
Graph Algorithms

• Sets and sequences can only model limited relations between objects, e.g. ordering,
overlapping, etc.

• Graphs can model more involved relationships, e.g. road and rail networks

• Graph: G = (V,E), V : set of vertices, E : set of edges

− Directed graph: an edge is an ordered pair of vertices, (v1, v2)

− Undirected graph; an edge is an unordered pair of vertices {v1, v2}

1

Graph representation

Adjacency matrix
Directed graph

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (4, 2)}

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 1
4 0 1 0 0 4

3

2

1

2

Undirected graph

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

1 2 3 4
1 0 1 1 1
2 1 0 1 1
3 1 1 0 1
4 1 1 1 0

or

1 2 3 4
1 0 1 1 1
2 0 1 1
3 0 1
4 0 4

3

2

1

Advantage: O(1) time to check connection.
Disadvantages:
– Space is O(|V |2) instead of O(|E|)
– Finding who a vertex (node) is connected to requires O(|V |) operations

3

Adjacency List

Example:

2 43

3

4

2

1

2

3

44

1

2

3

Example:

21

3

4

4

43

3

2

21

1

1
3

2

1

4 4

3

2

4

Advantages:

− easy to access all vertices connected to one vertex

− space is O(|E| + |V |)

Disadvantage:

− testing connection in worst case is O(|V |)

− space: |V | header, 2|E| list nodes =⇒ O(|V | + |E|). There might be |V |2 edges
(|E| = |V |2) but probably not.

5

Another representation

Adjacency list with arrays

1

2

3

1

2

3

4

5

3

4

2

3

4

2

1

4

6

7

5

1

2

3

4

5

6
4

• For node i, use header[i] and header[i + 1] − 1 as the indices in the list array.

If header[i] > header[i + 1] − 1 vertex i is not connected to any node.

• same advantage as adjacency list but save space

• binary search is possible to determine the connection: O(log|V |)

• problem: difficult to update the structure

6

Traversal of a graph

Depth First and Breadth First

Depth First (most useful)
var visited[1 . . . |V |]: boolean ←− false

Proc DFS(v);
(Given a graph G = (V,E) and a vertex v, visit each vertex reachable from v)

visited[v] ←− true

perform prework on vertex v

For each vertex w adjacent to v do
if not visited[w] then

DFS(w)
perform postwork on edge (v, w)

(sometimes we perform postwork on all edges out of v)

– given a vertex v, we need to know all vertices connected to v

– stack space ≈ |V | − 1

7

Complexity

1) With adjacency list
visited each vertex once
visited each edge twice; once from v to w, once from w to v.

O(|V | + |E|)

2) With adjacency matrix
visited each vertex once
for each vertex, visit all vertices connected to this vertex needs O(|V |) steps

O(|V |2)

Note: In graph, O(|E|) is better than O(|V |2) in most cases.

8

Examples

1) DFS numbering
Initially DFS num := 1
Use DFS with following prework
prework

v.DFS := DFS num;
DFS num := DFS num+1;

2) DFS tree
Use DFS with following postwork
postwork:

add edge (v, w) to T

E

D

EA C

C

C

B

B

A

F

1

2

3

5B

E 4

6

A

B C

E D

FF

A DB

C E F

B D F

D E

C

D

A

A

B C

DE

F

9

Topological Sorting

Task scheduling

• A set of tasks. Some tasks depend on other tasks

• Task a depends on task b means that task a cannot be started until task b is
finished

• We want to find a schedule for tasks consistent with dependencies

Example: x → y: y cannot start until x is completed.

A
B

E

C

D

A B C E D A B C D E A B E C D
are all schedule for tasks {A, B,C, D, E}.

This graph must be acyclic!

10

The problem

Given a directed acyclic graph G = (V,E) with n vertices, label the vertices from 1
to n such that, if v is labelled k, then all vertices that can be reached from v by a
directed path are labelled with labels > k.

In other words, label vertices from 1 to n such that for any edge (v, w) the label of
v is less than the label of w.

Lemma. A directed acyclic graph always contains a vertex with in-degree 0.
Proof. If all vertices have positive in-degrees, starting from any vertex v, traverse
the graph ”backward”. We never have to stop. But we only have a finite number of
vertices!
Consequently, there must be a cycle in the graph – a contradiction! (pigeonhole
principle).

11

Algorithm:

By induction:
find one vertex with in-degree 0. Label this vertex 1, and delete all edges from this
vertex to other vertices.
Now the new graph is also acyclic and is of size n − 1. By induction we know how
to label it.

Implementation.

1. Initialize in-degree of all vertices
2. Put all vertices with 0 in-degree into a queue or stack
l ←− 0
3. dequeue v; l ←− l + 1; v.label ←− l;

for all edge (v, w)
decrease in-degree of w by 1
if degree of w is now 0 enqueue w

until queue is empty

Time: O(|E| + |V |)

12

13

Single-Source Shortest-Paths

• Weighted graph

G = (V,E) directed graph with weights associated with the edges

• The weight of an edge (u, v) is w(u, v).

The weight of a path p =< v0, v1, · · · vk > is the summation of the weights of its
edges

w(p) =

k
∑

i=1

w(vi−1, vi).

• We define the shortest-path weight from u to v by

δ(u, v) =

{

min{w(p) : p is a path from u to v}
∞ if there is no path from u to v

14

• The shortest path from u to v is defined as any path p from u to v with weight
w(p) = δ(u, v).

• The problem: Given the directed graph G = (V,E) and a vertex s, find the
shortest paths from s to all other vertices.

• For undirected graphs, change edge {u, v} with weight w to a pair of edges (u, v)
and (v, u) both with weight w.

Example:

5 11

3

5

2

-4

6

-3

3

-6

4

8

7

2

3-8
S

8 8

8

- 8 - 8
- 8

-1

0

3

15

• Negative weight cycle

In some instances of the single-source shortest-paths problem, there may be edges
with negative weights.

† If there is no negative cycle, the shortest path weight δ(s, v) is still well defined.

† If there is negative cycle reachable from s, then the shortest path weight from s

to any vertex on the cycle is not well defined.

† A lesser path can always be found by following the proposed ”shortest path”
and then traverse the negative weight cycle.

• Cycles in shortest path?

† A shortest path cannot contain a negative cycle.

Shortest path weight is not well defined.

† A shortest path cannot contain a positive cycle.

Removing the positive cycle will produce a path with lesser weight.

† How about 0-weight cycle?

We can remove all 0-weight cycles and produce a shortest path without cycle.

• We can assume that shortest paths we are looking for contain no cycle.

Therefore any shortest path contains at most |V | − 1 edges.

16

For each vertex v, we maintain two attributes, π[v] and d[v].

• d[v] is an upper bound on the weight of a shortest path from source s to v.

† During the execution of a shortest-path algorithm, d[v] may be larger than the
shortest-path weight.

† At the termination of a shortest-path algorithm, d[v] is the shortest-path weight
from s to v.

• π[v] is used to represent the shortest paths.

† During the execution of a shortest-path algorithm, π[] need not indicate shortest
paths.

† π[v] is the last edge of a path from s to v during the execution of a
shortest-path algorithm.

† At the termination of a shortest-path algorithm, π[v] represent the last edge of a
shortest path from s to v.

† Since sub-path of a shortest path is itself shortest path, therefore
< v, π[v], π[π[v]], · · · , s > is the shortest path from s to v in reverse order.

17

• Initialization

Initialize Single Source(G, s)
1 For each vertex v ∈ V [G] do
2 d[v] = ∞;
3 π[v] = nil;
4 d[s] = 0;

• Relaxation

Relax(u, v, w)
1 if d[v] > d[u] + w(u, v) then
2 d[v] = d[u] + w(u, v);
3 π[v] = u;

Relax(u, v, w) tests if we can improve the shortest path to v found so far by going
through u.

If so, we update d[v] and π[v].

18

• Each algorithm for single-source shortest-path will begin by calling
Initialize Single Source(G, s).

• And then Relax(u, v, w) will be repeatedly applied to edges.

• The algorithms differ in how many times they relax each edge and the order in
which they relax edges.

19

The Bellman-Ford Algorithm

Bellman-Ford algorithm solves the single-source shortest-path problem in general
case where graph may contains cycles and edge weights may be negative.

• If there is no negative cycle, the algorithm will compute the shortest-paths and
their weights.

• If there is negative cycle, the algorithm will report no solution exists.

• The idea is to repeatedly use the following procedure to progressively decrease an
estimate d[v] of the weight of shortest path from s to v.

Relax All(G, s)

1 For each edge (u, v) ∈ E do

2 Relax(u, v, w);

20

Lemma: Let p =< s = v0, v1, · · · , vk = v > be a path from s to v of length k and
weight w(p), then after k applications of Relax All(G, s), d[v] ≤ w(p).

Proof:
Prove by induction on k.

• k = 1.
In this case, p =< s, v > and w(p) = w(s, v). After Relax(s, v, w) is applied,
d[v] ≤ d[s] + w(s, v) = w(s, v) = w(p).

• k > 1.

† Let p1 =< v0, v1, · · · , vk−1 >, then p1 is a path of length k − 1.

† Therefore after k − 1 applications of Relax All(G, s), we have d[vk−1] ≤ w(p1).

† After another application of Relax All(G, s),
d[v] ≤ d[vk−1] + w(vk−1, vk) ≤ w(p1) + w(vk−1, vk) = w(p).

¤

Since shortest paths have lengths less than |V |, what we need to do is to apply
Relax All(G, s) |V | − 1 times.

21

Bellman Ford(G, w, s)
1 Initialize SingleSource(G, s)
2 for i := 1 to |V | − 1 do
3 for each edge (u, v) ∈ E do
4 Relax(u, v, w);
5 for each edge (u, v) ∈ E do
6 if d[v] > d[u] + w(u, v) then
7 return False;
8 return True;

22

Lines 5-7 test if the graph contains negative cycle reachable from s.

• If there is no such cycle, then there is no edge (u, v) ∈ E such that
d[v] > d[u] + w(u, v) since otherwise d[v] is not the shortest-path weight from s to
v.

• If there is such a cycle c =< v0, v1, · · · , vk > where v0 = vk and
∑k

i=1 w(vi−1, vi) < 0.

† Suppose that (for the purpose of contradiction) for each edge (u, v) ∈ E,
d[v] ≤ d[u] + w(u, v).

† Then d[vi] ≤ d[vi−1] + w(vi−1, vi) for 1 ≤ i ≤ k.

† And
∑k

i=1 d[vi] ≤
∑k

i=1 d[vi−1] +
∑k

i=1 w(vi−1, vi).

† Therefore
∑k

i=1 w(vi−1, vi) ≥ 0

• Time complexity: O(|V ||E|).

23

Acyclic Graph

− Suppose that graph G has no cycle.

− We first use topological sorting to order the vertices of G.

• If s has label k, then for any vertex v with label < k, there is NO PATH from s

to v, so d[v] = ∞.

• We then consider each vertex with label > k in the order of k + 1, k + 2, · · · , |V |

• Consider a vertex v in the above order (with label > k).

We want to compute d[v] and π[v].

We need only consider those vertices u such that (u, v) is an edge in G.

For each (u, v) ∈ E[G] do

Relax(u, v, w)

• This is correct since for any (u, v) ∈ E, label for u is less the label for v.

• Complexity: O(|V | + |E|)

24

Non-Negative Weights

• General graph with no negative weight edge.

• Graph now is not acyclic. Therefore there is no topological order.

• What is the main idea from acyclic case?

When we consider shortest path from s to v, the topological order enables us
to ignore all vertices after v.

• Could we define an order for general graphs to do similar things?

• For general graphs,

Order the vertices by the weights of their shortest paths from s.

Unlike topological order, we do not know this order before we find shortest paths.

25

• We will find the order during the process of finding shortest paths.

• Can we first find the closest vertex w1?

Yes! w1 is the vertex satisfying following:

w(s, w1) = minv w(s, v)

Why?

Consider the shortest path from s to w1.

It must consist of only two vertices s and w1.

Otherwise if
s → v1 → v2 → · · · → vk → w1

is the shortest path from s to w1, then d[v1] = w(s, v1) ≤ δ(s, w1) = d[w1]

− either w1 is not closest – contradiction!

− or δ(s, w1) = δ(s, v1), we can choose v1 to be the closest vertex.

− therefore we can determine d[w1] and find w1 this way.

26

• Can we find the second closest vertex w2?

YES! The only paths we need to consider are the edges from s (except (s, w1)) and
paths of two edges, the first one being (s, w1), and the second one being from w1.

− Why? Again, consider a shortest path from s to w2

s → v1 → v2 → · · · → vk → w2

− Consider the first vertex (from s to w2) that is not s and w1.

− It is either v1 or v2 (and in this case v1 = w1).

− Therefore we choose the minimum of

w(s, v) (v 6= w1) or d[w1] + w(w1, v) (v 6= s).

− this give us w2 and d[w2].

27

Induction

Induction hypothesis:
Give graph G and a vertex s, we know the k − 1 vertices that are closest to s and
we know the weights of the shortest paths to them.

Base case: done!

Inductive Step: We want to find the kth (wk) closest vertex and the weight of
shortest path to it.
Let the k − 1 closest vertices be w1, w2, . . . , wk−1.
Let Vk−1 = {s, w1, w2, . . . , wk−1}
The shortest path from s to wk can go only through vertices in Vk−1.
(If it goes through a vertex not in Vk−1, this vertex is closer than wk)

Therefore wk is the vertex satisfying the following:

wk 6∈ Vk−1 and the shortest path from s to wk through Vk−1 is less or equal to the
shortest path from s to any other vertex v 6∈ Vk−1 through Vk−1.

28

For v 6∈ Vk−1, let
d[v] = min

u∈Vk−1

(d[u] + w(u, v)).

d[v] is the shortest path from s to v through Vk−1.

Therefore wk is a vertex such that

wk 6∈ Vk−1 and d[wk] = min
v 6∈Vk−1

{d[v]}.

• Adding wk does not change the weights of the shortest paths from s to u,
u ∈ Vk−1, since u is closer than wk

• The Algorithm is complete now.

We should consider how to implement it efficiently.

The main computation is for d[v] for v 6∈ Vk−1.

29

• We do not have to compute all d[v] for each Vk.

Most of d[v] for Vk are equal to d[v] for Vk−1.
We only need to update a few d[v] when we add wk.

• When we add wk

For v, such that v 6∈ Vk and (wk, v) is an edge.
d[v] = min{d[v], d[wk] + w(wk, v)}

(Note: this is the same as Relax(wk, v, w).)

Consider a shortest path from s to v through Vk.
If the last edge is (wi, v), i < k, then there is no change to d[v].
If the last edge is (wk, v) then d[v] = d[wk] + w(wk, v).

kW

V

iW

S k

k-1

Green: V

Blue: V

30

What data structure should we use?

Heap is a good choice!

• We can keep d[v] in a min heap. Then we can find wk in O(1) time.

• After we find wk, we update d[v].

− Delete wk from heap.

− For each v in the heap such that (wk, v) is an edge, change its key from d[v] to

min{d[v], d[wk] + w(wk, v)} (Relax(wk, v, w)).

• We need to use the heap with element locations (see notes for heap)!

31

Dijkstra’s Algorithm

The above analysis gives us the Dijkstra’s algorithm.

Dijkstra(G, w, s)
1 Initialize Single Source(G, s);
2 S := ∅;
3 Q := V [G];
4 while Q 6= ∅ do
5 u := Extract Min(Q);
6 S := S ∪ {u};
7 for each (u, v) ∈ E do
8 Relax(u, v, w);
9 Update v in Q;

32

Time Complexity

With a binary heap:
|V | delete min operations: O(|V | log(|V |))
|E| update operations: O(|E| log(|V |))
TOTAL O((|V | + |E|) log(|V |))

With a Fibonacci heap:
|V | delete min operations: O(|V | log(|V |))
|E| update operations: O(|E|)
TOTAL O(|V | log(|V |) + |E|)

Without a heap:
|V | delete min operations: O(|V ||V |)
|E| update operations: O(|E|)
TOTAL O(|V |2 + |E|) = O(|V |2)

(Compare with acyclic case O(|V | + |E|))
(Compare with Bellman-Ford algorithm O(|V ||E|))

33

Minimum Spanning Trees

• Consider an undirected weighted graph G = (V,E).

• A spanning tree of G is a connected subgraph that contains all vertices and no
cycles.

• Minimum spanning tree of G: a spanning tree T of G such that the sum of the
weights of edges in T is minimum.

• Applications:

− computer networks (e.g. broadcast path)

− there is a cost for sending a message on the link.

− broadcast a message to all computers in the network from an arbitrary computer

− want to minimize the cost

34

The Problem

Given an undirected connected weighted graph G = (V, E), find a spanning tree T

of G of minimum cost.

Idea.
Extend tree: always choose to extend tree by adding cheapest edge.

For simplicity, we assume all costs (weights) are distinct!

Base case: Let r be an arbitrarily chosen root vertex. The minimum-cost edge
incident to r must be in the minimum spanning tree (MST)

† Suppose this edge is {r, s}

† if {r, s} is not in MST, add {r, s} to MST

† Now we have a cycle

† Delete the MST edge incident to r from the cycle. We have a new tree.

† the cost of this new tree is less than the cost of MST. Contradiction!

35

Induction hypothesis

Given a connected graph G = (V, E), we know how to find a subgraph T of G with
k edges, such that T is a tree and T is a subgraph of the MST of G.

Extend T :

† Find the cheapest edge from a vertex in T to a vertex not in T . Let it be {u, v},
such that u ∈ T and v 6∈ T .

† Add {u, v} to T .

† Claim: We now have a tree with k + 1 edges which is a subgraph of the MST of G.

• Again add {u, v} to the MST

• Consider the path from u to v in MST

• There must be an edge e = {u1, v1} in this path such that u1 ∈ T and v1 6∈ T .

• Delete edge e

• Since weight(e) > weight({u, v}), the new tree has a cost less than the MST

• Contradiction

36

Implementation

• Similar to the implementation of single-source shortest-path algorithm

• Choose an arbitrary vetex as the root

• For each iteration we need to find the minimum cost edge connecting T to vertices
outside of T .

• We again use a heap.

For each vertex w not in T , we use the minimum-cost of the costs of the edges
going into w from a vertex in T as the key.

• For each iteration we delete min from the heap. Suppose u is the new vertex.

Update the keys for vertex v not in T by cost of edge {u, v}.

• Time: |V | delete min: O(|V | log(|V |))

|E| update operations: O(|E| log(|V |))

Total: O((|V | + |E|) log(|V |))

• This is called PRIMS algorithm

37

Prim’s Algorithm

The above analysis gives us the Prim’s algorithm.

MST Prim(G, w, r)
1 for each u ∈ V [G] do
2 key[u] := ∞;
3 π[u] := NIL;
4 key[r] := 0;
5 Q := V [G];
6 while Q 6= ∅ do
7 u := Extract Min(Q);
8 for each v ∈ Adj[u] do
9 if v ∈ Q and w(u, v) < key[v] then
10 π[v] := u;
11 key[v] := w(u, v);
12 update key[v] in Q

38

Kruskal’s MST

Idea: Choose cheapest edge in a graph.

Algorithm:
put all edges in a heap, put each vertex in a set by itself;
while not found a MST yet do begin

delete min edge, {u, v}, from the heap;
if u and v are not in the same set

mark {u, v} as tree edge;
union sets containing u and v;

if u and v are in the same set
do nothing;

end

Time:
O((|V | + |E|) log(|V |)) for heap operation.
O(|E| log∗(|V |) for union-find operation.
Total: O((|V | + |E|) log(|V |)) time.

39

All-Pair Shortest-Paths Problem

• The problem: Given a weighted graph G = (V,E), find the shortest paths between
all pairs of vertices.

• We can call single-source shortest-paths algorithm |V | times

† If there is no negative cycle.

Complexity: O(|V |2|E|)

† If there is no negative weight edge.

Complexity: O(|V |2 log(|V |) + |V ||E|) or O(|V |(|V | + |E|) log(|V |))

If G is not dense, this is a good solution.

• We consider to use induction to design a direct solution.

40

• We can use induction on the vertices.

• We know the shortest paths between a set of k vertices (Vk).

• We want to add a new vertex u

• We can find the shortest path from u to all the vertices in Vk

shortest-path(u, w) =
minv∈VK ,(u,v)∈E{w(u, v)+shortest-path(v, w)}(∗)

Shortest-path(w, u) can be computed similarly!

We update shortest-path(w1, w2), w1, w2 ∈ Vk

shortest-path(w1, w2) = min{shortest-path(w1, u)+ shortest-path(u, w2),
shortest-path(w1, w2)} (**)

Time: (**) can be done in |V |2

(*) can be done in |V |2

Total: O(|V |3).

41

A better solution

− Idea: Number of vertices is fixed.

Induction puts restrictions on the type of paths allowed

− We label vertices from 1 to |V |

A path from u to w is called a k-path if, except for u and w, the highest-labelled
vertex on the path is labelled by k.

A 0-path is an edge

− Induction hypothesis:

We know the lengths of the shortest paths between all pairs of vertices such that
only k-paths, for some k ≤ m are considered.

− Base case: m = 0

only direct edges can be considered

42

Inductive step

(extend m − 1 to m)

We consider all k-paths such that k ≤ m.
The only new paths are m-paths.
Let the vertex with label m be vm.
Consider a shortest m-path between u and v.

This m-path must include vm only once!

Therefore this m-path is a shortest k-path (for some k ≤ m − 1) between u and vm

appended by a shortest j-path (for some j ≤ m − 1) from vm to v.
By induction we already know the length of the k-path and the j-path!
We update shortest-path (u, v) by:

min{shortest-path(u, vm) + shortest-path(vm, v), shortest-path(u, v)}

43

This leads to a very simple program! (Floyd-Warshall algorithm)

for x := 1 to |V | do { base case }
for y := 1 to |V | do

if (x, y) ∈ E, then
d[x, y] := w(x, y);

else
d[x, y] := ∞;

for x := 1 to |V | do
d[x, x] := 0;

for m := 1 to |V | do { the induction sequence }
for x := 1 to |V | do

for y := 1 to |V | do
if d[x, m] + d[m, y] < d[x, y] then

d[x, y] := d[x, m] + d[m, y]

Time: O(|V |3). Again, if the graph is sparse, then O(|V |2 log(|V |) + |V ||E|) is a
better solution when there is no negative weight.

44

If we need to find the shortest paths not just the weights. Let φ[i, j] be highest
numbered vertex on the shortest path from i to j.

for x := 1 to |V | do { base case }
for y := 1 to |V | do

if (x, y) ∈ E, then
d[x, y] := w(x, y); φ[x, y] := x;

else
d[x, y] := ∞; φ[x, y] :=Nil;

for x := 1 to |V | do
d[x, x] := 0; φ[x, x] :=Nil;

for m := 1 to |V | do { the induction sequence }
for x := 1 to |V | do

for y := 1 to |V | do
if d[x, m] + d[m, y] < d[x, y] then

d[x, y] := d[x, m] + d[m, y];
φ[x, y] := m;

Time: O(|V |3)

45

If we need to find the shortest paths not just the weights. Let π[i, j] be the
predecessor of j on the shortest path from i to j.

for x := 1 to |V | do { base case }
for y := 1 to |V | do

if (x, y) ∈ E, then
d[x, y] := w(x, y); π[x, y] := x;

else
d[x, y] := ∞; π[x, y] :=Nil;

for x := 1 to |V | do
d[x, x] := 0; π[x, x] :=Nil;

for m := 1 to |V | do { the induction sequence }
for x := 1 to |V | do

for y := 1 to |V | do
if d[x, m] + d[m, y] < d[x, y] then

d[x, y] := d[x, m] + d[m, y];
π[x, y] := π[m, y];

Time: O(|V |3)

46

Example: Figure 25.1.

6
45

-4
-57

2

1

8

43

3

2

1

47

D(0) =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

Φ(0) =

NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 NIL 4 NIL NIL

NIL NIL NIL 5 NIL

D(1) =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Φ(1) =

NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 1 4 NIL 1

NIL NIL NIL 5 NIL

D(2) =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Φ(2) =

NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 1 4 NIL 1

NIL NIL NIL 5 NIL

48

D(3) =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0

Φ(3) =

NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 3 4 NIL 1

NIL NIL NIL 5 NIL

D(4) =

0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

Φ(4) =

NIL 1 4 2 1
4 NIL 4 2 4
4 3 NIL 2 4
4 3 4 NIL 1
4 4 4 5 NIL

D(5) =

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

Φ(5) =

NIL 5 5 5 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL

49

D(0) =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

Π(0) =

NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 NIL 4 NIL NIL

NIL NIL NIL 5 NIL

D(1) =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π(1) =

NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 1 4 NIL 1

NIL NIL NIL 5 NIL

D(2) =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π(2) =

NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 1 4 NIL 1

NIL NIL NIL 5 NIL

50

D(3) =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0

Π(3) =

NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 3 4 NIL 1

NIL NIL NIL 5 NIL

D(4) =

0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

Π(4) =

NIL 1 4 2 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL

D(5) =

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

Π(5) =

NIL 3 4 5 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL

51

If we need to find the shortest paths and shortest cycles, let π[i, j] be the
predecessor of j on the shortest path from i to j.

for x := 1 to |V | do { base case }
for y := 1 to |V | do

if (x, y) ∈ E, then
d[x, y] := w(x, y); π[x, y] := x;

else
d[x, y] := ∞; π[x, y] :=Nil;

for m := 1 to |V | do { the induction sequence }
for x := 1 to |V | do

for y := 1 to |V | do
if d[x, m] + d[m, y] < d[x, y] then

d[x, y] := d[x, m] + d[m, y];
π[x, y] := π[m, y];

Time: O(|V |3)

52

D(0) =

∞ 3 8 ∞ −4
∞ ∞ ∞ 1 7
∞ 4 ∞ ∞ ∞
2 ∞ −5 ∞ ∞
∞ ∞ ∞ 6 ∞

Π(0) =

NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 NIL 4 NIL NIL

NIL NIL NIL 5 NIL

D(1) =

∞ 3 8 ∞ −4
∞ ∞ ∞ 1 7
∞ 4 ∞ ∞ ∞
2 5 −5 ∞ −2
∞ ∞ ∞ 6 ∞

Π(1) =

NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 1 4 NIL 1

NIL NIL NIL 5 NIL

D(2) =

∞ 3 8 4 −4
∞ ∞ ∞ 1 7
∞ 4 ∞ 5 11
2 5 −5 6 −2
∞ ∞ ∞ 6 ∞

Π(2) =

NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 1 4 2 1

NIL NIL NIL 5 NIL

53

D(3) =

∞ 3 8 4 −4
∞ ∞ ∞ 1 7
∞ 4 ∞ 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 ∞

Π(3) =

NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 3 4 2 1

NIL NIL NIL 5 NIL

D(4) =

6 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 4

Π(4) =

4 1 4 2 1
4 3 4 2 1
4 3 4 2 1
4 3 4 2 1
4 3 4 5 1

D(5) =

4 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 4

Π(5) =

4 3 4 5 1
4 3 4 2 1
4 3 4 2 1
4 3 4 2 1
4 3 4 5 1

54

