
Maximum Flow

1



Flow Network

• The following figure shows an example of a flow network:
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• A flow network G = (V,E) is a directed graph. Each edge (u, v) ∈ E has a
nonnegative capacity c(u, v) ≥ 0. c(u, v) is possibly not equal to c(v, u). By
convention, we say c(u, v) = 0 if (u, v) /∈ E.

• There is one source vertex and one sink vertex in a flow network. We denote
them by s and t, respectively.
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• We want to find a “flow” with maximum value that flows from the source to the
target.

• Maximum Flow is a very practical problem.

• Many computational problems can be reduced to a Maximum Flow problem.
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A Flow

• For any vertex v, we assume that there is a path from s to v and a path from v to t.

• A flow in G is a function f : V × V → R that specifies the direct flow value
between every two nodes.
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• f should satisfy the following three properties before it can be called as a flow.

• Capacity constraint: For all u, v ∈ V , f (u, v) ≤ c(u, v).

• Skew symmetry: For all u, v ∈ V , f (u, v) = −f (v, u).

• Flow conservation: For all u ∈ V − {s, t},
∑

v∈V f (u, v) = 0.
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If (u, v) /∈ E and (v, u) /∈ E, then c(u, v) = c(v, u) = 0.

By capacity constraint, f (u, v) ≤ 0 and f (v, u) ≤ 0.

By skey symmetry, f (u, v) ≥ 0 and f (v, u) ≥ 0.

Therefore f (u, v) = f (v, u) = 0.

If there is no edge between u and v, then there is no flow between u and v.
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• The value of the flow f , denoted by |f |, is defined by

|f | =
∑

v∈V

f (s, v).

• |f | is the total flow out of the source.

•

Lemma 1.

|f | =
∑

u∈V

f (u, t).

That is, the flow out of the source is equal to the flow into the sink.

Proof.

(1)
∑

u∈V

∑

v∈V f (u, v) = 0. (Skew symmetry)

(2)
∑

u∈V −{s,t}

∑

v∈V f (u, v) = 0. (Flow conservation)

(3)
∑

u∈{s,t}

∑

v∈V f (u, v) = 0.

(4)
∑

v∈V f (s, v) = −
∑

v∈V f (t, v) =
∑

v∈V f (v, t).
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Idea of the Ford-Fulkerson method

• The Ford-Fulkerson method is the standard method for solving a maximum-flow
problem.

• The idea of the method is “iterative improvement”. We start with an arbitrary
flow. Then we check whether an improvement is possible.

• Suppose we start with an empty flow. The improvement is a path from the source
to the sink.

• What if the current flow is not empty?
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Residual network

• We need to examine the “residual capacity” for each edge.

• We check whether there is a path s → t such that all edges on the path have a
positive “residual capacity”.

• If so, we increase the flow. If not, we have got a maximal solution.

• Given a flow network G. Let f be a flow. The residual capacity of (u, v) is given
by cf(u, v) = c(u, v) − f (u, v).

• The residual network induced by f is Gf = (V, Ef), where
Ef = {(u, v) ∈ V × V : cf(u, v) > 0}.

• If there is a path from s to t in the residual network, then there is room to improve
the current flow.

8



A flow in a flow network and its residual network.
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• Note that if both (u, v) and (v, u) are not in the original flow network G, neither
(u, v) nor (v, u) can appear in the residual network. Therefore, |Ef | ≤ 2|E|.

• Let f ′ be a flow in the residual network Gf . We can define a new flow (f + f ′) in
G, as follows

(f + f ′)(u, v) = f (u, v) + f ′(u, v).

•

Lemma 2. f + f ′ is a flow in G.

Proof.

We need to verify the three constraints:

(1) Capacity constraint: (f + f ′)(u, v) ≤ c(u, v).

(2) Skew symmetry: (f + f ′)(u, v) = −(f + f ′)(v, u).

(3) Flow conservation: For all u ∈ V − {s, t},
∑

v∈V (f + f ′)(u, v) = 0.
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•

Lemma 3. The value of the new flow f + f ′ is equal to total values of f and
f ′. I.e., |f + f ′| = |f | + |f ′|.

• Proof.

|f + f ′| =
∑

v∈V

(f + f ′)(s, v)

=
∑

v∈V

(f (s, v) + f ′(s, v))

=
∑

v∈V

f (s, v) +
∑

v∈V

f ′(s, v))

= |f | + |f ′|
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Augmenting path

• Given a flow network G = (V, E) and a flow f in G, an augmenting path is a
simple path from s to t in the residual graph Gf .

• An augmenting path admits some additional positive flow for each edge on the
path.

• The residual capacity of an augmenting path p is defined as

cf(p) = min{cf(u, v) : (u, v) is in p}

• cf(p) is the maximum amount of additional flow we can increase through path p.

Lemma 4. Let G = (V, E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gf . Define a function fp : V × V → R by

fp(u, v) =







cf(p) if (u, v) is on p,
−cf(p) if (v, u) is on p,
0 otherwise.

Then, fp is a flow in Gf with value |fp| = cf(p) > 0.
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A flow in a flow network and its residual network.

11/14

4/9

12/12

1/4

8/13

11/16

10s 7/7
4

511

5

8

5

11 3

3

11

15

5

7

4

12

tt s

4/4

15/20
1V 3V

4V2V

1V 3V

4V2V

A new flow from the augmenting path and its residual network.

4/4

7/7

11/14

12/12

1/4

11/16

10s s
19

1

9

12

1

19/20

9

12/13

11

5

11 3

3

11

7

4

12

tt

1V 3V

4V2V

1V 3V

4V2V

13



The basic Ford-Fulkerson algorithm

• Ford-Fulkerson(G,s,t)
1. for each edge (u, v) ∈ E
2. f [u, v] ← 0, f [v, u] ← 0.
3. while there exists a path p from s to t in the residual network Gf

4. cf(p) ← min{cf(u, v) : (u, v) is in p}.
5. for each edge (u, v) in p
6. f [u, v] ← f [u, v] + cf(p)
7. f [v, u] ← −f [u, v]

• The path p from s to t in the residual network Gf is called the augmenting path.

• The augmenting path p defines a flow in Gf . By adding this flow fp to the current
flow f , we get a better flow f + fp with value |f | + |fp|.

• Figure 26.6 on p.726-627 of the textbook shows an example.
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Is the solution optimal?

• We have found an intuitive algorithm to provide a maximal flow. But is this flow
maximum?

• Although we cannot increase the current flow by augmenting paths, is it possible
that we find a completely different flow which has a better value?

• It turns out that the solution found by the Ford-Fulkerson algorithm is the
maximum one.

• But we want to prove it.
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Working with flows

• Let f be a flow. The flow from one set of vertices, X , to another set Y , is defined
by f (X, Y ) =

∑

x∈X

∑

y∈Y f (x, y).

•

Lemma 5. Let G = (V,E) be a flow network and let f be a flow on G, then;

(1) For all X ⊂ V , f (X, X) = 0.

(2) For all X,Y ⊂ V , f (X, Y ) = −f (Y, X).

(3) For all X, Y, Z ⊂ V with X ∩ Y = ∅, f (X ∪ Y, Z) = f (X, Z) + f (Y, Z) and
f (Z, X ∪ Y ) = f (Z, X) + f (Z, Y ).

• Proof.
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Cuts of flow networks

• A cut (S, T ) in the flow network G = (V, E) is a partition of V into S and
T = V − S such that s ∈ S and t ∈ T .

• The net flow across the cut (S, T ) is defined to be

f (S, T ) =
∑

u∈S

∑

v∈T

f (u, v).

• The capacity of the cut (S, T ) is defined to be

c(S, T ) =
∑

u∈S

∑

v∈T

c(u, v).

• Obviously, f (S, T ) ≤ c(S, T ).
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Lemma 6. Let f be a flow in flow network G. Let (S, T ) be any cut of G. Then
the net flow across (S, T ) is f (S, T ) = |f |.

Proof.
By flow conservation, we have f (S − {s}, V ) = 0.
Also, f (S, V ) = f (S, S) + f (S, T ) = f (S, T ).
Therefore, f (S, T ) = f (S, V ) = f (S − {s}, V ) + f ({s}, V ) = f ({s}, V ) = |f |.

• Therefore, the maximum flow is bounded by the capacity of the “minimum” cut.
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Theorem 1. If f is a flow in a flow network G = (V,E) with source s and sink t,
then the following conditions are equivalent:
1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting paths.

Proof. (1) ⇒ (2): Obvious, because the existence of augmenting paths means a better
flow exists.
(2) ⇒ (1): Gf has no path from s to t. Let S be all the vertices that can be reached
from s, and T = V − S. Then (S, T ) is a cut.
For each u ∈ S and v ∈ T , f (u, v) = c(u, v). Therefore, f (S, T ) = c(S, T ). But we
know that f ∗(S, T ) ≤ c(S, T ) for any flow f ∗. Hence we conclude that f is the
maximum.

Exercise: Read the proof of Theorem 26.6 at p.723 of the textbook. The proof
there is essentially the same but in a different form.

Corollary 1. The Ford-Fulkerson algorithm gives the maximum flow of a flow
network.
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Complexity

• Assuming that the capacities are integers.

• Every augmenting path will increase the flow by at least 1. So, the while loop will
be repeated O(|f ∗|) time, where f ∗ is the maximum flow.

• The time complexity is O(|E| × |f ∗|).

• Figure 26.7 on p.728 of textbook shows a worst case example.
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Edmonds-Karp algorithm

• The Edmonds-Karp algorithm is almost the same as the Ford-Fulkerson algorithm.

• The difference is that we find the shortest path (in terms of number of edges) from
s to t in the residual graph, and use the shortest path as the augmenting path.

• The worst case running time is reduced to O(|V | × |E|2).

• Proof is omitted. See p.729 of text book if you are interested to know.

21



Applications

• The maximum-bipartite-matching problem.

Example: m boys and n girls are attending a dance party. Some of them can be
matched. Find a solution so that you have maximum number of matches.

• The multiple-source max-flow problem.

Example: A supermarket has several vendors for the same merchandise. It wants
to transport the maximum number of merchandise to the market through its own
transportation network.

• The multiple-sink max-flow problem.

Example: A factory wants to send the maximum number of products to several
countries through its own transportation network.

• The multiple-source multiple-sink max-flow problem.

• Maximum bipartite matching.

• Many other applications.
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