

Color Image Processing

- The use of color in image processing is motivated by:

1. Color is important in object recognition
2. Human eyes can discern thousands of colors

- Color image processing:

1. Full color image processing
2. Pseudo color processing

- Full color processing: image is acquired by a full-color sensor
- Pseudo color processing: assigning a shade of color to a particular monochrome intensity or range of intensities

2

Color Image Processing

- In 1666 Newton discovered that a beam of sunlight passed through a prism will break into a spectrum of colors ranging from violet at one end to red at the other
- Color spectrum: violet, blue, green yellow, orange, and red.
- No color in the spectrum end abruptly

Color Image Processing

- Color perceived from an object is determined by the nature of light reflected from that object.
- An object reflecting light that is balanced in all visible light appears white.
- An object that favors reflectance in a limited range of the visible spectrum exhibits a specific color

Color Image Processing

- Achromatic light (without color) is described by intensity (amount)
- Chromatic light is described by 3 quantities:

1. Radiance
2. Luminance
3. Brightness

- Radiance: total amount of energy that flows from the light source
- Luminance: a measure of the amount of energy an observer perceives from a light source
- Infrared source: zero luminance
- Brightness: a subjective quantity

Color image processing

- Cones can be divided into three principal sensing categories: red, green and blue

Color image processing

- One color from another is distinguished by 3 factors: 1. Brightness

2. Hue
3. Saturation

- Hue: dominant wavelength (color) in a mixture of light waves
- Saturation: relative purity or the amount of white light mixed with a hue
- Pink is less saturated than red

9

Color image processing

- Color TV: an example of the additive nature of light colors
- Interior of TV tube: a large array of triangular dot patterns of electron sensitive phosphor
- Each dot in a triangle produces one of the primary colors
- Intensity of red-emitting phosphor is modulated by an electron gun.
- Similarly for green-emitting and blue-emitting
- Three primary colors are added and received by the eye as a full-color image

Color image processing

- The amounts of red, green and blue needed to form a particular color are called tri-stimulus $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
- A color is specified by its tri-chromatic coefficients:
$\mathrm{x}=\mathrm{X} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
$\mathrm{y}=\mathrm{Y} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
$\mathrm{z}=\mathrm{Z} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
- $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$

- Another approach for specifying colors is to use CIE chromaticity diagram which shows color composition as a function of x (red) and y (green).
- Various spectrum colors are indicated around the boundary of tongueshaped diagram (pure colors).

11

- Any point not actually on the boundary represents some mixture of spectrum colors
- Any point on the boundary of chart is fully saturated.
- A straight line segment joining any two points in the diagram defines all different colors that can be obtained by combining these two colors additively.
- A line drawn from the point of equal energy (white) to any point on the boundary will define all the shades on that color
- To determine colors that can be obtained from any three given colors, we draw connecting lines to each of the three color points
- Any color inside the triangle can be produced by various combinations of the three initial colors

McMaster

Color Models (color space or color system)

- Color models: used to specify colors in a standard way
- Color model is a coordinate system where each color is represented by a single point
- RGB (red, green, blue)
- CMY (cyan, magenta, yellow)
- HIS (hue, saturation, intensity)

RGB

- Each color appears in its primary spectral components of red, green and blue
- Different colors in this model are points on or inside the cube
- Number of bits used to represent each pixel in RGB space is called the pixel depth
- If 8 bit is used to represent each color, 24-bit RGB color image is obtained
- Total number of colors: $\left(2^{8}\right)^{3}$
 15

Color image processing

- Each model is oriented toward a hardware or application.
- RGB: color monitors, cameras, color image processing
- CMY: color monitor
- HIS: color image processing
- HIS has the advantage that it decouples color and gray level information in an image making it suitable for many gray scale techniques discussed before

HSI

- RGB and CMY color models are not well suited for describing colors in terms that are practical for human interpretation
- HSI (hue, saturation and intensity) decouples intensity components from the color-carrying information
- Hue: dominant color
- Saturation: relative purity or the amount of white mixed with a hue

HSI	
$I=(R+G+B) / 3$	
$S=1-\frac{3}{(R+G+B)}[\min (R, G, B)]$	
$\begin{aligned} & H=\left\{\begin{array}{ccc} \theta & \text { if } & B \leq G \\ 360-\theta & \text { if } & B>G \end{array}\right. \\ & \theta=\cos ^{-1}\left\{\frac{[(R-G)+(R-B)] / 2}{\left[(R-G)^{2}+(R-B)(G-B)\right]^{1 / 2}}\right\} \end{aligned}$	
McMaster Universiy	19

Manipulating HSI

- We can manipulate H , S and I independently and then convert them back to RGB to see the effects.
- Changing to 0 the blue and green regions in Hue image
- Reduce by half the saturation of the cyan region
- Reduce by half the intensity of central white region

Pseudo-color image processing

Pseudo-color image processing

Gray-level to color transformations:

- Three different transformations are performed on the graylevel image
- The results are fed into red, green, and blue guns of a color display

