
Chapter 4: Unconstrained Optimization

• Unconstrained optimization problem minx F (x) or maxx F (x)

• Constrained optimization problem

min
x

F (x) or max
x

F (x)

subject to g(x) = 0

and/or h(x) < 0 or h(x) > 0

Example: minimize the outer area of
a cylinder subject to a fixed volume.
Objective function

F (x) = 2πr2 + 2πrh, x =
[r

h

]

Constraint: 2πr2h = V
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Outline:

• Part I: one-dimensional unconstrained optimization

– Analytical method
– Newton’s method
– Golden-section search method

• Part II: multidimensional unconstrained optimization

– Analytical method
– Gradient method — steepest ascent (descent) method
– Newton’s method
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PART I: One-Dimensional Unconstrained Optimization Techniques

1 Analytical approach (1-D)

minx F (x) or maxx F (x)

• Let F
′
(x) = 0 and find x = x∗.

• If F
′′
(x∗) > 0, F (x∗) = minx F (x), x∗ is a local minimum of F (x);

• If F
′′
(x∗) < 0, F (x∗) = maxx F (x), x∗ is a local maximum of F (x);

• If F
′′
(x∗) = 0, x∗ is a critical point of F (x)

Example 1: F (x) = x2, F
′
(x) = 2x = 0, x∗ = 0. F

′′
(x∗) = 2 > 0. Therefore,

F (0) = minx F (x)

Example 2: F (x) = x3, F
′
(x) = 3x2 = 0, x∗ = 0. F

′′
(x∗) = 0. x∗ is not a local

minimum nor a local maximum.
Example 3: F (x) = x4, F

′
(x) = 4x3 = 0, x∗ = 0. F

′′
(x∗) = 0.

In example 2, F
′
(x) > 0 when x < x∗ and F

′
(x) > 0 when x > x∗.

In example 3, x∗ is a local minimum of F (x). F
′
(x) < 0 when x < x∗ and

F
′
(x) > 0 when x > x∗.
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F’’(x)=0
F’(x)<0 F’(x)>0
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Figure 1: Example of constrained optimization problem

2 Newton’s Method

minx F (x) or maxx F (x)

Use xk to denote the current solution.

F (xk + p) = F (xk) + pF
′
(xk) +

p2

2
F
′′
(xk) + . . .

≈ F (xk) + pF
′
(xk) +

p2

2
F
′′
(xk)
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F (x∗) = min
x

F (x) ≈ min
p

F (xk + p)

≈ min
p

[
F (xk) + pF

′
(xk) +

p2

2
F
′′
(xk)

]

Let
∂F (x)

∂p
= F

′
(xk) + pF

′′
(xk) = 0

we have

p = −F
′
(xk)

F ′′(xk)

Newton’s iteration

xk+1 = xk + p = xk − F
′
(xk)

F ′′(xk)

Example: find the maximum value of f (x) = 2 sin x − x2

10 with an initial guess
of x0 = 2.5.
Solution:

f
′
(x) = 2 cos x− 2x

10
= 2 cos x− x

5
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f
′′
(x) = −2 sin x− 1

5

xi+1 = xi −
2 cos xi − xi

5

−2 sin xi − 1
5

x0 = 2.5, x1 = 0.995, x2 = 1.469.

Comments:

• Same as N.-R. method for solving F
′
(x) = 0.

• Quadratic convergence, |xk+1 − x∗| ≤ β|xk − x∗|2
• May diverge

• Requires both first and second derivatives

• Solution can be either local minimum or maximum
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3 Golden-section search for optimization in 1-D

maxx F (x) (minx F (x) is equivalent to maxx−F (x))
Assume: only 1 peak value (x∗) in (xl, xu)

Steps:

1. Select xl < xu

2. Select 2 intermediate values, x1 and x2 so that x1 = xl + d, x2 = xu − d, and
x1 > x2.

3. Evaluate F (x1) and F (x2) and update the search range

– If F (x1) < F (x2), then x∗ < x1. Update xl = xl and xu = x1.
– If F (x1) > F (x2), then x∗ > x2. Update xl = x2 and xu = xu.
– If F (x1) = F (x2), then x2 < x∗ < x1. Update xl = x2 and xu = x1.

4. Estimate
x∗ = x1 if F (x1) > F (x2), and
x∗ = x2 if F (x1) < F (x2)
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F(x1)>F(x2)

(new       )Xl(new       )

Xl(new       ) Xu(new       )

Xl(new       ) Xu(new       )

Xl X2 X1 Xu

Xl(new       ) Xu(new       )

Xl XuX1X2

Xl X2 X1 Xu

F(x1)<F(x2)

Xl XuX1X2

Xu

Figure 2: Golden search: updating search range

• Calculate εa. If εa < εthreshold, end.

εa =

∣∣∣∣
xnew − xold

xnew

∣∣∣∣× 100%
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The choice of d

• Any values can be used as long as x1 > x2.

• If d is selected appropriately, the number of function evaluations can be min-
imized.

Figure 3: Golden search: the choice of d

d0 = l1, d1 = l2 = l0 − d0 = l0 − l1. Therefore, l0 = l1 + l2.
l0
d0

= l1
d1

. Then l0
l1

= l1
l2

.

l21 = l0l2 = (l1 + l2)l2. Then 1 =
(

l2
l1

)2

+ l2
l1

.
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Define r = d0
l0

= d1
l1

= l2
l1

. Then r2 + r − 1 = 0, and r =
√

5−1
2 ≈ 0.618

d = r(xu − xl) ≈ 0.618(xu − xl) is referred to as the golden value.
Relative error

εa =

∣∣∣∣
xnew − xold

xnew

∣∣∣∣× 100%

Consider F (x2) < F (x1). That is, xl = x2, and xu = xu.
For case (a), x∗ > x2 and x∗ closer to x2.

∆x ≤ x1 − x2 = (xl + d)− (xu − d)

= (xl − xu) + 2d = (xl − xu) + 2r(xu − xl)

= (2r − 1)(xu − xl) ≈ 0.236(xu − xl)

For case (b), x∗ > x2 and x∗ closer to xu.

∆x ≤ xu − x1

= xu − (xl + d) = xu − xl − d

= (xu − xl)− r(xu − xl) = (1− r)(xu − xl)

≈ 0.382(xu − xl)

Therefore, the maximum absolute error is (1− r)(xu − xl) ≈ 0.382(xu − xl).
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εa ≤
∣∣∣∣
∆x

x∗

∣∣∣∣× 100%

≤ (1− r)(xu − xl)

|x∗| × 100%

=
0.382(xu − xl)

|x∗| × 100%

Example: Find the maximum of f (x) = 2 sin x − x2

10 with xl = 0 and xu = 4 as
the starting search range.
Solution:
Iteration 1: xl = 0, xu = 4, d =

√
5−1
2 (xu − xl) = 2.472, x1 = xl + d = 2.472,

x2 = xu − d = 1.528. f (x1) = 0.63, f (x2) = 1.765.
Since f (x2) > f (x1), x∗ = x2 = 1.528, xl = xl = 0 and xu = x1 = 2.472.

Iteration 2: xl = 0, xu = 2.472, d =
√

5−1
2 (xu− xl) = 1.528, x1 = xl + d = 1.528,

x2 = xu − d = 0.944. f (x1) = 1.765, f (x2) = 1.531.
Since f (x1) > f (x2), x∗ = x1 = 1.528, xl = x2 = 0.944 and xu = xu = 2.472.
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Multidimensional Unconstrained Optimization

4 Analytical Method

• Definitions:

– If f (x, y) < f (a, b) for all (x, y) near (a, b), f (a, b) is a local maximum;
– If f (x, y) > f (a, b) for all (x, y) near (a, b), f (a, b) is a local minimum.

• If f (x, y) has a local maximum or minimum at (a, b), and the first order partial
derivatives of f (x, y) exist at (a, b), then

∂f

∂x
|(a,b) = 0, and

∂f

∂y
|(a,b) = 0

• If
∂f

∂x
|(a,b) = 0 and

∂f

∂y
|(a,b) = 0,

then (a, b) is a critical point or stationary point of f (x, y).

• If
∂f

∂x
|(a,b) = 0 and

∂f

∂y
|(a,b) = 0
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and the second order partial derivatives of f (x, y) are continuous, then

– When |H| > 0 and ∂2f
∂x2 |(a,b) < 0, f (a, b) is a local maximum of f (x, y).

– When |H| > 0 and ∂2f
∂x2 |(a,b) > 0, f (a, b) is a local minimum of f (x, y).

– When |H| < 0, f (a, b) is a saddle point.

Hessian of f (x, y):

H =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]

• |H| = ∂2f
∂x2 · ∂2f

∂y2 − ∂2f
∂x∂y · ∂2f

∂y∂x

• When ∂2f
∂x∂y is continuous, ∂2f

∂x∂y = ∂2f
∂y∂x.

• When |H| > 0, ∂2f
∂x2 · ∂2f

∂y2 > 0.

Example (saddle point): f (x, y) = x2 − y2.
∂f
∂x = 2x, ∂f

∂y = −2y.

Let ∂f
∂x = 0, then x∗ = 0. Let ∂f

∂y = 0, then y∗ = 0.
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Therefore, (0, 0) is a critical point.
∂2f
∂x2 = ∂

∂x(2x) = 2, ∂2f
∂y2 = ∂

∂y(−2y) = −2

∂2f
∂x∂y = ∂

∂x(−2y) = 0, ∂2f
∂y∂x = ∂

∂y(2x) = 0

|H| = ∂2f
∂x2 · ∂2f

∂y2 − ∂2f
∂x∂y · ∂2f

∂y∂x = −4 < 0

Therefore, (x∗, y∗) = (0, 0) is a saddle maximum.

Example: f (x, y) = 2xy + 2x− x2 − 2y2, find the optimum of f (x, y).

Solution:
∂f
∂x = 2y + 2− 2x, ∂f

∂y = 2x− 4y.
Let ∂f

∂x = 0, −2x + 2y = −2.
Let ∂f

∂y = 0, 2x− 4y = 0.
Then x∗ = 2 and y∗ = 1, i.e., (2, 1) is a critical point.
∂2f
∂x2 = ∂

∂x(2y + 2− 2x) = −2
∂2f
∂y2 = ∂

∂y(2x− 4y) = −4
∂2f
∂x∂y = ∂

∂x(2x− 4y) = 2, or
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Figure 4: Saddle point
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∂2f
∂y∂x = ∂

∂y(2y + 2− 2x) = 2

|H| = ∂2f
∂x2 · ∂2f

∂y2 − ∂2f
∂x∂y · ∂2f

∂y∂x = (−2)× (−4)− 22 = 4 > 0

∂2f
∂x2 < 0. (x∗, y∗) = (2, 1) is a local maximum.

5 Steepest Ascent (Descent) Method

Idea: starting from an initial point, find the function maximum (minimum) along
the steepest direction so that shortest searching time is required.
Steepest direction: directional derivative is maximum in that direction — gradi-
ent direction.
Directional derivative

Dhf (x, y) =
∂f

∂x
· cos θ +

∂f

∂y
· sin θ = 〈[∂f

∂x

∂f

∂y
]
′ · [cos θ sin θ]

′〉
〈·〉: inner product
Gradient
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When [∂f
∂x

∂f
∂y ]

′
is in the same direction as [cos θ sin θ]

′
, the directional derivative

is maximized. This direction is called gradient of f (x, y).
The gradient of a 2-D function is represented as∇f (x, y) = ∂f

∂x
~i+∂f

∂y
~j, or [∂f

∂x
∂f
∂y ]

′
.

The gradient of an n-D function is represented as∇f ( ~X) =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]′
,

where ~X = [x1 x2 . . . xn]
′

Example: f (x, y) = xy2. Use the gradient to evaluate the path of steepest ascent
at (2,2).
Solution:
∂f
∂x = y2, ∂f

∂y = 2xy.
∂f
∂x|(2,2) = 22 = 4, ∂f

∂y |(2,2) = 2× 2× 2 = 8

Gradient: ∇f (x, y) = ∂f
∂x

~i + ∂f
∂y

~j = 4~i + 8~j

θ = tan−1 8
4 = 1.107, or 63.4o.

cos θ = 4√
42+82 , sin θ = 8√

42+82 .

Directional derivative at (2,2): ∂f
∂x · cos θ + ∂f

∂y · sin θ = 4 cos θ + 8 sin θ = 8.944
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If θ
′ 6= θ, for example, θ

′
= 0.5325, then

Dh
′f |(2,2) =

∂f

∂x
· cos θ

′
+

∂f

∂y
· sin θ

′
= 4 cos θ

′
+ 8 sin θ

′
= 7.608 < 8.944

Steepest ascent method

Ideally:

• Start from (x0, y0). Evaluate gradient at (x0, y0).

• Walk for a tiny distance along the gradient direction till (x1, y1).

• Reevaluate gradient at (x1, y1) and repeat the process.

Pros: always keep steepest direction and walk shortest distance
Cons: not practical due to continuous reevaluation of the gradient.

Practically:

• Start from (x0, y0).

• Evaluate gradient (h) at (x0, y0).
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• Evaluate f (x, y) in direction h.

• Find the maximum function value in this direction at (x1, y1).

• Repeat the process until (xi+1, yi+1) is close enough to (xi, yi).

Find ~Xi+1 from ~Xi

For a 2-D function, evaluate f (x, y) in direction h:

g(α) = f (xi +
∂f

∂x
|(xi,yi) · α, yi +

∂f

∂y
|(xi,yi) · α)

where α is the coordinate in h-axis.

For an n-D function f ( ~X),

g(α) = f ( ~X +∇f |( ~Xi)
· α)

Let g
′
(α) = 0 and find the solution α = α∗.

Update xi+1 = xi + ∂f
∂x|(xi,yi) · α∗, yi+1 = yi + ∂f

∂y |(xi,yi) · α∗.
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Figure 5: Illustration of steepest ascent
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Figure 6: Relationship between an arbitrary direction h and x and y coordinates
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Example: f (x, y) = 2xy + 2x− x2 − 2y2, (x0, y0) = (−1, 1).

First iteration:
x0 = −1, y0 = 1.
∂f
∂x|(−1,1) = 2y + 2− 2x|(−1,1) = 6, ∂f

∂y |(−1,1) = 2x− 4y|(−1,1) = −6

∇f = 6~i− 6~j

g(α) = f (x0 +
∂f

∂x
|(x0,y0) · α, y0 +

∂f

∂y
|(x0,y0) · α)

= f (−1 + 6α, 1− 6α)

= 2× (−1 + 6α) · (1− 6α) + 2(−1 + 6α)− (−1 + 6α)2 − 2(1− 6α)2

= −180α2 + 72α− 7

g
′
(α) = −360α + 72 = 0, α∗ = 0.2.

Second iteration:
x1 = x0+

∂f
∂x|(x0,y0)·α∗ = −1+6×0.2 = 0.2, y1 = y0+

∂f
∂y |(x0,y0)·α∗ = 1−6×0.2 =

−0.2
∂f
∂x|(0.2,−0.2) = 2y + 2− 2x|(0.2,−0.2) = 2× (−0.2) + 2− 2× 0.2 = 1.2,
∂f
∂y |(0.2,−0.2) = 2x− 4y|(0.2,−0.2) = 2× 0.2− 4× (−0.2) = 1.2
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∇f = 1.2~i + 1.2~j

g(α) = f (x1 +
∂f

∂x
|(x1,y1) · α, y1 +

∂f

∂y
|(x1,y1) · α)

= f (0.2 + 1.2α,−0.2 + 1.2α)

= 2× (0.2 + 1.2α) · (−0.2 + 1.2α) + 2(0.2 + 1.2α)

−(0.2 + 1.2α)2 − 2(−0.2 + 1.2α)2

= −1.44α2 + 2.88α + 0.2

g
′
(α) = −2.88α + 2.88 = 0, α∗ = 1.

Third iteration:
x2 = x1 + ∂f

∂x|(x1,y1) · α∗ = 0.2 + 1.2 × 1 = 1.4, y2 = y1 + ∂f
∂y |(x1,y1) · α∗ =

−0.2 + 1.2× 1 = 1
. . .
(x∗, y∗) = (2, 1)
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6 Newton’s Method

Extend the Newton’s method for 1-D case to multidimensional case.
Given f ( ~X), approximate f ( ~X) by a second order Taylor series at ~X = ~Xi:

f ( ~X) ≈ f ( ~Xi) +∇f
′
( ~Xi)( ~X − ~Xi) +

1

2
( ~X − ~Xi)

′
Hi( ~X − ~Xi)

where Hi is the Hessian matrix

H =




∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

. . .
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n




At the maximum (or minimum) point, ∂f( ~X)
∂xj

= 0 for all j = 1, 2, . . . , n, or

∇f = ~0. Then
∇f ( ~Xi) + Hi( ~X − ~Xi) = 0

If Hi is non-singular,
~X = ~Xi −H−1

i ∇f ( ~Xi)
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Iteration: ~Xi+1 = ~Xi −H−1
i ∇f ( ~Xi)

Example: f ( ~X) = 0.5x2
1 + 2.5x2

2

∇f ( ~X) =

[
x1

5x2

]

H =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
1 0
0 5

]

~X0 =

[
5
1

]
, ~X1 = ~X0 −H−1∇f ( ~X0) =

[
5
1

]
−

[
1 0
0 1

5

] [
5
5

]
=

[
0
0

]

Comments: Newton’s method

• Converges quadratically near the optimum

• Sensitive to initial point

• Requires matrix inversion

• Requires first and second order derivatives
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