Graph Algorithms

- Sets and sequences can only model limited relations between objects, e.g. ordering, overlapping, etc.
- Graphs can model more involved relationships, e.g. road and rail networks
- Graph: G = (V, E), V: set of *vertices*, E: set of *edges*
 - Directed graph: an edge is an *ordered* pair of vertices, (v_1, v_2)
 - Undirected graph; an edge is an *unordered* pair of vertices $\{v_1, v_2\}$

Graph representation

Adjacency matrix Directed graph

Undirected graph

<u>A</u>dvantage: O(1) time to check connection. Disadvantages:

- Space is $O(|V|^2)$ instead of O(|E|)

– Finding who a vertex (node) is connected to requires O(|V|) operations

Advantages:

- easy to access all vertices connected to one vertex

```
- space is O(|E| + |V|)
```

Disadvantage:

- testing connection in worst case is O(|V|)
- space: |V| header, 2|E| list nodes $\implies O(|V| + |E|)$. There might be $|V|^2$ edges $(|E| = |V|^2)$ but probably not.

Another representation

Adjacency list with arrays

- For node *i*, use header[i] and header[i+1] 1 as the indices in the *list* array. If header[i] > header[i+1] - 1 vertex *i* is not connected to any node.
- \bullet same advantage as adjacency list but save space
- \bullet binary search is possible to determine the connection: $O(\log |V|)$
- problem: difficult to update the structure

Traversal of a graph

Depth First and Breadth First

Depth First (most useful) var $visited[1 \dots |V|]$: boolean $\leftarrow false$

 $Proc \ \mathrm{DFS}(v);$ (Given a graph G = (V, E) and a vertex v, visit each vertex reachable from v)

```
\begin{array}{l} visited[v] \longleftarrow true \\ \underline{perform \ prework \ on \ vertex \ v}} \\ \overline{For \ each \ vertex \ w \ adjacent \ to \ v \ do} \\ if \ not \ visited[w] \ then \\ DFS(w) \\ \underline{perform \ postwork \ on \ edge \ (v,w)} \\ (sometimes \ we \ perform \ postwork \ on \ all \ edges \ out \ of \ v) \end{array}
```

```
– given a vertex v, we need to know all vertices connected to v
– stack space \approx |V| - 1
```

Complexity

1) With adjacency list visited each vertex once visited each edge twice; once from v to w, once from w to v.

O(|V|+|E|)

2) With adjacency matrix visited each vertex once for each vertex, visit all vertices connected to this vertex needs O(|V|) steps

 $O(|V|^2)$

Note: In graph, O(|E|) is better than $O(|V|^2)$ in most cases.

Topological Sorting

Task scheduling

- A set of tasks. Some tasks depend on other tasks
- \bullet Task a depends on task b means that task a cannot be started until task b is finished
- \bullet We want to find a schedule for tasks consistent with dependencies

Example: $x \to y$: y cannot start until x is completed.

The problem

Given a directed acyclic graph G = (V, E) with *n* vertices, label the vertices from 1 to *n* such that, if *v* is labelled *k*, then all vertices that can be reached from *v* by a directed path are labelled with labels > k.

In other words, label vertices from 1 to n such that for any edge (v, w) the label of v is less than the label of w.

Lemma. A directed acyclic graph always contains a vertex with in-degree 0. *Proof.* If all vertices have positive in-degrees, starting from any vertex v, traverse the graph "backward". We never have to stop. But we only have a finite number of vertices!

Consequently, there must be a cycle in the graph – a contradiction! (pigeonhole principle).

Algorithm:

By induction:

find one vertex with in-degree 0. Label this vertex 1, and delete all edges from this vertex to other vertices.

Now the new graph is also acyclic and is of size n - 1. By induction we know how to label it.

Implementation.

1. Initialize in-degree of all vertices

2. Put all vertices with 0 in-degree into a queue or stack $l \leftarrow 0$

```
3. dequeue v; l \leftarrow l+1; v.label \leftarrow l;
for all edge (v, w)
decrease in-degree of w by 1
if degree of w is now 0 enqueue w
until queue is empty
```

```
Time: O(|E| + |V|)
```


Single-Source Shortest-Paths

• Weighted graph

G = (V, E) directed graph with weights associated with the edges

The weight of an edge (u, v) is w(u, v).
 The weight of a path p =< v₀, v₁, · · · v_k > is the summation of the weights of its edges

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

• We define the *shortest-path weight* from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p) : p \text{ is a path from } u \text{ to } v \} \\ \infty \text{ if there is no path from } u \text{ to } v \end{cases}$$

- The shortest path from u to v is defined as any path p from u to v with weight $w(p) = \delta(u, v)$.
- The problem: Given the directed graph G = (V, E) and a vertex s, find the shortest paths from s to all other vertices.
- For undirected graphs, change edge $\{u, v\}$ with weight w to a pair of edges (u, v) and (v, u) both with weight w.

Example:

• Negative weight cycle

In some instances of the single-source shortest-paths problem, there may be edges with negative weights.

- † If there is no negative cycle, the shortest path weight $\delta(s, v)$ is still well defined.
- \dagger If there is negative cycle reachable from s, then the shortest path weight from s to any vertex on the cycle is not well defined.
- [†] A lesser path can always be found by following the proposed "shortest path" and then traverse the negative weight cycle.
- Cycles in shortest path?
 - † A shortest path cannot contain a negative cycle. Shortest path weight is not well defined.
 - † A shortest path cannot contain a positive cycle. Removing the positive cycle will produce a path with lesser weight.
 - † How about 0-weight cycle?

We can remove all 0-weight cycles and produce a shortest path without cycle.

• We can assume that shortest paths we are looking for contain no cycle. Therefore any shortest path contains at most |V| - 1 edges.

For each vertex v, we maintain two attributes, $\pi[v]$ and d[v].

- d[v] is an upper bound on the weight of a shortest path from source s to v.
 - \dagger During the execution of a shortest-path algorithm, d[v] may be larger than the shortest-path weight.
 - † At the termination of a shortest-path algorithm, d[v] is the shortest-path weight from s to v.
- $\pi[v]$ is used to represent the shortest paths.
 - † During the execution of a shortest-path algorithm, $\pi[]$ need not indicate shortest paths.
 - † $\pi[v]$ is the last edge of a path from s to v during the execution of a shortest-path algorithm.
 - † At the termination of a shortest-path algorithm, $\pi[v]$ represent the last edge of a shortest path from s to v.
 - † Since sub-path of a shortest path is itself shortest path, therefore $\langle v, \pi[v], \pi[\pi[v]], \cdots, s \rangle$ is the shortest path from s to v in reverse order.

• Initialization

Initialize_Single_Source(G, s)1 For each vertex $v \in V[G]$ do 2 $d[v] = \infty;$ 3 $\pi[v] = nil;$

- $4 \quad d[s] = 0;$
- Relaxation
 - Relax(u, v, w)1 if d[v] > d[u] + w(u, v) then 2 d[v] = d[u] + w(u, v);3 $\pi[v] = u;$

 $\operatorname{Relax}(u,v,w)$ tests if we can improve the shortest path to v found so far by going through u.

If so, we update d[v] and $\pi[v]$.

- Each algorithm for single-source shortest-path will begin by calling Initialize_Single_Source(G, s).
- And then $\operatorname{Relax}(u, v, w)$ will be repeatedly applied to edges.
- The algorithms differ in how many times they relax each edge and the order in which they relax edges.

The Bellman-Ford Algorithm

Bellman-Ford algorithm solves the single-source shortest-path problem in general case where graph may contains cycles and edge weights may be negative.

- If there is no negative cycle, the algorithm will compute the shortest-paths and their weights.
- If there is negative cycle, the algorithm will report no solution exists.
- The idea is to repeatedly use the following procedure to progressively decrease an estimate d[v] of the weight of shortest path from s to v.

 $\operatorname{Relax_All}(G,s)$

- 1 For each edge $(u, v) \in E$ do
- 2 $\operatorname{Relax}(u, v, w);$

Lemma: Let $p = \langle s = v_0, v_1, \cdots, v_k = v \rangle$ be a path from s to v of length k and weight w(p), then after k applications of Relax_All $(G, s), d[v] \leq w(p)$.

Proof:

Prove by induction on k.

- k = 1. In this case, p =< s, v > and w(p) = w(s, v). After Relax(s, v, w) is applied, d[v] ≤ d[s] + w(s, v) = w(s, v) = w(p).
 k > 1.
 - † Let $p_1 = \langle v_0, v_1, \cdots, v_{k-1} \rangle$, then p_1 is a path of length k 1. † Therefore after k - 1 applications of Relax_All(G, s), we have $d[v_{k-1}] \leq w(p_1)$. † After another application of Relax_All(G, s), $d[v] \leq d[v_{k-1}] + w(v_{k-1}, v_k) \leq w(p_1) + w(v_{k-1}, v_k) = w(p)$.

Since shortest paths have lengths less than |V|, what we need to do is to apply Relax_All(G, s) |V| - 1 times.

Bellman_Ford(G, w, s)Initialize_SingleSource(G, s)1 for i := 1 to |V| - 1 do 2 3 for each edge $(u, v) \in E$ do $\operatorname{Relax}(u, v, w);$ 4 5for each edge $(u, v) \in E$ do if d[v] > d[u] + w(u, v) then 6 7return False; 8 return True;

Lines 5-7 test if the graph contains negative cycle reachable from s.

- If there is no such cycle, then there is no edge $(u, v) \in E$ such that d[v] > d[u] + w(u, v) since otherwise d[v] is not the shortest-path weight from s to v.
- If there is such a cycle $c = \langle v_0, v_1, \cdots, v_k \rangle$ where $v_0 = v_k$ and $\sum_{i=1}^k w(v_{i-1}, v_i) < 0.$
 - † Suppose that (for the purpose of contradiction) for each edge $(u,v) \in E,$ $d[v] \leq d[u] + w(u,v).$
 - † Then $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$ for $1 \le i \le k$.
 - † And $\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i).$
 - † Therefore $\sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0$

• Time complexity: O(|V||E|).

Acyclic Graph

- Suppose that graph G has no cycle.
- We first use topological sorting to order the vertices of G.
 - If s has label k, then for any vertex v with label < k, there is NO PATH from s to v, so $d[v] = \infty$.
 - We then consider each vertex with label > k in the order of $k + 1, k + 2, \cdots, |V|$
 - Consider a vertex v in the above order (with label > k). We want to compute d[v] and $\pi[v]$. We need only consider those vertices u such that (u, v) is an edge in G. For each $(u, v) \in E[G]$ do Relax(u, v, w)
 - This is correct since for any $(u, v) \in E$, label for u is less the label for v.
 - Complexity: O(|V| + |E|)

Non-Negative Weights

- General graph with no negative weight edge.
- Graph now is not acyclic. Therefore there is no topological order.
- What is the main idea from acyclic case?

When we consider shortest path from s to v, the topological order enables us to ignore all vertices after v.

- Could we define an order for general graphs to do similar things?
- For general graphs,

Order the vertices by the weights of their shortest paths from s. Unlike topological order, we do not know this order before we find shortest paths.

- We will find the order during the process of finding shortest paths.
- Can we first find the closest vertex w_1 ? Yes! w_1 is the vertex satisfying following:

 $w(s, w_1) = \min_v w(s, v)$

Why?

Consider the shortest path from s to w_1 . It must consist of only two vertices s and w_1 . <u>Otherwise if</u>

$$s \to v_1 \to v_2 \to \cdots \to v_k \to w_1$$

is the shortest path from s to w_1 , then $d[v_1] = w(s, v_1) \leq \delta(s, w_1) = d[w_1]$

- either w_1 is not closest contradiction!
- or $\delta(s, w_1) = \delta(s, v_1)$, we can choose v_1 to be the closest vertex.
- therefore we can determine $d[w_1]$ and find w_1 this way.

• Can we find the second closest vertex w_2 ?

YES! The only paths we need to consider are the edges from s (except (s, w_1)) and paths of two edges, the first one being (s, w_1) , and the second one being from w_1 .

– Why? Again, consider a shortest path from s to w_2

 $s \to v_1 \to v_2 \to \cdots \to v_k \to w_2$

- Consider the first vertex (from s to w_2) that is not s and w_1 .
- It is either v_1 or v_2 (and in this case $v_1 = w_1$).
- Therefore we choose the minimum of $w(s,v) \ (v \neq w_1) \text{ or } d[w_1] + w(w_1,v) \ (v \neq s).$
- this give us w_2 and $d[w_2]$.

Induction

Induction hypothesis:

Give graph G and a vertex s, we know the k - 1 vertices that are closest to s and we know the weights of the shortest paths to them.

Base case: done!

Inductive Step: We want to find the kth (w_k) closest vertex and the weight of shortest path to it. Let the k - 1 closest vertices be $w_1, w_2, \ldots, w_{k-1}$. Let $V_{k-1} = \{s, w_1, w_2, \ldots, w_{k-1}\}$ The shortest path from s to w_k can go only through vertices in V_{k-1} . (If it goes through a vertex not in V_{k-1} , this vertex is closer than w_k)

Therefore w_k is the vertex satisfying the following:

 $w_k \notin V_{k-1}$ and the shortest path from s to w_k through V_{k-1} is less or equal to the shortest path from s to any other vertex $v \notin V_{k-1}$ through V_{k-1} .

For $v \notin V_{k-1}$, let

$$d[v] = \min_{u \in V_{k-1}} (d[u] + w(u, v)).$$

d[v] is the shortest path from s to v through V_{k-1} .

Therefore w_k is a vertex such that

$$w_k \notin V_{k-1} \text{ and } d[w_k] = \min_{v \notin V_{k-1}} \{d[v]\}.$$

- Adding w_k does not change the weights of the shortest paths from s to u, $u \in V_{k-1}$, since u is closer than w_k
- The Algorithm is complete now. We should consider how to implement it efficiently.

The main computation is for d[v] for $v \notin V_{k-1}$.

• We do not have to compute all d[v] for each V_k .

Most of d[v] for V_k are equal to d[v] for V_{k-1} . We only need to update a few d[v] when we add w_k .

• When we add w_k For v, such that $v \notin V_k$ and (w_k, v) is an edge. $d[v] = \min\{d[v], d[w_k] + w(w_k, v)\}$

(Note: this is the same as $\operatorname{Relax}(w_k, v, w)$.)

Consider a shortest path from s to v through V_k . If the last edge is (w_i, v) , i < k, then there is no change to d[v]. If the last edge is (w_k, v) then $d[v] = d[w_k] + w(w_k, v)$.

What data structure should we use?

Heap is a good choice!

- We can keep d[v] in a min_heap. Then we can find w_k in O(1) time.
- After we find w_k , we update d[v].
 - Delete w_k from heap.
 - For each v in the heap such that (w_k, v) is an edge, change its key from d[v] to $\min\{d[v], d[w_k] + w(w_k, v)\}$ (Relax (w_k, v, w)).
- We need to use the heap with element locations (see notes for heap)!

Dijkstra's Algorithm

The above analysis gives us the Dijkstra's algorithm.

```
\text{Dijkstra}(G, w, s)
     Initialize_Single_Source(G, s);
1
    S := \emptyset;
2
3
   Q := V[G];
   while Q \neq \emptyset do
4
5
         u := Extract_Min(Q);
6
         S := S \cup \{u\};
7
         for each (u, v) \in E do
8
              \operatorname{Relax}(u, v, w);
              Update v in Q;
9
```

Time Complexity

```
With a binary heap:

|V| delete min operations: O(|V| \log(|V|))

|E| update operations: O(|E| \log(|V|))

TOTAL O((|V| + |E|) \log(|V|))
```

With a Fibonacci heap: |V| delete min operations: $O(|V| \log(|V|))$ |E| update operations: O(|E|)TOTAL $O(|V| \log(|V|) + |E|)$

```
Without a heap:

|V| delete min operations: O(|V||V|)

|E| update operations: O(|E|)

TOTAL O(|V|^2 + |E|) = O(|V|^2)
```

```
(Compare with acyclic case O(|V| + |E|))
(Compare with Bellman-Ford algorithm O(|V||E|))
```

Minimum Spanning Trees

- Consider an undirected weighted graph G = (V, E).
- A spanning tree of G is a connected subgraph that contains all vertices and no cycles.
- Minimum spanning tree of G: a spanning tree T of G such that the sum of the weights of edges in T is minimum.
- Applications:
 - computer networks (e.g. broadcast path)
 - there is a cost for sending a message on the link.
 - broadcast a message to all computers in the network from an arbitrary computer
 - want to minimize the cost

The Problem

Given an undirected connected weighted graph G = (V, E), find a spanning tree T of G of minimum cost.

Idea.

Extend tree: always choose to extend tree by adding cheapest edge.

For simplicity, we assume all costs (weights) are distinct!

Base case: Let r be an arbitrarily chosen root vertex. The minimum-cost edge incident to r must be in the minimum spanning tree (MST)

- † Suppose this edge is $\{r, s\}$
- † if $\{r, s\}$ is not in MST, add $\{r, s\}$ to MST
- † Now we have a cycle
- \dagger Delete the MST edge incident to r from the cycle. We have a new tree.
- † the cost of this new tree is less than the cost of MST. Contradiction!

Induction hypothesis

Given a connected graph G = (V, E), we know how to find a subgraph T of G with k edges, such that T is a tree and T is a subgraph of the MST of G.

Extend T:

- † Find the cheapest edge from a vertex in T to a vertex not in T. Let it be $\{u, v\}$, such that $u \in T$ and $v \notin T$.
- \dagger Add $\{u, v\}$ to T.

[†] Claim: We now have a tree with k + 1 edges which is a subgraph of the MST of G.

- \bullet Again add $\{u,v\}$ to the MST
- \bullet Consider the path from u to v in MST
- There must be an edge $e = \{u_1, v_1\}$ in this path such that $u_1 \in T$ and $v_1 \notin T$.
- Delete edge e
- Since weight(e) > weight($\{u, v\}$), the new tree has a cost less than the MST
- Contradiction

Implementation

- Similar to the implementation of single-source shortest-path algorithm
- Choose an arbitrary vetex as the root
- For each iteration we need to find the minimum cost edge connecting T to vertices outside of T.
- We again use a heap.

For each vertex w not in T, we use the minimum-cost of the costs of the edges going into w from a vertex in T as the key.

- For each iteration we delete min from the heap. Suppose u is the new vertex. Update the keys for vertex v not in T by cost of edge $\{u, v\}$.
- Time: |V| delete min: $O(|V|\log(|V|))$ |E| update operations: $O(|E|\log(|V|))$ Total: $O((|V| + |E|)\log(|V|))$
- This is called PRIMS algorithm

Prim's Algorithm

The above analysis gives us the Prim's algorithm.

```
MST_Prim(G, w, r)
    for each u \in V[G] do
1
2
        key[u] := \infty;
3
  \pi[u] := \text{NIL};
4
   key[r] := 0;
5 Q := V[G];
6
   while Q \neq \emptyset do
7
        u := \text{Extract}_{\text{Min}}(Q);
8
        for each v \in Adj[u] do
            if v \in Q and w(u, v) < key[v] then
9
                  \pi[v] := u;
10
                  key[v] := w(u, v);
11
                  update key[v] in Q
12
```

Kruskal's MST

Idea: Choose cheapest edge in a graph.

Algorithm:

put all edges in a heap, put each vertex in a set by itself; while not found a MST yet do begin delete min edge, $\{u, v\}$, from the heap; if u and v are not in the same set mark $\{u, v\}$ as tree edge; union sets containing u and v; if u and v are in the same set do nothing; end

Ti<u>me:</u>

 $\overline{O((|V| + |E|) \log(|V|))} \text{ for heap operation.}$ $O(|E| \log^*(|V|) \text{ for union-find operation.}$ $\text{Total: } O((|V| + |E|) \log(|V|)) \text{ time.}$

All-Pair Shortest-Paths Problem

- The problem: Given a weighted graph G = (V, E), find the shortest paths between all pairs of vertices.
- \bullet We can call single-source shortest-paths algorithm |V| times
 - *†* If there is no negative cycle.
 - Complexity: $O(|V|^2|E|)$
 - † If there is no negative weight edge. Complexity: $O(|V|^2 \log(|V|) + |V||E|)$ or $O(|V|(|V| + |E|) \log(|V|))$ If G is not dense, this is a good solution.
- We consider to use induction to design a direct solution.

- We can use induction on the vertices.
- We know the shortest paths between a set of k vertices (V_k) .
- \bullet We want to add a new vertex u
- We can find the shortest path from u to all the vertices in V_k

```
shortest-path(u, w) = \min_{v \in V_K, (u,v) \in E} \{w(u, v) + \text{shortest-path}(v, w)\}(*)
```

Shortest-path(w, u) can be computed similarly!

```
We update shortest-path (w_1, w_2), w_1, w_2 \in V_k
```

```
shortest-path(w_1, w_2) = \min\{\text{shortest-path}(w_1, u) + \text{shortest-path}(u, w_2), \text{shortest-path}(w_1, w_2)\} (**)
```

```
Time: (**) can be done in |V|^2 (*) can be done in |V|^2
```

```
Total: O(|V|^3).
```

A better solution

- *Idea:* Number of vertices is fixed.

Induction puts restrictions on the type of paths allowed

– We label vertices from 1 to |V|

A path from u to w is called a k-path if, except for u and w, the highest-labelled vertex on the path is labelled by k.

A 0-path is an edge

- Induction hypothesis:

We know the lengths of the shortest paths between all pairs of vertices such that only k-paths, for some $k \leq m$ are considered.

 $-Base\ case:\ m=0$

only direct edges can be considered

Inductive step

(extend m - 1 to m)

We consider all k-paths such that $k \leq m$. The only new paths are *m*-paths. Let the vertex with label *m* be v_m . Consider a shortest *m*-path between *u* and *v*.

This *m*-path must include v_m only once!

Therefore this *m*-path is a shortest *k*-path (for some $k \le m - 1$) between *u* and v_m appended by a shortest *j*-path (for some $j \le m - 1$) from v_m to *v*. By induction we already know the length of the *k*-path and the *j*-path! We update shortest-path (u, v) by:

 $\min\{\operatorname{shortest-path}(u, v_m) + \operatorname{shortest-path}(v_m, v), \operatorname{shortest-path}(u, v)\}$

This leads to a very simple program! (Floyd-Warshall algorithm)

for
$$x := 1$$
 to $|V|$ do { base case }
for $y := 1$ to $|V|$ do
if $(x, y) \in E$, then
 $d[x, y] := w(x, y);$
else
 $d[x, y] := \infty;$
for $x := 1$ to $|V|$ do
 $d[x, x] := 0;$
for $m := 1$ to $|V|$ do { the induction sequence }
for $x := 1$ to $|V|$ do
for $y := 1$ to $|V|$ do
if $d[x, m] + d[m, y] < d[x, y]$ then
 $d[x, y] := d[x, m] + d[m, y]$

Time: $O(|V|^3)$. Again, if the graph is sparse, then $O(|V|^2 \log(|V|) + |V||E|)$ is a better solution when there is no negative weight.

If we need to find the shortest paths not just the weights. Let $\phi[i, j]$ be highest numbered vertex on the shortest path from i to j.

for
$$x := 1$$
 to $|V|$ do { base case }
for $y := 1$ to $|V|$ do
if $(x, y) \in E$, then
 $d[x, y] := w(x, y); \quad \phi[x, y] := x;$
else
 $d[x, y] := \infty; \quad \phi[x, y] := Nil;$
for $x := 1$ to $|V|$ do
 $d[x, x] := 0; \quad \phi[x, x] := Nil;$
for $m := 1$ to $|V|$ do { the induction sequence }
for $x := 1$ to $|V|$ do
for $y := 1$ to $|V|$ do
if $d[x, m] + d[m, y] < d[x, y]$ then
 $d[x, y] := d[x, m] + d[m, y];$
 $\phi[x, y] := m;$

Time: $O(|V|^3)$

If we need to find the shortest paths not just the weights. Let $\pi[i, j]$ be the predecessor of j on the shortest path from i to j.

for
$$x := 1$$
 to $|V|$ do { base case }
for $y := 1$ to $|V|$ do
if $(x, y) \in E$, then
 $d[x, y] := w(x, y); \quad \pi[x, y] := x;$
else
 $d[x, y] := \infty; \quad \pi[x, y] := Nil;$
for $x := 1$ to $|V|$ do
 $d[x, x] := 0; \quad \pi[x, x] := Nil;$
for $m := 1$ to $|V|$ do { the induction sequence }
for $x := 1$ to $|V|$ do { the induction sequence }
for $y := 1$ to $|V|$ do
if $d[x, m] + d[m, y] < d[x, y]$ then
 $d[x, y] := d[x, m] + d[m, y];$
 $\pi[x, y] := \pi[m, y];$

Time: $O(|V|^3)$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Phi^{(0)} = \begin{pmatrix} \text{NIL 1 1 NIL 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL NIL } \\ 4 & \text{NIL 4 NIL NIL } \\ \text{NIL NIL NIL 5 NIL} \end{pmatrix}$$
$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Phi^{(1)} = \begin{pmatrix} \text{NIL 1 1 NIL 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL } \\ \text{NIL NIL NIL 5 NIL} \end{pmatrix}$$
$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Phi^{(2)} = \begin{pmatrix} \text{NIL 1 1 2 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL 2 5 NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Phi^{(3)} = \begin{pmatrix} \text{NIL } 1 & 1 & 2 & 1 \\ \text{NIL NIL NIL } 2 & 2 \\ \text{NIL } 3 & \text{NIL } 2 & 2 \\ 4 & 3 & 4 & \text{NIL } 1 \\ \text{NIL NIL NIL } 5 & \text{NIL} \end{pmatrix}$$
$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Phi^{(4)} = \begin{pmatrix} \text{NIL } 1 & 4 & 2 & 1 \\ 4 & \text{NIL } 4 & 2 & 4 \\ 4 & 3 & \text{NIL } 2 & 4 \\ 4 & 3 & 4 & \text{NIL } 1 \\ 4 & 4 & 4 & 5 & \text{NIL} \end{pmatrix}$$
$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Phi^{(5)} = \begin{pmatrix} \text{NIL } 5 & 5 & 5 & 1 \\ 4 & \text{NIL } 4 & 2 & 1 \\ 4 & 3 & \text{NIL } 2 & 1 \\ 4 & 3 & \text{NIL } 2 & 1 \\ 4 & 3 & \text{A } & \text{NIL } 1 \\ 4 & 3 & 4 & \text{NIL } 1 \\ 4 & 3 & 4 & \text{NIL } 1 \\ 4 & 3 & 4 & \text{NIL } 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(0)} = \begin{pmatrix} \text{NIL 1 1 NIL 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL NIL } \\ 4 & \text{NIL 4 NIL NIL } \\ \text{NIL NIL NIL 5 NIL} \end{pmatrix}$$
$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} \text{NIL 1 1 NIL 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL } \\ \text{NIL 3 NIL NIL NIL } \\ \text{NIL NIL NIL 5 NIL} \end{pmatrix}$$
$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL 1 1 2 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL 2 5 NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL } 1 & 1 & 2 & 1 \\ \text{NIL NIL NIL } 2 & 2 \\ \text{NIL } 3 & \text{NIL } 2 & 2 \\ 4 & 3 & 4 & \text{NIL } 1 \\ \text{NIL NIL } \text{NIL } 1 & \text{NIL } 1 \\ \text{NIL NIL } 1 & 5 & \text{NIL} \end{pmatrix}$$
$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL } 1 & 4 & 2 & 1 \\ 4 & \text{NIL } 4 & 2 & 1 \\ 4 & 3 & \text{NIL } 2 & 1 \\ 4 & 3 & 4 & \text{NIL } 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$
$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL } 3 & 4 & 5 & 1 \\ 4 & \text{NIL } 4 & 2 & 1 \\ 4 & 3 & \text{NIL } 2 & 1 \\ 4 & 3 & \text{NIL } 2 & 1 \\ 4 & 3 & \text{NIL } 2 & 1 \\ 4 & 3 & \text{A } & \text{NIL } 1 \\ 4 & 3 & 4 & \text{NIL } 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

If we need to find the shortest paths and shortest cycles, let $\pi[i, j]$ be the predecessor of j on the shortest path from i to j.

for
$$x := 1$$
 to $|V|$ do { base case }
for $y := 1$ to $|V|$ do
if $(x, y) \in E$, then
 $d[x, y] := w(x, y); \quad \pi[x, y] := x;$
else
 $d[x, y] := \infty; \quad \pi[x, y] :=$ Nil;
for $m := 1$ to $|V|$ do { the induction sequence]
for $x := 1$ to $|V|$ do
for $y := 1$ to $|V|$ do
if $d[x, m] + d[m, y] < d[x, y]$ then
 $d[x, y] := d[x, m] + d[m, y];$
 $\pi[x, y] := \pi[m, y];$

Time: $O(|V|^3)$

$$D^{(0)} = \begin{pmatrix} \infty & 3 & 8 & \infty & -4 \\ \infty & \infty & \infty & 1 & 7 \\ \infty & 4 & \infty & \infty & \infty \\ 2 & \infty & -5 & \infty & \infty \\ \infty & \infty & \infty & 6 & \infty \end{pmatrix} \qquad \Pi^{(0)} = \begin{pmatrix} \text{NIL 1 1 NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL NIL } \\ 4 & \text{NIL 4 NIL NIL } \\ \text{NIL NIL NIL 5 NIL } \end{pmatrix}$$
$$D^{(1)} = \begin{pmatrix} \infty & 3 & 8 & \infty & -4 \\ \infty & \infty & \infty & 1 & 7 \\ \infty & 4 & \infty & \infty & \infty \\ 2 & 5 & -5 & \infty & -2 \\ \infty & \infty & \infty & 6 & \infty \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} \text{NIL 1 1 NIL 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL 2 2} \\ \text{NIL 3 NIL NIL NIL } \\ 4 & 1 & 4 & \text{NIL 1} \\ \text{NIL NIL NIL 5 NIL } \end{pmatrix}$$
$$D^{(2)} = \begin{pmatrix} \infty & 3 & 8 & 4 & -4 \\ \infty & \infty & \infty & 1 & 7 \\ \infty & 4 & \infty & 5 & 11 \\ 2 & 5 & -5 & 6 & -2 \\ \infty & \infty & \infty & 6 & \infty \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL 1 1 2 1} \\ \text{NIL NIL NIL 2 2} \\ \text{NIL 3 NIL 3 NIL 3 NIL 2 2} \\ \text{NIL 3 NIL 3 NIL 3 } \\ \text{NIL 3 NIL 3 NIL 3 \\ \text{NIL 3 NIL 3 } \\ \text{NIL 3 NIL 3 \\ \text{NIL 3 \\ \text{NIL 3 NIL 3 \\ \text{NIL 3 \\ \text{NIL 3 NIL 3 \\ \text{NIL 3 \\ \text{$$

$$D^{(3)} = \begin{pmatrix} \infty & 3 & 8 & 4 & -4 \\ \infty & \infty & \infty & 1 & 7 \\ \infty & 4 & \infty & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & \infty \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL } 1 & 1 & 2 & 1 \\ \text{NIL NIL NIL } 2 & 2 \\ \text{NIL } 3 & \text{NIL } 2 & 2 \\ 4 & 3 & 4 & 2 & 1 \\ \text{NIL NIL NIL } 5 & \text{NIL} \end{pmatrix}$$
$$D^{(4)} = \begin{pmatrix} 6 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 4 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 4 & 1 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 5 & 1 \end{pmatrix}$$
$$D^{(5)} = \begin{pmatrix} 4 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 4 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} 4 & 3 & 4 & 5 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 2 & 1 \\ 4 & 3 & 4 & 5 & 1 \end{pmatrix}$$