e=\left\{u_{1}, v_{1}\right\}$ in this path such that $u_{1} \in T$ and $v_{1} \notin T$.
- Delete edge e
- Since weight $(e)>\operatorname{weight}(\{u, v\})$, the new tree has a cost less than the MST
- Contradiction

Implementation

- Similar to the implementation of single-source shortest-path algorithm
- Choose an arbitrary vetex as the root
- For each iteration we need to find the minimum cost edge connecting T to vertices outside of T.
- We again use a heap.

For each vertex w not in T, we use the minimum-cost of the costs of the edges going into w from a vertex in T as the key.

- For each iteration we delete min from the heap. Suppose u is the new vertex.

Update the keys for vertex v not in T by cost of edge $\{u, v\}$.

- Time: $|V|$ delete min: $O(|V| \log (|V|))$
$|E|$ update operations: $O(|E| \log (|V|))$
Total: $O((|V|+|E|) \log (|V|))$
- This is called PRIMS algorithm

Prim's Algorithm

The above analysis gives us the Prim's algorithm.
$\operatorname{MST} \operatorname{Prim}(G, w, r)$
1 for each $u \in V[G]$ do
$2 \operatorname{key}[u]:=\infty$;
$\pi[u]:=$ NIL;
$k e y[r]:=0 ;$
$Q:=V[G] ;$
while $Q \neq \emptyset$ do
$u:=$ Extract_Min (Q);
for each $v \in \operatorname{Adj}[u]$ do
if $v \in Q$ and $w(u, v)<k e y[v]$ then $\pi[v]:=u ;$ $k e y[v]:=w(u, v)$; update $k e y[v]$ in Q

Kruskal's MST

Idea: Choose cheapest edge in a graph.

Algorithm:

put all edges in a heap, put each vertex in a set by itself;
while not found a MST yet do begin
delete min edge, $\{u, v\}$, from the heap;
if u and v are not in the same set
mark $\{u, v\}$ as tree edge;
union sets containing u and v;
if u and v are in the same set
do nothing;
end

Time:
$O((|V|+|E|) \log (|V|))$ for heap operation.
$O\left(|E| \log ^{*}(|V|)\right.$ for union-find operation.
Total: $O((|V|+|E|) \log (|V|))$ time.

All-Pair Shortest-Paths Problem

- The problem: Given a weighted graph $G=(V, E)$, find the shortest paths between all pairs of vertices.
- We can call single-source shortest-paths algorithm $|V|$ times
\dagger If there is no negative cycle.
Complexity: $O\left(|V|^{2}|E|\right)$
\dagger If there is no negative weight edge.
Complexity: $O\left(|V|^{2} \log (|V|)+|V||E|\right)$ or $O(|V|(|V|+|E|) \log (|V|))$
If G is not dense, this is a good solution.
- We consider to use induction to design a direct solution.
- We can use induction on the vertices.
- We know the shortest paths between a set of k vertices $\left(V_{k}\right)$.
- We want to add a new vertex u
- We can find the shortest path from u to all the vertices in V_{k} $\operatorname{shortest-path}(u, w)=$ $\min _{v \in V_{K},(u, v) \in E}\{w(u, v)+\operatorname{shortest}-\operatorname{path}(v, w)\}(*)$

Shortest-path (w, u) can be computed similarly!
We update shortest-path $\left(w_{1}, w_{2}\right), w_{1}, w_{2} \in V_{k}$
$\operatorname{shortest-path}\left(w_{1}, w_{2}\right)=\min \left\{\operatorname{shortest-path}\left(w_{1}, u\right)+\operatorname{shortest-path}\left(u, w_{2}\right)\right.$, $\left.\operatorname{shortest-path}\left(w_{1}, w_{2}\right)\right\}\left({ }^{* *}\right)$

Time: $\left({ }^{* *}\right)$ can be done in $|V|^{2}$
$\left(^{*}\right)$ can be done in $|V|^{2}$
Total: $O\left(|V|^{3}\right)$.

A better solution

- Idea: Number of vertices is fixed.

Induction puts restrictions on the type of paths allowed

- We label vertices from 1 to $|V|$

A path from u to w is called a k-path if, except for u and w, the highest-labelled vertex on the path is labelled by k.

A 0-path is an edge

- Induction hypothesis:

We know the lengths of the shortest paths between all pairs of vertices such that only k-paths, for some $k \leq m$ are considered.

- Base case: $m=0$
only direct edges can be considered

Inductive step

(extend $m-1$ to m)
We consider all k-paths such that $k \leq m$.
The only new paths are m-paths.
Let the vertex with label m be v_{m}.
Consider a shortest m-path between u and v.

This m-path must include v_{m} only once!
Therefore this m-path is a shortest k-path (for some $k \leq m-1$) between u and v_{m} appended by a shortest j-path (for some $j \leq m-1$) from v_{m} to v. By induction we already know the length of the k-path and the j-path! We update shortest-path (u, v) by:
$\min \left\{\operatorname{shortest-path}\left(u, v_{m}\right)+\operatorname{shortest-path}\left(v_{m}, v\right)\right.$, shortest-path $\left.(u, v)\right\}$

This leads to a very simple program! (Floyd-Warshall algorithm)

$$
\begin{aligned}
& \text { for } x:=1 \text { to }|V| \text { do }\{\text { base case }\} \\
& \text { for } y:=1 \text { to }|V| \text { do } \\
& \text { if }(x, y) \in E, \text { then } \\
& \quad d[x, y]:=w(x, y) \\
& \text { else } \\
& \quad d[x, y]:=\infty
\end{aligned}
$$

$$
\text { for } x:=1 \text { to }|V| \text { do }
$$

$$
d[x, x]:=0
$$

$$
\begin{gathered}
\text { for } m:=1 \text { to }|V| \text { do } \quad\{\text { the induction sequence }\} \\
\text { for } x:=1 \text { to }|V| \text { do } \\
\text { for } y:=1 \text { to }|V| \text { do } \\
\text { if } d[x, m]+d[m, y]<d[x, y] \text { then } \\
\quad d[x, y]:=d[x, m]+d[m, y]
\end{gathered}
$$

Time: $O\left(|V|^{3}\right)$. Again, if the graph is sparse, then $O\left(|V|^{2} \log (|V|)+|V||E|\right)$ is a better solution when there is no negative weight.

If we need to find the shortest paths not just the weights. Let $\phi[i, j]$ be highest numbered vertex on the shortest path from i to j.
for $x:=1$ to $|V|$ do $\quad\{$ base case $\}$
for $y:=1$ to $|V|$ do
if $(x, y) \in E$, then
$d[x, y]:=w(x, y) ; \quad \phi[x, y]:=x ;$
else

$$
d[x, y]:=\infty ; \quad \phi[x, y]:=\mathrm{Nil} ;
$$

for $x:=1$ to $|V|$ do

$$
d[x, x]:=0 ; \quad \phi[x, x]:=\mathrm{Nil} ;
$$

for $m:=1$ to $|V|$ do $\quad\{$ the induction sequence $\}$

$$
\text { for } x:=1 \text { to }|V| \text { do }
$$

$$
\text { for } y:=1 \text { to }|V| \text { do }
$$

$$
\text { if } d[x, m]+d[m, y]<d[x, y] \text { then }
$$

$$
d[x, y]:=d[x, m]+d[m, y] ;
$$

$$
\phi[x, y]:=m ;
$$

Time: $O\left(|V|^{3}\right)$

If we need to find the shortest paths not just the weights. Let $\pi[i, j]$ be the predecessor of j on the shortest path from i to j.
for $x:=1$ to $|V|$ do $\quad\{$ base case $\}$
for $y:=1$ to $|V|$ do
if $(x, y) \in E$, then

$$
d[x, y]:=w(x, y) ; \quad \pi[x, y]:=x ;
$$

else

$$
d[x, y]:=\infty ; \quad \pi[x, y]:=\mathrm{Nil} ;
$$

for $x:=1$ to $|V|$ do

$$
d[x, x]:=0 ; \quad \pi[x, x]:=\mathrm{Nil} ;
$$

for $m:=1$ to $|V|$ do $\quad\{$ the induction sequence $\}$

$$
\text { for } x:=1 \text { to }|V| \text { do }
$$

$$
\text { for } y:=1 \text { to }|V| \text { do }
$$

$$
\text { if } d[x, m]+d[m, y]<d[x, y] \text { then }
$$

$$
d[x, y]:=d[x, m]+d[m, y] ;
$$

$$
\pi[x, y]:=\pi[m, y]
$$

Time: $O\left(|V|^{3}\right)$

Example: Figure 25.1.

$$
\begin{aligned}
D^{(0)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Phi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL NIL } \\
4 & \text { NIL } & 4 & \text { NIL NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(1)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Phi^{(1)}=\left(\begin{array}{cccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL NIL } \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL NIL NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(2)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Phi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL NIL NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
D^{(3)} & =\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Phi^{(3)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 3 & 4 & \text { NIL } & 1 \\
\text { NIL NIL NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(4)}=\left(\begin{array}{ccccc}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) & \Phi^{(4)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \text { NIL } & 4 & 2 & 4 \\
4 & 3 & \text { NIL } & 2 & 4 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 4 & 4 & 5 & \text { NIL }
\end{array}\right) \\
D^{(5)}=\left(\begin{array}{ccccc}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) & \Phi^{(5)}=\left(\begin{array}{ccccc}
\text { NIL } & 5 & 5 & 5 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
D^{(0)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL NIL } \\
4 & \text { NIL } & 4 & \text { NIL } & \text { NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(1)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(1)}=\left(\begin{array}{cccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL NIL NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL NIL } \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL NIL NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(2)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL NIL NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
D^{(3)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(3)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL NIL NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 3 & 4 & \text { NIL } & 1 \\
\text { NIL NIL NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(4)}=\left(\begin{array}{ccccc}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) & \Pi^{(4)}=\left(\begin{array}{cccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right) \\
D^{(5)}=\left(\begin{array}{ccccc}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) & \Pi^{(5)}=\left(\begin{array}{ccccc}
\text { NIL } & 3 & 4 & 5 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

If we need to find the shortest paths and shortest cycles, let $\pi[i, j]$ be the predecessor of j on the shortest path from i to j.

```
for }x:=1\mathrm{ to |V| do { base case }
```

for $y:=1$ to $|V|$ do
if $(x, y) \in E$, then

$$
d[x, y]:=w(x, y) ; \quad \pi[x, y]:=x ;
$$

else

$$
d[x, y]:=\infty ; \quad \pi[x, y]:=\mathrm{Nil} ;
$$

for $m:=1$ to $|V|$ do $\quad\{$ the induction sequence $\}$
for $x:=1$ to $|V|$ do
for $y:=1$ to $|V|$ do
if $d[x, m]+d[m, y]<d[x, y]$ then
$d[x, y]:=d[x, m]+d[m, y] ;$
$\pi[x, y]:=\pi[m, y] ;$
Time: $O\left(|V|^{3}\right)$

$$
\begin{aligned}
D^{(0)}=\left(\begin{array}{ccccc}
\infty & 3 & 8 & \infty & -4 \\
\infty & \infty & \infty & 1 & 7 \\
\infty & 4 & \infty & \infty & \infty \\
2 & \infty & -5 & \infty & \infty \\
\infty & \infty & \infty & 6 & \infty
\end{array}\right) & \Pi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & \text { NIL } & 4 & \text { NIL } & \text { NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(1)}=\left(\begin{array}{ccccc}
\infty & 3 & 8 & \infty & -4 \\
\infty & \infty & \infty & 1 & 7 \\
\infty & 4 & \infty & \infty & \infty \\
2 & 5 & -5 & \infty & -2 \\
\infty & \infty & \infty & 6 & \infty
\end{array}\right) & \Pi^{(1)}=\left(\begin{array}{cccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL NIL NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(2)}=\left(\begin{array}{cccccc}
\infty & 3 & 8 & 4 & -4 \\
\infty & \infty & \infty & 1 & 7 \\
\infty & 4 & \infty & 5 & 11 \\
2 & 5 & -5 & 6 & -2 \\
\infty & \infty & \infty & 6 & \infty
\end{array}\right) & \Pi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL NIL } & \text { IIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 1 & 4 & 2 & 1 \\
\text { NIL NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
D^{(3)}=\left(\begin{array}{ccccc}
\infty & 3 & 8 & 4 & -4 \\
\infty & \infty & \infty & 1 & 7 \\
\infty & 4 & \infty & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & \infty
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 3 & 4 & 2 & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
D^{(4)}=\left(\begin{array}{ccccc}
6 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 4
\end{array}\right) \quad \Pi^{(4)}=\left(\begin{array}{lllll}
4 & 1 & 4 & 2 & 1 \\
4 & 3 & 4 & 2 & 1 \\
4 & 3 & 4 & 2 & 1 \\
4 & 3 & 4 & 2 & 1 \\
4 & 3 & 4 & 5 & 1
\end{array}\right) \\
D^{(5)}=\left(\begin{array}{ccccc}
4 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 4
\end{array}\right) \quad \Pi^{(5)}=\left(\begin{array}{lllll}
4 & 3 & 4 & 5 & 1 \\
4 & 3 & 4 & 2 & 1 \\
4 & 3 & 4 & 2 & 1 \\
4 & 3 & 4 & 2 & 1 \\
4 & 3 & 4 & 5 & 1
\end{array}\right)
\end{gathered}
$$

