Chapter 4: Unconstrained Optimization

- Unconstrained optimization problem $\min_x F(x)$ or $\max_x F(x)$
- Constrained optimization problem

$$\min_{x} F(x) \text{ or } \max_{x} F(x)$$

subject to $g(x) = 0$
and/or $h(x) < 0 \text{ or } h(x) > 0$

Example: minimize the outer area of a cylinder subject to a fixed volume. Objective function

$$F(x) = 2\pi r^2 + 2\pi rh, \ x = \begin{bmatrix} r\\h \end{bmatrix}$$

Constraint: $2\pi r^2 h = V$

Outline:

- Part I: one-dimensional unconstrained optimization
 - Analytical method
 - Newton's method
 - Golden-section search method
- Part II: multidimensional unconstrained optimization
 - Analytical method
 - Gradient method steepest ascent (descent) method
 - Newton's method

1 Analytical approach (1-D)

 $\min_x F(x)$ or $\max_x F(x)$

- Let F'(x) = 0 and find $x = x^*$.
- If $F''(x^*) > 0$, $F(x^*) = \min_x F(x)$, x^* is a local minimum of F(x);
- If $F''(x^*) < 0$, $F(x^*) = \max_x F(x)$, x^* is a local maximum of F(x);
- If $F''(x^*) = 0$, x^* is a critical point of F(x)

Example 1: $F(x) = x^2$, F'(x) = 2x = 0, $x^* = 0$. $F''(x^*) = 2 > 0$. Therefore, $F(0) = \min_x F(x)$

Example 2: $F(x) = x^3$, $F'(x) = 3x^2 = 0$, $x^* = 0$. $F''(x^*) = 0$. x^* is not a local minimum nor a local maximum.

Example 3: $F(x) = x^4$, $F'(x) = 4x^3 = 0$, $x^* = 0$. $F''(x^*) = 0$. In example 2, F'(x) > 0 when $x < x^*$ and F'(x) > 0 when $x > x^*$. In example 3, x^* is a local minimum of F(x). F'(x) < 0 when $x < x^*$ and F'(x) > 0 when $x > x^*$.

Figure 1: Example of constrained optimization problem

2 Newton's Method

 $\min_x F(x)$ or $\max_x F(x)$ Use x_k to denote the current solution.

$$F(x_k + p) = F(x_k) + pF'(x_k) + \frac{p^2}{2}F''(x_k) + \dots$$

$$\approx F(x_k) + pF'(x_k) + \frac{p^2}{2}F''(x_k)$$

$$F(x^*) = \min_{x} F(x) \approx \min_{p} F(x_k + p)$$
$$\approx \min_{p} \left[F(x_k) + pF'(x_k) + \frac{p^2}{2}F''(x_k) \right]$$

Let

$$\frac{\partial F(x)}{\partial p} = F'(x_k) + pF''(x_k) = 0$$

we have

$$p = -\frac{F'(x_k)}{F''(x_k)}$$

Newton's iteration

$$x_{k+1} = x_k + p = x_k - \frac{F'(x_k)}{F''(x_k)}$$

Example: find the maximum value of $f(x) = 2 \sin x - \frac{x^2}{10}$ with an initial guess of $x_0 = 2.5$. Solution:

$$f'(x) = 2\cos x - \frac{2x}{10} = 2\cos x - \frac{x}{5}$$

$$f''(x) = -2\sin x - \frac{1}{5}$$
$$x_{i+1} = x_i - \frac{2\cos x_i - \frac{x_i}{5}}{-2\sin x_i - \frac{1}{5}}$$

 $x_0 = 2.5, x_1 = 0.995, x_2 = 1.469.$

Comments:

- Same as N.-R. method for solving F'(x) = 0.
- Quadratic convergence, $|x_{k+1} x^*| \le \beta |x_k x^*|^2$
- May diverge
- Requires both first and second derivatives
- Solution can be either local minimum or maximum

3 Golden-section search for optimization in 1-D

 $\max_x F(x) (\min_x F(x) \text{ is equivalent to } \max_x -F(x))$ Assume: only 1 peak value (x^*) in (x_l, x_u) Steps:

- 1. Select $x_l < x_u$
- 2. Select 2 intermediate values, x_1 and x_2 so that $x_1 = x_l + d$, $x_2 = x_u d$, and $x_1 > x_2$.
- 3. Evaluate $F(x_1)$ and $F(x_2)$ and update the search range

- If
$$F(x_1) < F(x_2)$$
, then $x^* < x_1$. Update $x_l = x_l$ and $x_u = x_1$.
- If $F(x_1) > F(x_2)$, then $x^* > x_2$. Update $x_l = x_2$ and $x_u = x_u$.
- If $F(x_1) = F(x_2)$, then $x_2 < x^* < x_1$. Update $x_l = x_2$ and $x_u = x_1$.

4. Estimate

 $x^* = x_1$ if $F(x_1) > F(x_2)$, and $x^* = x_2$ if $F(x_1) < F(x_2)$

Figure 2: Golden search: updating search range

• Calculate ϵ_a . If $\epsilon_a < \epsilon_{threshold}$, end.

$$\epsilon_a = \left| \frac{x_{\text{new}} - x_{\text{old}}}{x_{\text{new}}} \right| \times 100\%$$

<u>The choice of d</u>

- Any values can be used as long as $x_1 > x_2$.
- If d is selected appropriately, the number of function evaluations can be minimized.

Figure 3: Golden search: the choice of d

$$d_0 = l_1, d_1 = l_2 = l_0 - d_0 = l_0 - l_1$$
. Therefore, $l_0 = l_1 + l_2$.
 $\frac{l_0}{d_0} = \frac{l_1}{d_1}$. Then $\frac{l_0}{l_1} = \frac{l_1}{l_2}$.
 $l_1^2 = l_0 l_2 = (l_1 + l_2) l_2$. Then $1 = \left(\frac{l_2}{l_1}\right)^2 + \frac{l_2}{l_1}$.

Define $r = \frac{d_0}{l_0} = \frac{d_1}{l_1} = \frac{l_2}{l_1}$. Then $r^2 + r - 1 = 0$, and $r = \frac{\sqrt{5}-1}{2} \approx 0.618$ $d = r(x_u - x_l) \approx 0.618(x_u - x_l)$ is referred to as the golden value. <u>Relative error</u>

$$\epsilon_a = \left| \frac{x_{\text{new}} - x_{\text{old}}}{x_{\text{new}}} \right| \times 100\%$$

Consider $F(x_2) < F(x_1)$. That is, $x_l = x_2$, and $x_u = x_u$. For case (a), $x^* > x_2$ and x^* closer to x_2 .

$$\Delta x \leq x_1 - x_2 = (x_l + d) - (x_u - d)$$

= $(x_l - x_u) + 2d = (x_l - x_u) + 2r(x_u - x_l)$
= $(2r - 1)(x_u - x_l) \approx 0.236(x_u - x_l)$

For case (b), $x^* > x_2$ and x^* closer to x_u .

$$\Delta x \leq x_u - x_1 = x_u - (x_l + d) = x_u - x_l - d = (x_u - x_l) - r(x_u - x_l) = (1 - r)(x_u - x_l) \approx 0.382(x_u - x_l)$$

Therefore, the maximum absolute error is $(1 - r)(x_u - x_l) \approx 0.382(x_u - x_l)$.

$$\epsilon_a \leq \left| \frac{\Delta x}{x^*} \right| \times 100\%$$

$$\leq \frac{(1-r)(x_u - x_l)}{|x^*|} \times 100\%$$

$$= \frac{0.382(x_u - x_l)}{|x^*|} \times 100\%$$

Example: Find the maximum of $f(x) = 2 \sin x - \frac{x^2}{10}$ with $x_l = 0$ and $x_u = 4$ as the starting search range.

Solution:

Iteration 1: $x_l = 0$, $x_u = 4$, $d = \frac{\sqrt{5}-1}{2}(x_u - x_l) = 2.472$, $x_1 = x_l + d = 2.472$, $x_2 = x_u - d = 1.528$. $f(x_1) = 0.63$, $f(x_2) = 1.765$. Since $f(x_2) > f(x_1)$, $x^* = x_2 = 1.528$, $x_l = x_l = 0$ and $x_u = x_1 = 2.472$. Iteration 2: $x_l = 0$, $x_u = 2.472$, $d = \frac{\sqrt{5}-1}{2}(x_u - x_l) = 1.528$, $x_1 = x_l + d = 1.528$, $x_2 = x_u - d = 0.944$. $f(x_1) = 1.765$, $f(x_2) = 1.531$. Since $f(x_1) > f(x_2)$, $x^* = x_1 = 1.528$, $x_l = x_2 = 0.944$ and $x_u = x_u = 2.472$. Multidimensional Unconstrained Optimization

4 Analytical Method

• Definitions:

- If f(x, y) < f(a, b) for all (x, y) near (a, b), f(a, b) is a local maximum; - If f(x, y) > f(a, b) for all (x, y) near (a, b), f(a, b) is a local minimum.

• If f(x, y) has a local maximum or minimum at (a, b), and the first order partial derivatives of f(x, y) exist at (a, b), then

$$\frac{\partial f}{\partial x}|_{(a,b)} = 0$$
, and $\frac{\partial f}{\partial y}|_{(a,b)} = 0$

• If

$$\frac{\partial f}{\partial x}|_{(a,b)} = 0 \text{ and } \frac{\partial f}{\partial y}|_{(a,b)} = 0,$$

then (a, b) is a critical point or stationary point of f(x, y).

• If

$$\frac{\partial f}{\partial x}|_{(a,b)} = 0 \text{ and } \frac{\partial f}{\partial y}|_{(a,b)} = 0$$

and the second order partial derivatives of f(x, y) are continuous, then

- When |H| > 0 and $\frac{\partial^2 f}{\partial x^2}|_{(a,b)} < 0$, f(a,b) is a local maximum of f(x,y).
- When |H| > 0 and $\frac{\partial^2 f}{\partial x^2}|_{(a,b)} > 0$, f(a,b) is a local minimum of f(x,y).
- When |H| < 0, f(a, b) is a saddle point.

Hessian of f(x, y):

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

•
$$|H| = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial^2 f}{\partial y \partial x}$$

• When $\frac{\partial^2 f}{\partial x \partial y}$ is continuous, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.
• When $|H| > 0$, $\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} > 0$.
Example (saddle point): $f(x, y) = x^2 - y^2$.
 $\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = -2y$.
Let $\frac{\partial f}{\partial x} = 0$, then $x^* = 0$. Let $\frac{\partial f}{\partial y} = 0$, then $y^* = 0$.

Therefore, (0,0) is a critical point.

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} (2x) = 2, \\ \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (-2y) = -2 \\ \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x} (-2y) = 0, \\ \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (2x) = 0 \\ |H| &= \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial^2 f}{\partial y \partial x} = -4 < 0 \\ \end{split}$$
Therefore, $(x^*, y^*) = (0, 0)$ is a saddle maximum.

Example:
$$f(x, y) = 2xy + 2x - x^2 - 2y^2$$
, find the optimum of $f(x, y)$.

Solution:

$$\frac{\partial f}{\partial x} = 2y + 2 - 2x, \frac{\partial f}{\partial y} = 2x - 4y.$$

Let $\frac{\partial f}{\partial x} = 0, -2x + 2y = -2.$
Let $\frac{\partial f}{\partial y} = 0, 2x - 4y = 0.$
Then $x^* = 2$ and $y^* = 1$, i.e., $(2, 1)$ is a critical point.
 $\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x}(2y + 2 - 2x) = -2$
 $\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y}(2x - 4y) = -4$
 $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x}(2x - 4y) = 2$, or

Figure 4: Saddle point

$$\begin{split} &\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (2y + 2 - 2x) = 2 \\ &|H| = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial^2 f}{\partial y \partial x} = (-2) \times (-4) - 2^2 = 4 > 0 \\ &\frac{\partial^2 f}{\partial x^2} < 0. \ (x^*, y^*) = (2, 1) \text{ is a local maximum.} \end{split}$$

5 Steepest Ascent (Descent) Method

Idea: starting from an initial point, find the function maximum (minimum) along the steepest direction so that shortest searching time is required.

Steepest direction: directional derivative is maximum in that direction — gradient direction.

Directional derivative

$$D_h f(x, y) = \frac{\partial f}{\partial x} \cdot \cos \theta + \frac{\partial f}{\partial y} \cdot \sin \theta = \left\langle \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}' \cdot \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix}' \right\rangle$$

 $\left\langle \cdot \right\rangle$: inner product

Gradient

When $\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}'$ is in the same direction as $\begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix}'$, the directional derivative is maximized. This direction is called gradient of f(x, y). The gradient of a 2-D function is represented as $\nabla f(x, y) = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j}$, or $\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}'$.

The gradient of an *n*-D function is represented as $\nabla f(\vec{X}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}'$, where $\vec{X} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}'$

Example: $f(x, y) = xy^2$. Use the gradient to evaluate the path of steepest ascent at (2,2).

Solution:

$$\begin{aligned} \frac{\partial f}{\partial x} &= y^2, \frac{\partial f}{\partial y} = 2xy. \\ \frac{\partial f}{\partial x}|_{(2,2)} &= 2^2 = 4, \frac{\partial f}{\partial y}|_{(2,2)} = 2 \times 2 \times 2 = 8 \\ \text{Gradient: } \nabla f(x,y) &= \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} = 4\vec{i} + 8\vec{j} \\ \theta &= \tan^{-1}\frac{8}{4} = 1.107, \text{ or } 63.4^o. \\ \cos \theta &= \frac{4}{\sqrt{4^2 + 8^2}}, \sin \theta = \frac{8}{\sqrt{4^2 + 8^2}}. \end{aligned}$$

Directional derivative at (2,2): $\frac{\partial f}{\partial x} \cdot \cos \theta + \frac{\partial f}{\partial y} \cdot \sin \theta = 4\cos \theta + 8\sin \theta = 8.944 \end{aligned}$

If
$$\theta' \neq \theta$$
, for example, $\theta' = 0.5325$, then
 $D_{h'}f|_{(2,2)} = \frac{\partial f}{\partial x} \cdot \cos \theta' + \frac{\partial f}{\partial y} \cdot \sin \theta' = 4\cos \theta' + 8\sin \theta' = 7.608 < 8.944$

Steepest ascent method

Ideally:

- Start from (x_0, y_0) . Evaluate gradient at (x_0, y_0) .
- Walk for a tiny distance along the gradient direction till (x_1, y_1) .
- Reevaluate gradient at (x_1, y_1) and repeat the process.

Pros: always keep steepest direction and walk shortest distance Cons: not practical due to continuous reevaluation of the gradient.

Practically:

- Start from (x_0, y_0) .
- Evaluate gradient (*h*) at (x_0, y_0) .

- Evaluate f(x, y) in direction h.
- Find the maximum function value in this direction at (x_1, y_1) .
- Repeat the process until (x_{i+1}, y_{i+1}) is close enough to (x_i, y_i) .

 $\underline{\text{Find } \vec{X_{i+1}} \text{ from } \vec{X_i}}$

For a 2-D function, evaluate f(x, y) in direction h:

$$g(\alpha) = f(x_i + \frac{\partial f}{\partial x}|_{(x_i, y_i)} \cdot \alpha, y_i + \frac{\partial f}{\partial y}|_{(x_i, y_i)} \cdot \alpha)$$

where α is the coordinate in *h*-axis.

For an *n*-D function $f(\vec{X})$,

$$g(\alpha) = f(\vec{X} + \nabla f|_{(\vec{X_i})} \cdot \alpha)$$

Let $g'(\alpha) = 0$ and find the solution $\alpha = \alpha^*$.

Update
$$x_{i+1} = x_i + \frac{\partial f}{\partial x}|_{(x_i, y_i)} \cdot \alpha^*, y_{i+1} = y_i + \frac{\partial f}{\partial y}|_{(x_i, y_i)} \cdot \alpha^*.$$

Figure 5: Illustration of steepest ascent

Figure 6: Relationship between an arbitrary direction h and x and y coordinates

Example:
$$f(x, y) = 2xy + 2x - x^2 - 2y^2$$
, $(x_0, y_0) = (-1, 1)$.

First iteration:

$$\begin{aligned} x_0 &= -1, y_0 = 1. \\ \frac{\partial f}{\partial x}|_{(-1,1)} &= 2y + 2 - 2x|_{(-1,1)} = 6, \frac{\partial f}{\partial y}|_{(-1,1)} = 2x - 4y|_{(-1,1)} = -6 \\ \nabla f &= 6\vec{i} - 6\vec{j} \end{aligned}$$

$$g(\alpha) = f(x_0 + \frac{\partial f}{\partial x}|_{(x_0,y_0)} \cdot \alpha, y_0 + \frac{\partial f}{\partial y}|_{(x_0,y_0)} \cdot \alpha) = f(-1 + 6\alpha, 1 - 6\alpha) \\ &= 2 \times (-1 + 6\alpha) \cdot (1 - 6\alpha) + 2(-1 + 6\alpha) - (-1 + 6\alpha)^2 - 2(1 - 6\alpha)^2 \\ &= -180\alpha^2 + 72\alpha - 7 \end{aligned}$$

$$g'(\alpha) = -360\alpha + 72 = 0, \ \alpha^* = 0.2.$$

$$\begin{aligned} x_1 &= x_0 + \frac{\partial f}{\partial x}|_{(x_0, y_0)} \cdot \alpha^* = -1 + 6 \times 0.2 = 0.2, \\ y_1 &= y_0 + \frac{\partial f}{\partial y}|_{(x_0, y_0)} \cdot \alpha^* = 1 - 6 \times 0.2 = -0.2 \\ -0.2 \\ \frac{\partial f}{\partial x}|_{(0.2, -0.2)} &= 2y + 2 - 2x|_{(0.2, -0.2)} = 2 \times (-0.2) + 2 - 2 \times 0.2 = 1.2, \\ \frac{\partial f}{\partial y}|_{(0.2, -0.2)} &= 2x - 4y|_{(0.2, -0.2)} = 2 \times 0.2 - 4 \times (-0.2) = 1.2 \end{aligned}$$

$$\begin{aligned} \nabla f &= 1.2\vec{i} + 1.2\vec{j} \\ g(\alpha) &= f(x_1 + \frac{\partial f}{\partial x}|_{(x_1,y_1)} \cdot \alpha, y_1 + \frac{\partial f}{\partial y}|_{(x_1,y_1)} \cdot \alpha) \\ &= f(0.2 + 1.2\alpha, -0.2 + 1.2\alpha) \\ &= 2 \times (0.2 + 1.2\alpha) \cdot (-0.2 + 1.2\alpha) + 2(0.2 + 1.2\alpha) \\ &- (0.2 + 1.2\alpha)^2 - 2(-0.2 + 1.2\alpha)^2 \\ &= -1.44\alpha^2 + 2.88\alpha + 0.2 \end{aligned}$$

 $g'(\alpha) = -2.88\alpha + 2.88 = 0, \, \alpha^* = 1.$

Third iteration:

 $x_2 = x_1 + \frac{\partial f}{\partial x}|_{(x_1, y_1)} \cdot \alpha^* = 0.2 + 1.2 \times 1 = 1.4, \ y_2 = y_1 + \frac{\partial f}{\partial y}|_{(x_1, y_1)} \cdot \alpha^* = -0.2 + 1.2 \times 1 = 1$

 $(x^*, y^*) = (2, 1)$

6 Newton's Method

Extend the Newton's method for 1-D case to multidimensional case. Given $f(\vec{X})$, approximate $f(\vec{X})$ by a second order Taylor series at $\vec{X} = \vec{X_i}$:

$$f(\vec{X}) \approx f(\vec{X}_i) + \nabla f'(\vec{X}_i)(\vec{X} - \vec{X}_i) + \frac{1}{2}(\vec{X} - \vec{X}_i)' H_i(\vec{X} - \vec{X}_i)$$

where H_i is the Hessian matrix

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ & \ddots & & \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

At the maximum (or minimum) point, $\frac{\partial f(\vec{X})}{\partial x_j} = 0$ for all j = 1, 2, ..., n, or $\nabla f = \vec{0}$. Then

$$\nabla f(\vec{X}_i) + H_i(\vec{X} - \vec{X}_i) = 0$$

If H_i is non-singular,

$$\vec{X} = \vec{X}_i - H_i^{-1} \nabla f(\vec{X}_i)$$

Iteration:
$$\vec{X}_{i+1} = \vec{X}_i - H_i^{-1} \nabla f(\vec{X}_i)$$

Example:
$$f(\vec{X}) = 0.5x_1^2 + 2.5x_2^2$$

 $\nabla f(\vec{X}) = \begin{bmatrix} x_1 \\ 5x_2 \end{bmatrix}$
 $H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$
 $\vec{X}_0 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}, \vec{X}_1 = \vec{X}_0 - H^{-1} \nabla f(\vec{X}_0) = \begin{bmatrix} 5 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Comments: Newton's method

- Converges quadratically near the optimum
- Sensitive to initial point
- Requires matrix inversion
- Requires first and second order derivatives