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1. QOutline

 finite differences for derivative approximation
e the wave equation in 1-D
initial/boundary conditions and excitation sources
e generalization to 2-D and 3-D
 Maxwell's equations; 2-D problems: TM and TE modes
e Yee’s algorithm in 3-D space
e Yee’s algorithm in 2-D space
* Introduction to absorbing boundary conditions

« PROJECT: determine the modes of a rectangular
waveguide
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3. Finite differences for derivative approximation

1st order derivatives

forward FD

df (xi) dfi  fiq—f
dx dx AX

backward FD
df (i) _dfi fi—fi4

dx dx AX Xi—1 Xi Xi+1

central FD
df (xi) _dfi fi,a—fia
dx dx 2AX
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3. Finite differences for derivative approximation — cont.

accuracy
Taylor expansions
M at X +AX , ;
f (X +AxX) = fi=f +Ax%+1Ax2 d Zi +le3 d Zi +04
dx 2 dxc 6 dx
dfi =i 5oy
dx AX
®at X —AX 2 ;
f(x—AX)= fiq=f ax Tl e dth 1 e d L

dx 2 dx* 6 dx?
dfi _ fi — fi—l ‘|‘O(AX)1
dx AX

forward and backward FDs have 1st order accuracy




3. Finite differences for derivative approximation — cont.

accuracy. central FDs have 2nd order accuracy

dfi _ fia—fig

combine both expansions to obtain: = +0?

central FD at half steps

f(x)]
fi_y

dx 2AX

df (x; +AX/2)
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3. Finite differences for derivative approximation — cont.

second-order accurate backward/forward approximations
of 15t order derivatives

dfi - -3 fi + 4 fi+1 — fi+2 df, - 3 fi —4 fi—l + fi_2
dx AX dx 2AX

2nd order derivatives
" dfi 1, ,d%f 1 ,d%

o+ +0*
dx 2 dx“ 6 dx ®+
f_l_f—Aﬂ lAzdf L
dx 2 dx> 6 dx

de . fi_1—2fi + fi+1
dx? AX?

+0?
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3. Finite differences for derivative approximation — cont.

Laplace operator in 2-D space: (X, y)

2 2
Vi f _0 I +a Z
ox: oy
V2 f figj+ fi+1éj -2 ; N fi jo1 + fi,szrl_Zfi,j
AX Ay
Y
Ofi,j+1
fL—l, ) o f J fio+1’ j»
if Ax=Ay = Ah ) X
V2§~ fisgj+ fivaj+ fijua + B jun — 41
Xy ~ Ahz Ofi,j—l
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3. Finite differences for derivative approximation — cont.

Laplace operator in 3-D space (X,Y,2)
ocf o0°f o%f

Vif ="+ + t7
ox> oy oz’ fijkite
| fi—l,j,k
V2§ « ficgjk + fivnjk —2Fi jk N i
AXZ fl ’ J._—l,k fl ’ J ,ki//m .
fijak + fijoak —2Fi jk N fi ik
2
Ay fiit jx,”
X @
fijka+ fijkea —2Fi jk 1’4 .
Az2 fi,j,k—l.

If AX=Ay=Az=Ah

V2F ~ fitju + fisa i + fijook + i jark + i jkea + fijraa —6 i
l Ah? 9




4. The wave equation in 1-D space

o°f 1 0°f
ox*  c¢* ot?

=—0g(x,1)

general solution

f(x,t)=f"(x—ct)+ f(x+ct)
/ \
wave traveling in the +X direction  wave traveling in the -X direction
to determine the particular solution, we need
» 2 boundary conditions:

at x=0 al X = Xmax

of of
f(0,t) or — f (Xmax,t) or —
(0,1) x| (Xmax 1) ~

X=Xmax

Nikolova 2011

10



4. The wave equation in 1-D space — cont.

e 2 initial conditions: f(x,0) and %ft

t=0
Discretization

D £ f(iAX,NAt) = £

ﬂ \:\\‘ N, —1 Dy filyp =

0 1 2 3 4 Ny X() en en 0 O
~\ 27 o OX | x=(i+1/2)Ax,
fin Dt fin+1/2 t=nAt
Dt fin+1/2 Dt fin+1/2 _
of
AR Nt e gread
0 1 2 3 4 N, t(n) t=(n-+1/2) At

n n
fi", Dy fi+1/2 11



4. The wave equation in 1-D space — cont.

the discretized 1-D wave equation:
Dt fin+1/2 _ Dt fin—1/2 - fn _9 fin + fiil

I+1 +qg”
(CAt)? AX? g
Dy fin+1/2 = Dy fin—l/2 (\fi_r:l —2 fin + fi—l} + szgin)
/ D £

.I:in+1 _ fin 4 Dt fin+1/2

The above update scheme requires: (i) the function values
at the n-th moment of time, and (ii)) the derivative values

from the previous step at the (n—1/2) moment of time.

Thus, for each point of space, two numbers are stored in

the computer memory: f;", D, f,;"*2.
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4. The wave equation in 1-D space — cont.

Implementation of boundary conditions
(a) Dirichlet BC (DBC)
prescribes the function value at the boundary
fy' =by, N=12,...
fy, =by, n=12,...
If the function boundary value is zero: homogeneous BC

Example: homogeneous DBCs on a discrete mesh

Homogeneous DBC at X=0 Homogeneous DBC at X = AX/ 2
0O—O0—0—+—0—{+—0——0——f§ o—O—0—O—0—{—0——0—1—0S

0 1 2 0 11 2
|fon — O fOn — fln

Homogeneous DBC at X = AX

n n
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4. The wave equation in 1-D space — cont.

(b) Neumann BC (NBC)
prescribes the boundary value of the function derivative

n
o =By, N=12,...
OX
of "
X = BN, n :1,2,...
OX
Example: homogeneous NBCs on a discrete mesh
Homogeneous NBC at X=0 Homogeneous NBC at X = AX / 2
o——o0—1+—0—[+—0—1{+0—1+ff
012 AT T
fon — (4 fln — fzn)/3 fon — fln
Homogeneous NBC at X = AX
o—1—o0—O—0—{—0——0—1+H0
0% 7 ‘

-I:On — f2n
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5. The wave equation in 2-D and 3-D space

The only difference with the 1-D wave equation is that the

second-order derivative wrt X is replaced by the Laplace
operator A=V? .

Discretized wave equation

o
Dtn+1/2 fi,j,k _ Dtn—1/2 fi,j,k Lfi,nj,k _l_Athir]j’k)
where L is the discrete Laplace operator, and
Ah = min(AXx, Ay, Az)

Lf ~ Ah°V?f
in 2-D

Lf_( j(fl+lj Zfln1+f|n11)+( j(f'ﬁl 2f'n1+f'11)
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5. The wave equation in 2-D and 3-D space — cont.
in2-D
when AX=Ay = Ah
Lf = (il + fily + 6+ fi g —410)

1+1, | i, j+

In 3-D

n n

j Ij+1k f'Jk+fljlk)+

/

2
( j |Jk+1 f'Jk+fIJk1) AXZAy:AZ:Ah
NikO|O\Lf (f|+1jk =+ f| l]k + f| J+1k + flj 1k + fl ]k+1+ f|t‘]J’k_1_6f||:]J)



6. Space quantization — minimal spatial step

The size of the minimal spatial step Ah is crucial for the
accuracy of the algorithm.

Consider a sinusoidal wave propagating along +X in free
space.

P f(x,t) =sin( fx — aot)
S =wlc - wave number (phase constant)

The discretized sine wave IS
fi" =sin(SiAh—wnAt)

The 2-nd order x-derivative of the continuous sine wave Is

82—]( = — 2 sin(fx — wt)

&
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6. Space quantization — minimal spatial step, cont.

The 2-nd order x-derivative of the discretized sine wave is
£ =2+ £, 2 .
: 2 = .(cos SAh —1)-sin( S1Ah — wnt
Ah? Ah? (cos )-sin(p ont)
In order both derivatives to be equal
ﬂZAhZ

cos fAh—1=—

must hold. The above equality is accurate to about 1% if
PAN<0.69~ 7/4.5

In terms of the wavelength

AN<AI9, A=2x1p
For sufficient accuracy in 1-D problems, |Ah < Anmin /9
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/. Time quantization — minimal time step

Similar analysis with respect to the time derivatives of
the analog and digital sine wave shows that the time
step has to satisfy

At STmin /9, Tmin = 27z-/a)max

8. Stability criterion (Courant-Friedrich-Levy criterion)

Explicit time-stepping algorithms for the solution of
dynamic problems are prone to instabilities if certain
criteria are not satisfied. Instability i1s a spurious
(nonphysical, due to numerical errors) increase of the
numerical values of the field as the time-marching
proceeds. Often, this Is observed as an exponential

INncrease.
Nikolova 2011
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8. Stability (CFL) criterion — cont.

Consider a harmonic plane wave of real-valued frequency w
f(x,y,z,t) = foei(wt—ﬂxX—ﬁyy—ﬂzZ)

It satisfies the wave equation in 3-D

o'f o't o'f 10°f
Ox>  oy* 01 c* ot?

=0

When discretized, this wave is represented as

(N At—SxiAX— By JAY—[;KAZ)
| jk — foe y
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8. Stability (CFL) criterion — cont.

Applying centrals FDs to the 3-D wave equation, we find
that the discretized wave must satisfy

n n n
Ll e = AL e = Ui

AX?
N fi" 4Lk —2f; gk T fi,nj—l,k
Ay?
fljk+1 2f|jk+ fljk -1
E 2
AZ
i,nj_& 210 + funﬁ

2At2
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8. Stability (CFL) criterion — cont.

Substitution of the discretized wave into the discretized 3-D
wave equation leads to

e iIBAX _ 9 o aifudX X e IBAY _ 5 o aifyay ) e BN _ 9 | o
AX? Ay? Az*
e—ia)At _ 24 e+ia)At

C2At?

which can also be written as

Bl
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8. Stability (CFL) criterion — cont.

Solving for w gives

= Aitarcsin (CA'[\/TX +T, +T, ) where

T, _ L sin?

(ﬁgAf
Afz

> j E=X,Y,Z

In order w to be real (so that the wave does not increase or
decrease exponentially in magnitude)

CAt —slnz('gX j+—sm2 Py +isin2(ﬂzAzj£1
AX? 2 Ay? 2 Az? 2

This must be fulfilled in the worst-case scenario of all sine-
squared functions being 1.
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8. Stability (CFL) criterion — cont.

> |At < !

c 1+1+1
AX?  Ay?  Az°

This condition is known as the Courant-Friedrich-Levy (CFL)
or Courant’s condition

If Ax=Ay=Az=Ah, — a:cAtS 1
(CAt)2<A—hZ Ah ~ /3
3
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8. Stability (CFL) criterion — cont.

- At 1
3-D (cAt)Zg(l 1 1) .

+——
AX®  Ay? A7 Ah ~ /3
1
1 1 CAt 1
2-D |(cAt)? < — |a=——-<
(A1) (sz T AY? Ah ~ /2
1-D |(cAt)® <AX?| &) ach—Ahtgl

In a 1-D problem, if the accuracy criterion of the spatial
guantization Ah<A/9 Is observed, then the accuracy
criterion of the time quantization At<T /9 is automatically
satisfied provided that the stabllity criterion is enforced.
Note: For 2-D and 3-D problems, the accuracy criteria
should be adjusted accordingly, e.g.,

Nikolova 2011 AN < Apin /(9\/5) ~ Amin 116 25
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