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A Linear Programming Approach for Optimal
Contrast-Tone Mapping

Xiaolin Wu, Fellow, IEEE

Abstract—This paper proposes a novel algorithmic approach of
image enhancement via optimal contrast-tone mapping. In a fun-
damental departure from the current practice of histogram equal-
ization for contrast enhancement, the proposed approach maxi-
mizes expected contrast gain subject to an upper limit on tone dis-
tortion and optionally to other constraints that suppress artifacts.
The underlying contrast-tone optimization problem can be solved
efficiently by linear programming. This new constrained optimiza-
tion approach for image enhancement is general, and the user can
add and fine tune the constraints to achieve desired visual effects.
Experimental results demonstrate clearly superior performance of
the new approach over histogram equalization and its variants.

Index Terms—Contrast enhancement, dynamic range, his-
togram equalization, linear programming, tone reproduction.

I. INTRODUCTION

I N MOST image and video applications it is human viewers
that make the ultimate judgement of visual quality. They

typically associate high image contrast with good image quality.
Indeed, a noticeable progress in image display and generation
(both acquisition and synthetic rendering) technologies is the
increase of dynamic range and associated image enhancement
techniques [1].

The contrast of a raw image can be far less than ideal, due to
various causes such as poor illumination conditions, low quality
inexpensive imaging sensors, user operation errors, media de-
terioration (e.g., old faded prints and films), etc. For improved
human interpretation of image semantics and higher perceptual
quality, contrast enhancement is often performed and it has been
an active research topic since early days of digital image pro-
cessing, consumer electronics and computer vision.

Contrast enhancement techniques can be classified into
two approaches: context-sensitive (point-wise operators) and
context-free (point operators). In context-sensitive approach
the contrast is defined in terms of the rate of change in intensity
between neighboring pixels. The contrast is increased by di-
rectly altering the local waveform on a pixel by pixel basis. For
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instance, edge enhancement and high-boost filtering belong to
the context-sensitive approach. Although intuitively appealing,
the context-sensitive techniques are prone to artifacts such as
ringing and magnified noises, and they cannot preserve the rank
consistency of the altered intensity levels. The context-free
contrast enhancement approach, on the other hand, does not
adjust the local waveform on a pixel by pixel basis. Instead, the
class of context-free contrast enhancement techniques adopt a
statistical approach. They manipulate the histogram of the input
image to separate the gray levels of higher probability further
apart from the neighboring gray levels. In other words, the
context-free techniques aim to increase the average difference
between any two altered input gray levels. Compared with its
context-sensitive counterpart, the context-free approach does
not suffer from the ringing artifacts and it can preserve the
relative ordering of altered gray levels.

Despite more than half a century of research on contrast en-
hancement, most published techniques are largely ad hoc. Due
to the lack of a rigorous analytical approach to contrast en-
hancement, histogram equalization seems to be a folklore syn-
onym for contrast enhancement in the literature and in textbooks
of image processing and computer vision. The justification of
histogram equalization as a contrast enhancement technique is
heuristic, catering to an intuition. Low contrast corresponds to a
biased histogram and, thus, can be rectified by reallocating un-
derused dynamic range of the output device to more probable
pixel values. Although this intuition is backed up by empirical
observations in many cases, the relationship between histogram
and contrast has not been precisely quantified.

No mathematical basis exists for the uniformity or near
uniformity of the processed histogram to be an objective of
contrast enhancement in general sense. On the contrary, his-
togram equalization can be detrimental to image interpretation
if carried out mechanically without care. In lack of proper
constraints histogram equalization can over shoot the gradient
amplitude in some narrow intensity range(s) and flatten subtle
smooth shades in other ranges. It can bring unacceptable distor-
tions to image statistics such as average intensity, energy, and
covariances, generating unnatural and incoherent 2-D wave-
forms. To alleviate these shortcomings, a number of different
techniques were proposed to modify the histogram equalization
algorithm [2]–[7]. This line of investigations was initiated by
Pisano et al. in their work of contrast-limited adaptive histogram
equalization (CLAHE) [8]. Somewhat ironically, these authors
had to limit contrast while pursuing contrast enhancement.
Recently, Arici et al. proposed to generate an intermediate
histogram in between the original input histogram and the
uniform histogram and then performs histogram equalization
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of . The in-between histogram is computed by minimizing a
weighted distance . The authors showed
that undesirable side effects of histogramequalization can be
suppressed via choosing the Lagrangian multiplier . This
latest paper also gave a good synopses of existing contrast
enhancement techniques. We refer the reader to [9] for a survey
of previous works, instead of reparaphrasing them here.

Compared with the aforementioned works on histogram-
based contrast enhancement techniques, this paper presents a
more rigorous study of the problem. We reexamine contrast en-
hancement in a new perspective of optimal allocation of output
dynamic range constrained by tune continuity. This brings about
a more principled approach of image enhancement. Our critique
of the current practice is that directly manipulating histograms
for contrast enhancement was ill conceived. The histogram is an
unwieldy, obscure proxy for contrast. The wide use of histogram
equalization as a means of context-free contrast enhancement is
apparently due to the lack of a proper mathematical formulation
of the problem. To fill this void we define an expected (con-
text-free) contrast gain of a transfer function. This relative mea-
sure of contrast takes on its base value of one if the input image
is left unchanged (i.e., identity transfer function), and increases
if a skewed histogram is made more uniform. However, percep-
tual image quality is more than the single aspect of high contrast.
If the output dynamic range is less than that of the human visual
system, which is the case for most display and printing tech-
nologies, context-free contrast enhancement will inevitably dis-
tort subtle tones. To balance between tone subtlety and contrast
enhancement we introduce a counter measure of tone distortion.
Based upon the said measures of contrast gain and tone distor-
tion, we formulate the problem of optimal contrast-tone map-
ping (OCTM) that aims to achieve high contrast and subtle tone
reproduction at the same time, and propose a linear program-
ming strategy to solve the underlying constrained optimization
problem. In the OCTM formulation, the optimal transfer func-
tion for images of uniform histogram is the identify function.
Although an image of uniform histogram cannot be further en-
hanced, histogram equalization does not produce OCTM so-
lutions in general for arbitrary input histograms. Instead, the
proposed linear programming-based OCTM algorithm can op-
timize the transfer function such that sharp contrast and subtle
tone are best balanced according to application requirements
and user preferences. The OCTM technique offers a greater
and more precise control of visual effects than existing tech-
niques of contrast enhancement. Common side effects of con-
trast enhancement, such as contours, shift of average intensity,
over exaggerated gradient, etc., can be effectively suppressed
by imposing appropriate constraints in the linear programming
framework.

In addition, in the OCTM framework, input gray levels can
be mapped to an arbitrary number L of output gray levels, al-
lowing L to be equal, less or greater than . The OCTM tech-
nique is, therefore, suited to output conventional images on high
dynamic range displays or high dynamic range images on con-
ventional displays, with perceptual quality optimized for de-
vice characteristics and image contents. As such, OCTM can be
useful tool in high dynamic range imaging. Moreover, OCTM
can be unified with Gamma correction.

Analogously to global and local histogram equalization,
OCTM can be performed based upon either global or local sta-
tistics. However, in order to make our technical developments
in what follows concrete and focused, we will only discuss the
problem of contrast enhancement over an entire image instead
of adapting to local statistics of different subimages. All the
results and observations can be readily extended to locally
adaptive contrast enhancement.

The remainder of the paper is organized as follows. In the
next section, we introduce some new definitions related to the
intuitive notions of contrast and tone, and propose the OCTM
approach of image enhancement. In Section III, we develop
a linear programming algorithm to solve the OCTM problem.
In Section IV, we discuss how to fine tune output images ac-
cording to application requirements or users’ preferences within
the proposed linear programming framework. Experimental re-
sults are reported in Section V, and they demonstrate the ver-
satility and superior visual quality of the new contrast enhance-
ment technique.

II. CONTRAST AND TONE

Consider a gray scale image of bits with a histogram of
nonzero entries, .

Let be the probability of gray level . We
define the expected context-free contrast of by

(1)

By the definition, the maximum contrast and it
is achieved by a binary black-and-white image

; the minimum contrast when the image is a
constant. As long as the histogram of is full without holes,
i.e., regardless
the intensity distribution . Likewise, if

, then .
Contrast enhancement is to increase the difference between

two adjacent gray levels and it is achieved by a remapping of
input gray levels to output gray levels. Such a remapping is also
necessary when reproducing a digital image of gray levels by
a device of L gray levels, L. This process is an integer-to-
integer transfer function

L (2)

In order not to violate physical and psychovisual common sense,
the transfer function should be monotonically nondecreasing
such that does not reverse the order of intensities.1 In other
words, we must have if and, hence, any
transfer function has the form

L

L (3)

1This restriction may be relaxed in locally adaptive contrast enhancement.
But in each locality the monotonicity should still be imposed.
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Fig. 1. (a) Original. (b) Output of histogram equalization. (c) Output of the proposed OCTM method. (d) Transfer functions and the original histogram.
(e) Histograms of the original image (left), the output image of histogram equalization (middle), and the output image of OCTM.

where is the increment in output intensity versus a unit step
up in input level (i.e., ), and the last inequality
ensures the output dynamic range not exceeded by .

In (3), can be interpreted as context-free contrast at level
, which is the rate of change in output intensity without

considering the pixel context. Note that a transfer function is
completely determined by the vector ,
namely the set of contrasts at all input gray levels. Having
associated the transfer function with context-free contrasts

’s at different levels, we induce from (3) and definition (1) a
natural measure of expected contrast gain made by

(4)

where is the probability that a pixel in has input gray level .
The previous measure conveys the colloquial meaning of con-

trast enhancement. To see this let us examine some special cases.

Proposition 1: The maximum contract gain is achieved
by L such that , and

.
Proof: Assume for a contradiction that

, would achieve higher contrast gain. Due to the con-
straint L equals at most L . But

L L , refuting the previous
assumption.

Proposition 1 reflects our intuition that the highest contrast
is achieved when achieves a single step (thresholding) black
to white transition, converting the input image from gray scale
to binary. The binary threshold is set at level such that

to maximize contrast gain.
One can preserve the average intensity while maximizing the

contrast gain. The average-preserving maximum contrast gain is
achieved by L , such that

. Namely, is the binary thresholding function
at the average gray level.
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Fig. 2. (a) Original. (b) Output of histogram equalization. (c) Output of the proposed OCTM method. (d) Transfer functions and the original histogram.
(e) Histograms of the original image (left), the output image of histogram equalization (middle), and the output image of OCTM.

Fig. 3. (a) Original. (b) Output of histogram equalization. (c) Output of the proposed OCTM method. (d) Transfer functions and the original histogram.

If L (i.e., when the input and output dynamic ranges
are the same), the identity transfer function , namely,

, makes regardless the gray level
distribution of the input image. In our definition, the unit con-
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Fig. 4. (a) Original image before Gamma correction. (b) After Gamma correction. (c) Gamma correction followed by histogram equalization. (d) Joint Gamma
correction and contrast-tone optimization by the proposed OCTM method.

Fig. 5. Comparison of different methods on image Pollen. (a) Original image. (b) HE. (c) CLAHE. (d) OCTM.

trast gain means a neutral contrast level without any enhance-
ment. The notion of neutral contrast can be generalized to the
cases when L. We call L the tone scale. In general,
the transfer function

L
(5)

or equivalently , corresponds to the state of
neutral contrast .

High contrast by itself does not equate high image quality.
Another important aspect of image fidelity is the tone conti-
nuity. A single-minded approach of maximizing would
likely produce over-exaggerated, unnatural visual effects, as re-
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Fig. 6. Comparison of different methods on image Rocks. (a) Original image. (b) HE. (c) CLAHE. (d) OCTM.

vealed by Proposition 1. The resulting degenerates a con-
tinuous-tone image to a binary image. This maximizes the con-
trast of a particular gray level but completely ignores accurate
tone reproduction. We begin our discussions on the tradeoff be-
tween contrast and tone by stating the following simple and yet
informative observation.

Proposition 2: The is
achieved if and only if , or .

As stated previously, the simple linear transfer function, i.e.,
doing nothing in the traditional sense of contrast enhancement,
actually maximizes the minimum of context-free contrasts of
different levels , and the neutral contrast gain largest

is possible when satisfying this maxmin criterion.
In terms of visual effects, the reproduction of continuous

tones demands the transfer function to meet the maxmin crite-
rion of proposition 2. The collapse of distinct gray levels into
one tends to create contours or banding artifacts. In this con-
sideration, we define the tone distortion of a transfer function

by

(6)

In the definition we account for the fact that the transfer function
is not a one-to-one mapping in general. The smaller the

tone distortion the smoother the tone reproduced by .
It is immediate from the definition that the smallest achievable
tone distortion is

However, since the dynamic range Lof the output device is fi-
nite, the two visual quality criteria of high contrast and tone
continuity are in mutual conflict. Therefore, the mitigation of
such an inherent conflict is a critical issue in designing contrast
enhancement algorithms, which is seemingly overlooked in the
existing literature on the subject.

Following the previous discussions, the problem of contrast
enhancement manifests itself as the following optimization
problem

(7)

The OCTM objective function (7) aims for sharpness of high
frequency details and tone subtlety of smooth shades at the same
time, using the Lagrangian multiplier to regulate the relative
importance of the two mutually conflicting fidelity metrics.

Interestingly, the OCTM solution of (7) is if the input
histogram of an image is uniform. It is easy to verify that

for all but when for
. In other words, no other transfer

functions can make any contrast gain over the identity transfer
function (or ), and at the same time the identity
transfer function achieves the minimum tone distortion

. This concludes that an image of uniform his-
togram cannot be further enhanced in OCTM, lending a support
for histogram equalization as a contrast enhancement technique.
For a general input histogram, however, the transfer function of
histogram equalization is not necessarily the OCTM solution,
as we will appreciate in the following sections.
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Fig. 7. Comparison of different methods on image Tree. (a) Original image. (b) HE. (c) CLAHE. (d) OCTM.

III. CONTRAST-TONE OPTIMIZATION BY

LINEAR PROGRAMMING

To motivate the development of an algorithm for solving (7),
it is useful to view contrast enhancement as an optimal resource
allocation problem with constraint. The resource is the output dy-
namic range and the constraint is tone distortion. The achievable
contrast gain and tone distortion are physically con-
fined by the output dynamic range L of the output device. In (4)
the optimization variables represent an alloca-
tion of L available output intensity levels, each competing for a
larger piece of dynamic range. While contrast enhancement nec-
essarily invokes a competition for dynamic range (an insufficient
resource), a highly skewed allocation of L output levels to input
levels can deprive some input gray levels of necessary represen-
tations, incurring tone distortion. This causes unwanted side ef-
fects, such as flattened subtle shades, unnatural contour bands,
shifted average intensity, and etc. Such artifacts were noticed by
other researchers as drawbacks of the original histogram equal-
ization algorithm, and they proposed a number of ad hoc. tech-
niques to alleviate these artifacts by reshaping the original his-
togram prior to the equalization process. In OCTM, however, the

control of undesired side effects of contrast enhancement is re-
alized by the use of constraints when maximizing contrast gain

.
Since the tone distortion function is not linear in , di-

rectly solving (7) is difficult. Instead, we rewrite (7) as the fol-
lowing constrained optimization problem:

subject to L

(8)

In (8), constraint (a) is to confine the output intensity level to the
available dynamic range; constraints (b) ensure that the transfer
function be monotonically nondecreasing; constraints (c)
specify the maximum tone distortion allowed, where is an
upper bound . The objective function and all the con-
straints are linear in . The choice of depends upon user’s re-
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Fig. 8. Comparison of different methods on image Notre Dame. (a) Original image. (b) HE. (c) CLAHE. (d) OCTM.

quirement on tone continuity. In our experiments, pleasing vi-
sual appearance is typically achieved by setting to 2 or 3.

Computationally, the OCTM problem formulated in (8) is one
of integer programming. This is because the transfer function

is an integer-to-integer mapping, i.e., all components of
are integers. But we relax the integer constraints on and

convert (8) to a linear programming problem. By the relax-
ation any solver of linear programming can be used to solve
the real version of (8). The resulting real-valued solution

can be easily converted to an integer-valued
transfer function

(9)

For all practical considerations the proposed relaxation solu-
tion does not materially compromise the optimality. As a ben-
eficial side effect, the linear programming relaxation simplifies
constraint (c) in (8), and allows the contrast-tone optimization
problem to be stated as

subject to L

(10)

IV. FINE TUNING OF VISUAL EFFECTS

The proposed OCTM technique is general and it can achieve
desired visual effects by including additional constraints in (10).
We demonstrate the generality and flexibility of the proposed
linear programming framework for OCTM by some of many
possible applications.

The first example is the integration of Gamma correction into
contrast-tone optimization. The optimized transfer function

can be made close to the Gamma transfer function by
adding to (10) the following constraint:

(11)

where is the Gamma parameter and is the degree of close-
ness between the resulting and the Gamma mapping

.
In applications when the enhancement process cannot change

the average intensity of the input image by certain amount ,
the user can impose this restriction easily in (10) by adding an-
other linear constraint

L
(12)
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Fig. 9. Results of different methods on image Rocks of noise, to be compared with those in Fig. 6. (a) Noisy image. (b) HE. (c) CLAHE. (d) OCTM.

Besides the use of constraints in the linear programming
framework, we can incorporate context-based or seman-
tics-based fidelity criteria directly into the OCTM objective
function. The contrast gain depends only
upon the intensity distribution of the input image. We can
augment by weighing in the semantic or perceptual
importance of increasing the contrast at different gray levels
by . In general, can be set up to reflect
specific requirements of different applications. In medical
imaging, for example, the physician can read an image of
gray levels on an L-level monitor, L , with a certain range
of gray levels enhanced. Such a weighting
function presents itself naturally if there is a preknowledge
that the interested anatomy or lesion falls into the intensity
range for given imaging modality. In combining image
statistics and domain knowledge or/and user preference, we
introduce a weighted contrast gain function

(13)

where is a Lagrangian multiplier to factor in user-prioritized
contrast into the objective function.

In summarizing all of the previous discussions, we finally
present the following general linear programming framework
for visual quality enhancement

subject to L

L

L
(14)

In this paper, we focus on global contrast-tone optimization.
The OCTM technique can be applied separately to different
image regions and, hence, made adaptive to local image sta-
tistics. The idea is similar to that of local histogram equaliza-
tion. However, in locally adaptive histogram equalization [8],
[10], each region is processed independently of others. A linear
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Fig. 10. Results of different methods on image Notre Dame of noise, to be compared with those in Fig. 8. (a) Noisy image. (b) HE. (c) CLAHE. (d) OCTM.

weighting scheme is typically used to fuse the results of neigh-
boring blocks to prevent block effects. In contrast, the proposed
linear programming approach can optimize the contrasts and
tones of adjacent regions jointly while limiting the divergence
of the transfer functions of these regions. The only drawback
is the increase in complexity. Further investigations in locally
adaptive OCTM are underway.

V. EXPERIMENTAL RESULTS

Figs. 1–4 present some sample images that are enhanced by
the OCTM technique in comparison with those produced by
conventional histogram equalization (HE). The transfer func-
tions of both enhancement techniques are also plotted in accom-
pany with the corresponding input histograms to show different
behaviors of the two techniques in different image statistics.

In image Beach (Fig. 1), the output of histogram equalization
is too dark in overall appearance because the original histogram
is skewed toward the bright range. But the OCTM method en-
hances the original image without introducing unacceptable dis-
tortion in average intensity. This is partially because of the con-
straint in linear programming that bounds the relative difference
( % in this instance) between the average intensities of the
input and output images.

Fig. 2 compares the results of histogram equalization and the
OCTM method when they are applied to a common portrait
image. In this example histogram equalization overexposes the
input image, causing an opposite side effect as in image Beach,
whereas the OCTM method obtains high contrast, tone conti-
nuity and small distortion in average intensity at the same time.

Fig. 3 shows an example when the user assigns higher weights
in (14) to gray levels , where

is an intensity range of interest (brain matters in the head image).
The improvement of OCTM over histogram equalization in this
typical scenario of medical imaging is very significant.

In Fig. 4, the result of joint Gamma correction and contrast-
tone optimization by the OCTM technique is shown, and com-
pared with those in difference stages of the separate Gamma cor-
rection and histogram equalization process. The image quality
of OCTM is clearly superior to that of the separation method.

The new OCTM approach is also compared with the
well-known contrast-limited adaptive histogram equalization
(CLAHE) [8] in visual quality. CLAHE is considered to be one
of the best contrast enhancement techniques, and it alleviates
many of the problems of histogram equalization, such as over-
or under-exposures, tone discontinuities, and etc. Figs. 5–8
are side-by-side comparisons of OCTM, CLAHE, and HE.
CLAHE is clearly superior to HE in perceptual quality, as well
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recognized in the existing literature and among practitioners,
but it is somewhat inferior to OCTM in overall image quality,
particularly in the balance of sharp details and subtle tones.
In fact, the OCTM technique was assigned and implemented
as a course project in one of the author’s classes. There was a
consensus on the superior subjective quality of OCTM over HE
and its variants among more than one hundred students.

Finally, in Figs. 9 and 10, we empirically assess the sensitivity
of OCTM to noises in comparison with histogram-based con-
trast enhancement methods. Since contrast enhancement tends
to boost high frequency signal components, it is difficult but
highly desirable for a contrast enhancement algorithm to resist
noises. By inspecting the output images of different algorithms
in Figs. 9 and 10, it should be apparent that OCTM is more re-
sistant to noises than HE and CLAHE. This is because OCTM
can better balance the increase in contrast and the smoothness
in tone.

VI. CONCLUSION

A new, general image enhancement technique of optimal con-
trast-tone mapping is proposed. The resulting OCTM problem
can be solved efficiently by linear programming. The OCTM
solution can increase image contrast while preserving tone con-
tinuity, two conflicting quality criteria that were not handled and
balanced as well in the past.
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