Ch. 8 Homework problems
(7)

$$
\begin{gathered}
V_{\text {GS(0ff })=-8^{V}, I_{D S S}=10 \mathrm{~mA}, \quad V_{a S}=0 \& V_{D S}>V_{p} \rightarrow I_{D}=? ?}^{V_{P}=-V_{\text {GS (off })}=8^{V}} .
\end{gathered}
$$

\because at $V_{G S}=0$ and $V_{D S}>V_{P} \rightarrow I_{D}=I_{D S S}$

$$
\therefore I_{D}=10 \mathrm{~mA}
$$

[9] $V_{G S}(Q f)=-4 V, V_{D D} 4$ untill I_{D} is steadystate $\rightarrow V_{D S}=$?? as $V_{D D}{ }^{4}, V_{D S} 4$ and $I_{D} 4$
when $\quad V_{D S}=V_{P}=-V_{\text {ascoff }}=4^{V} \leadsto I_{D}$ is saturated as $I_{D S s}$

$$
\therefore V_{D S}=4^{V}
$$

(12) $g_{m_{0}}=3200 \mu \mathrm{~s}, V_{Q s(0 f f)}=-8^{V} ; g_{m}=$? ? at $V_{B S}=-4 \mathrm{~V}$

$$
\begin{aligned}
\therefore g_{m} & =g m_{0}\left(1-\frac{V_{G S}}{V_{G S(0 f()}}\right) \\
& =3200 \mu\left[1-\frac{-4}{-8}\right] \\
& =3200 \mu * 0.5=1600 \mu 45
\end{aligned}
$$

(13) $V_{G S(G f f)}=-7 v, g_{m_{0}}=2000 \mu s ; \quad g_{m y} g_{f S}=?$ at $V_{Q S}=-2 v$

$$
\begin{aligned}
g_{m} & =g m_{0}\left(1-\frac{V_{a s}}{V_{a s}(a f 1)}\right)=2000\left(1-\frac{-g}{-7}\right) \\
& \therefore g_{m}=1428.6 \mu s \\
& g_{f s}=g m=1428.6 \mu \mathrm{~s}
\end{aligned}
$$

a)

$$
\begin{aligned}
V_{G} & =0 \\
V_{S} & =I_{D} R_{S}=1 m A * \mid \mathrm{k} \Omega \\
& =1 V
\end{aligned}
$$

$$
\begin{aligned}
\therefore V_{G S} & =V_{G}-V_{S}=0-1 \\
& \therefore V_{G S}=-1 V
\end{aligned}
$$

$$
\text { in } V_{D S}=6.3 \mathrm{~V}
$$

b)

$$
\begin{aligned}
V_{G S} & =V_{G}-V_{S} \\
& =-V_{S}=-I_{D} R_{S} \\
& =-5 m A * 100=-5 * 10^{-3} * 100 \\
& =V_{G S}=-0.5 \mathrm{~V} \\
V_{D S} & =V_{D}-V_{S} \\
& =V_{D D}-I_{D}\left(R_{D}+R_{S}\right)=9-5 \mathrm{~mA}(470+100)=9-2.85 \\
& =V_{D S}=6.15 \mathrm{~V}
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
V_{G} & =0 \\
V_{S} & =-I_{D} R_{S} \\
& =-3 \times 10^{-3} \times 470 \\
& =-1.41 \mathrm{~V} \\
\because V_{Q S} & =V_{G}-V_{S} \quad V_{G S}=1.41 \mathrm{~V} \\
V_{D} & =V_{D D}+I_{D} R_{D} \\
& =-15+3 m A * 2.2 \mathrm{M}=-8.4 \mathrm{~V} \\
\because V_{D S} & =V_{D}-V_{S} \\
& =-8.4+1.41 \quad \therefore V_{D S}=
\end{aligned}
$$

$$
\therefore V_{D S}=-6.99 \mathrm{~V}
$$

(21) from the graph:
at $I_{D}=9.5 \mathrm{~mA} \rightarrow V_{G S} \simeq-2 V$

$$
\therefore \quad R_{S}=\left|\frac{V_{G S}}{I_{D}}\right|=\left|\frac{-2}{9.5 \mathrm{~mA}}\right| \simeq 210.53 \Omega
$$

(22) $I_{D S S}=14 \mathrm{~mA}, V_{\text {as(aff }}=-10^{\mathrm{V}}$, set up a midpoint bias $V_{D_{D}} Q 24 \mathrm{~V}$ for midpoint bias:

$$
\begin{aligned}
& I_{D}=\frac{1}{2} I_{D S S} \quad \therefore I_{D}=7 \mathrm{~mA} \\
& V_{a S}=\frac{V_{a S(C f 1)}}{3.4} \therefore V_{G S}=-2.94 \mathrm{~V} \\
& V_{D}=\frac{V_{D D}}{2}=\frac{24}{2} \quad \therefore V_{D}=12 \mathrm{~V} \\
& \because V_{S}=0 \quad \therefore V_{S}=-V_{G S}=2.94 \mathrm{~V} \\
& \therefore V_{D S}=V_{0}-V_{S}=12-2.94 \quad \therefore V_{O S}=9.06 \mathrm{~V} \\
& R_{S}=\left|\frac{V_{G S}}{I_{D}}=\right| \frac{-2.94}{7 \mathrm{~mA}} \quad \therefore R_{S} \\
& \because \quad V_{D}=V_{D D}-I_{D} R_{D} \therefore R_{D}=\frac{V_{D D}-V_{D}}{I_{D}}=\frac{24-12}{7 \mathrm{~mA}}
\end{aligned}
$$

$$
\text { and } R_{a} \text { any large resistance }
$$

25

$$
\begin{aligned}
& \because V_{G}=0, \quad V_{S}=-I_{D} R_{S} \\
& \therefore V_{G S}=+I_{D} R_{S}
\end{aligned}
$$

at $I_{D}=0$

$$
\therefore V_{a S}=0 *(390)=0
$$

at $I_{D}=I_{D S S}=10 \mathrm{~mA}$

$$
V_{G S}=10 \mathrm{~mA}(390 \Omega)=3.9 \mathrm{~V}
$$

\therefore the Q-point is: (from graph)

$$
V_{G S} \simeq 2.1 \mathrm{~V} \text { and } I_{D} \simeq 53 \mathrm{~mA}
$$

26) $V_{D}=5^{V}$, determine the Q-point ??

$$
\begin{aligned}
\because & V_{D}
\end{aligned}=V_{D D}-I_{D} R_{D} ~\left(I_{D}=\frac{V_{D D}-V_{D}}{R_{D}}=\frac{9-5}{4.7 \mathrm{k}} .\right.
$$

$$
V_{G}=V_{D D}\left(\frac{R_{2}}{R_{1}+R_{2}}\right)=9\left(\frac{2.2}{12.2}\right) \quad \text { i } V_{G} \simeq 1.623 \mathrm{~V}
$$

$$
V_{S}=I_{D} R_{S}=(0.851 \mathrm{~mA}) *(3.3 \mathrm{k} \Omega) \quad \text { in } \quad V_{S} \simeq 2.81 \mathrm{~V}
$$

$$
\therefore V_{G S}=V_{G}-V_{S}=1.623-2.81 \quad-V_{Q S}=-1.187 \mathrm{~V}
$$

in the Q-point is:

$$
V_{G S}=-1.187 \mathrm{~V} \text { and } I_{D}=0.851 \mathrm{~mA}
$$

27
find Q-Point??

$$
\begin{aligned}
& V_{G}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{D D}=\frac{2.2}{3.3+2.2}(12)=4.8^{V} \\
& V_{S}=I_{D} R_{S}
\end{aligned}
$$

at $\quad I_{D}=0: \quad V_{S}=0, V_{G}=4.8 \quad \therefore V_{G S}=4.8 \mathrm{~V}$
at $V_{G S}=0 ; \quad$ a $0=4.8-I_{D} R_{S} \quad$ in $I_{D}=\frac{4.8}{R_{S}} \simeq 1.45 \mathrm{~mA}$
\therefore the Q-point is: (from graph)

$$
V_{G S}=-1.4 \mathrm{~V} \& I_{D} \simeq 2 \mathrm{~mA}
$$

29

$$
\begin{aligned}
V_{D S_{1}}=0.4 \rightarrow I_{D_{1}}= & 0.15 \mathrm{~mA},
\end{aligned} \quad V_{D S_{2}}=0.6 \mathrm{~V} \rightarrow I_{D_{2}}=0.45 \mathrm{~mA} ;
$$

range of R OS values? ??

$$
\begin{aligned}
& \because R_{D S}=\frac{V D S}{I_{D}} \\
& \therefore \quad R_{D S_{1}}=\frac{0.4}{0.15 \mathrm{~mA}}=2.67 \mathrm{k} \Omega \\
& R_{D S_{2}}=\frac{0.6}{0.45 \mathrm{~mA}} \simeq 1.33 \mathrm{k} \Omega
\end{aligned}
$$

\therefore the range of $R_{D S}$ values: $1.33<R<2.67 \quad(k \Omega)$
and

$$
\Delta R_{D S}=R_{D S_{2}}-R_{D S_{1}}=-1.34 \mathrm{k} \Omega
$$

\therefore.e. decreases by 1.34 kn
(38) $\quad V_{G S(0 f)}=-5^{v}, I_{\text {DSS }}=\operatorname{smA}$
a) as $V_{a s(a f f)}$ is -ve in it is a n-channel MOSFET
b) $\quad \because I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{\left.V_{G S(A f I}\right)}\right)^{2}$

$V_{G G S(\text { ffi }}(v)$	-5	-4	-3	-2	-1	0	1	2	3	4	5
$I_{D}(\mathrm{~mA})$	0	0.32	1.28	2.88	5.12	8	1152	15.68	20.48	25.92	32
								$I_{\text {DSS }}$			

39
a)

$V_{G}=0$ as $I_{G}=0$
$V_{S}=I_{D} R_{S}$
$\therefore V_{Q S}=-I_{D} R_{S} \quad u-V_{e}$
\because DMOSFET is n-channed
\therefore depletion

$V_{G S}=V_{D S}$ as $I_{G}=0$
$\because V_{D S}=V_{D O}-I_{D} R_{D}>0$
$\therefore V_{\text {as }}$ is +Ve
DMOSFET:s n-channel Enhancement mock

$V_{G}=0 \quad$ as $I_{G}=0$
$V_{s}=0$
$\therefore v_{a s}=0$

d)

$$
\begin{aligned}
& V_{G}=0 \\
& V_{S}=-I_{D} R_{S} \\
& \therefore V_{G S}=I_{D} R_{S}>0
\end{aligned}
$$

Vess is + ve SFET is p-channel mode

41
a)

$$
\begin{aligned}
& \because V_{G S}=0 \text { as } I_{G}=0 \\
& \therefore I_{D}=I_{D S S}=8 \mathrm{~mA} \\
& \because V_{D S}=V_{D D}-I_{B} R_{S} \\
& =12-(8 \mathrm{~mA})(1 \mathrm{k} \Omega) \\
& \therefore V_{D S}=4 \mathrm{~V}
\end{aligned}
$$

c)

$$
\begin{aligned}
V_{G S} & =0 \\
\because I_{D} & =I_{D S S}=8 \mathrm{~mA} \\
\therefore V_{D S} & =15-(8 \mathrm{~m} * 1.2 \mathrm{k}) \\
& =15-9.6 \\
\therefore V_{D S} & =5.4 \mathrm{~V}
\end{aligned}
$$

$$
V_{G S}=0, \quad I_{D}=I_{D S}=8 \mathrm{~mA}
$$

$$
\because V_{D S}=V_{D D}+I_{D} R_{S}
$$

$$
=-9+(8 \mathrm{~mA})(560 \Omega)
$$

$$
=-9+\left(8 * 10^{-3} * 560\right)
$$

$$
=-9+4.48
$$

$$
\therefore V_{D S}=-4.52 \mathrm{v}
$$

$$
\begin{aligned}
& \because I_{D}=K\left(V_{a S}-V_{G S(t h)}\right)^{2} \\
& \therefore K=\frac{I_{D(0 n)}}{\left(V_{a S}-V_{\text {QS }(t h))^{2}}\right.}=\frac{3 \mathrm{~mA}}{(4-2)^{2}}=0.75 \mathrm{~mA} / V^{2} \\
& \therefore \text { at } V_{a S}=3.197: \\
& I_{D}=0.75(3.197-2)^{2}=1.075 \mathrm{~mA} \\
& \because \quad V_{D S}=V_{D D}-I_{Q} R_{D}=10-(1.075 \mathrm{~mA})(1 \mathrm{k} \mathrm{\Omega}) \\
& \therefore V_{D S}=8.925 \mathrm{~V}
\end{aligned}
$$

42 b)

$$
\begin{gathered}
I_{D(G n)}=2 \mathrm{~mA} \text { at } V_{a, S}=3 \mathrm{~V} \\
V_{G S}(t h)=1.5 \mathrm{~V}
\end{gathered}
$$

$$
\begin{aligned}
\because V_{G O S} & =\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{D D} \\
& =\left(\frac{10 \mu}{10 \mu+10 \mu}\right) 5=\frac{1}{2} \times 5 \\
\therefore V_{Q S} & =2.5 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& K=\frac{I_{D(a n)}}{\left(V_{\text {aS }}-V_{\operatorname{CS}(H)}\right)^{2}}=\frac{2 \mathrm{~m}}{(3-1.5)^{2}}=0.89 \mathrm{mAlV} \\
& \therefore I_{D}=0.89(2.5-1.5)^{2}=0.89 \mathrm{~mA} \\
& \therefore V_{D S}=V_{D D}-I_{D} R_{D}=5-0.89 \mathrm{~m}+1.5 \mathrm{~K} \\
& \therefore V_{D S}=3.665 \mathrm{~V}
\end{aligned}
$$

43 ID, VDS?

$$
\begin{aligned}
\because V_{G S} & =V_{D S}-I_{G S S} R_{G} \\
\therefore V_{D S} & =5+\left(10 * 10^{-12}\right)\left(10 * 10^{6}\right)=5+10^{-4} \\
\therefore V_{D S} & =5.0001 \mathrm{~V} \\
\because V_{D S} & =V_{D D}-I_{D} R_{D} \\
\therefore I_{D} & =\frac{V_{D D}-V_{D S}}{R_{D}}=\frac{12-5.0001}{2.2 \mathrm{~K}} \\
& \therefore I_{D} \simeq 3.182 \mathrm{~mA}
\end{aligned}
$$

b)

$$
\begin{aligned}
V_{D S} & =V_{G S}+I_{G S S} * R_{G} \\
& =3.2+\left(50 * 10^{-2}\right)\left(10 * 10^{6}\right) \\
& =3.2+5 * 10^{-4} \\
& \therefore V_{D S}=3.2005 \mathrm{~V} \\
I_{D} & =\frac{V_{D D}-V_{D S}}{R_{D}}=\frac{8-3.2005}{4.7 \mathrm{k}} \\
& \therefore I_{D} \simeq 1.02 \mathrm{~mA}
\end{aligned}
$$

