Introduction

ENGINEER 3N03 Winter 2015 (Prof. Mohamed H. Bakr)

Electronics and Instrumentation

Room: ITB-A219 ext. 24079

E-mail: <u>mbakr@mail.ece.mcmaster.ca</u>

Main Topics

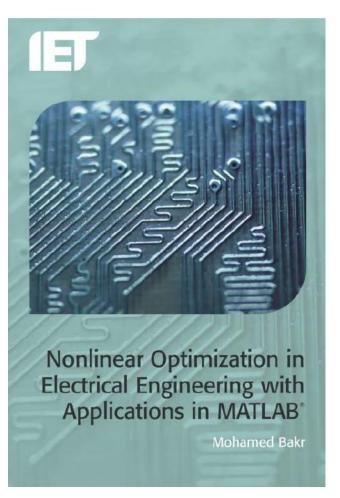
- * Diodes
- * OpAmps
- * MOSFET Transistors
- * Introduction to Digital Circuits
- * Bipolar Junction Transistors (BJTs)
- * Active Filters and Amplifiers

Information about myself

B.Sc. in Electronics and Communication Engineering, Cairo University, Cairo, Egypt with Distinction (honors), 1992

M.Sc. in Engineering Mathematics (Optimization), Cairo University, 1996

Ph.D. in Computer Aided Design (CAD) of Microwave Circuits, McMaster University, 2000


P.Eng., Ontario, 2003

Author/coauthor of over 220 journal and conference papers, two book chapters, one book, and two patents

INTRODUCTION

Nonlinear Optimization Book

Formulating engineering design as an optimization problem. Showing how to obtain an optimal design through different techniques.

Information about myself (Cont'd)

Research Areas: Optimization methods, computer-aided design and modeling of microwave circuits and photonic structures, neural networks applications, computational electromagnetics, bioelectromagnetism, and nanophotonics

Awards/Scholarships:

TRIO Student Internship in OSA, inc. 1997 Ontario Graduate Scholarship (OGS) 1998-2000, NSERC PostDoctoral Fellowship 2000-2001, Premier's Research Excellence Award (PREA) 2003-2009, McMaster Tenure 2007 NSERC DAS Award, 2011 Full Professor 2013 Co-recipient of Chrysler's 2014 innovation award

- Courses taught:
- ECE 750 Advanced Engineering Electromagnetics
- EE 2EI4 Electronic Devices and Circuits
- EE 3TP4 Signals and Systems
- ECE 757 Numerical Techniques in Electromagnetics
- EE 2EI5 Electronic Devices and Circuits
- EE 3FI4 Theory and Applications in Electromagnetics EE 2FH3 Electromagnetics I
- EE 2CI5 Introduction To Electrical Engineering
- EE 3FK4 Electromagnetics II
- ECE 733Nonlinear Optimization for Electrical Engineering
- EE 40I6 Engineering Design
- EE 4BI6 Biomedical Engineering Design

Associate editor of three journals

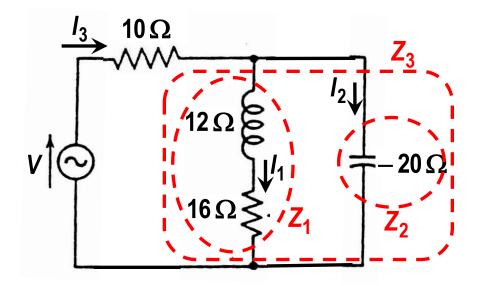
Texts

Recommended text

1- Thomas L. Floyd, Electronic Devices (Electron Flow Version), 9th Edition

2. Course webpage

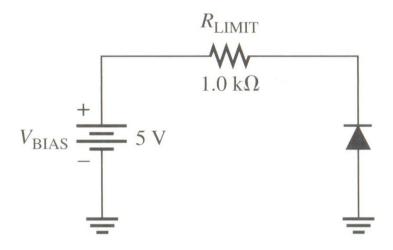
Supplemental Material


1- Giorgio Rizzoni, Principles and Applications of Electrical Engineering, 5th edition.

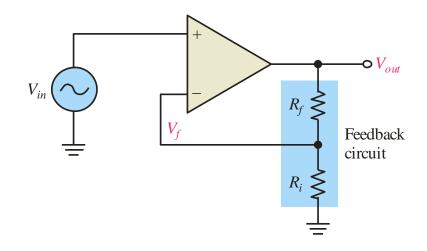
2- A collection of readings and videos to be suggested by instructor.

Grading

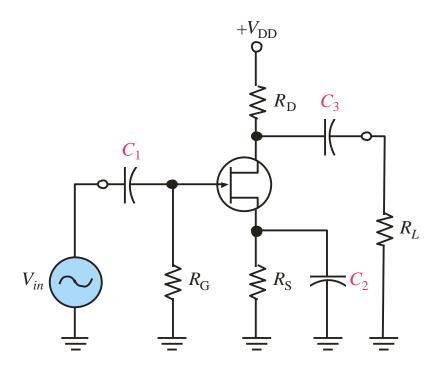
Final exam: 50 % Midterm exams: 20 % First Midterm February 25th, 6:30 pm-8:30 pm Second Midterm March 24th, 6:30 pm-8:30 pm 10 % (one per week. Best 5 will be picked) 5 Quizzes: 10% 4 Labs Project: 10% (5% more bonus) Failure on the final exam means failure of the course! all grades final unless error in marking proven


Circuit Analysis

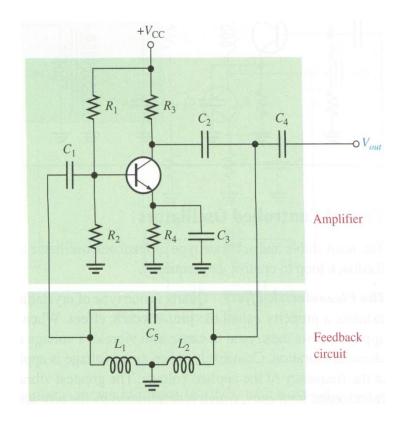
Review of basic circuit analysis concepts needed for this course


INTRODUCTION

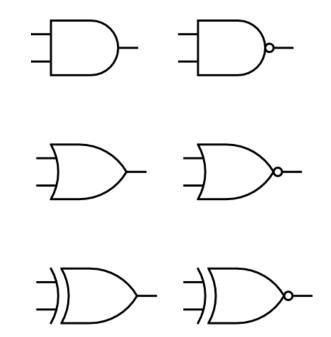
PN Junctions


PN junctions, their structure, circuit analysis, and applications

Operational Amplifiers


ideal OpAmps, circuit analysis using OpAmps, different applications of OpAmps

Field Effect Transistors (JFETs and MOSFETs)


structure, modes of operations, I-V curves, transistor parameters, circuit analysis, biasing, small signal analysis, applications

Bipolar Junction Transistors (BJTs)

structure, modes of operations, I-V curves, transistor parameters, circuit analysis, biasing, small signal analysis, applications

Introduction to Digital Circuits

Basic logic functions, truth tables, implementation of logic tables, applications

Detailed Lecture Tables

Date	Lecture	Description	Chapter
Jan 5 th	0	Organizational Meeting	
Jan 7 th	1	Basic Concepts: conductors, insulators, and semiconductors, charges and electric field, voltage difference	
an 8 th	2	Circuit Theory 1: Kirchhoff's voltage law, examples Electric current, Kirchhoff's current law, electric power, Ohm's law	
Jan 12th	3	Circuit Theory 2: Thevenin Theorem, Norton Theorem, Capacitors and their response, inductors and their responses, transient analysis, examples on transient analysis	
Jan 14th	4	Circuit Theory 3: Phasors, impedances and admittances, phasor diagrams	
Jan 15th	5	Circuit Theory 4: combination of elements, filters	
Jan 19 th	6	Semiconductors: Valence bonds, conduction band and valence band, doping, N-type and P-type materials, examples	
Jan 21st	7	PN Diode 1: Structure, Depletion region, different bias conditions, IV characteristics, example	
Jan 22 nd	8	PN Diode 2: Diode model, half-wave rectifier, full-wave rectifier, bridge rectifier, examples	

Detailed Lecture Tables (Cont'd)

Jan 26 th	9	PN Diode 3: Avalanche breakdown, Zener breakdown, examples				
Jan 28 th	10	Operational Amplifiers (OpAmp) 1: ideal operational amplifier, realistic operational amplifier, parameters of an OpAmp, Applications of OpAmps				
Jan 29 th	11	Operational Amplifier 2: Inverting amplifier, non inverting amplifier, differential amplifier, examples				
Feb 2 nd	12	Operational Amplifier 3: Voltage follower, general OpAmp circuits				
Feb 4 th	13	OpAmp 4: ideal integrator, ideal differentiator, examples				
eb 5th	14	OpAmp 5: Examples				
Feb 9 th	15	Field Effect Transistors (FETs) 1: JFET structure, JFET operation				
Feb 11th	16	FETs 2: MOSFET structure, Characteristics and parameters, Biasing of MOSFET, examples				
Feb 12th	17	FETs 3: JFET Common Source Amplifier, MOSFET Common Source Amplifier, Examples				
February 16 th -February 21 st , Reading Week						
Monday February 23rd, at 6:30 pm, First Midterm						
Feb 23 rd	18	FETS 4: Common Drain Amplifiers, Common Gate Amplifiers, Examples				
Feb 25 th	19	Digital Circuits 1: Analog and digital signals, differences between analog and digital circuit, logic levels				
Feb 26 th	20	Digital Circuits 2: Binary numbers, AND gate, OR gate, examples				

Detailed Lecture Tables (Cont'd)

March 2 nd	21	Digital Circuit 3: NAND gate, NOR gate, XOR gate, examples				
March 4 th	22	Digital Circuit 4: binary tables, synthesis of logic functions, examples				
March 5 th	23	Digital Circuit 5: Half adder, full adder, examples				
March 9th	24	Bipolar Junction Transistor (BJT) 1: Transistor structure, I-V characteristics				
March 11 th	25	BJT2: Modes of operation, voltage and current analysis, examples				
March 2th	26	BJT3: Transistor as a switch, transistor as an amplifier, small signal parameters				
Monday M	Monday March 16 th , at 6:30 pm, Second Midterm					
March 16 th	27	BJT and MOSFET: Applications and examples				
March 18 th	28	BJT and MOSFET: Applications and examples				
March 19 th	29	Active Filters 1: examples of active filters				
March 23 rd	30	Active Filters 2: examples of active filters				
<mark>March 25th</mark>	31	Applications				
March 26th	32	Applications				
March 30th	33	Applications				
April 1st	34	Applications				
April 2nd	35	Applications				

Surprise!

123rf.com

INTRODUCTION

slide 17

Flipped Classroom

You are part of an experiment in engineering education

I will not be teaching! You will be learning. My rule is to guide your learning experience (from the sage on stage to the guide on the side)

All lectures in video will be available on YouTube, the night before our class

You will spend around 50 minutes listening to the lecture before coming to the classroom. You will read the corresponding part in the textbook and attempt to solve drill problems.

We will have discussions on more problems and practical applications in the classroom

Flipped Classroom (Cont'd)

Groups of 4 to be seated together (to facilitate discussions)

I will pose a problem and ask groups to discuss possible solution during the class. Will help in discussions.

A group is then picked to present their solution and I will comment on this solution

I will present as many practical applications as possible

We will effectively have 3 tutorials per week!

Exams will be mostly based on problems solved in the classrooms/tutorials

A second surprise!

INTRODUCTION

Experiential Learning

the same approach used in EE4OI6 is adopted in your project (10%-15% of your total grade)

I will assume in this project that you are employees in ENGINEER 3N03 Inc.

you are asked to research, simulate, and design an electronic circuit with many components

you will form groups of 4 (same groups of classrooms) to work together on this project

15-minutes biweekly meetings to assess your progress

Video presentations and proposals to the whole class at the end of the project

Experiential Learning (Cont'd)

we will use the free Multisim for simulations

possible topics of your projects: Active Filters, Multi-stage amplifiers, oscillators, sensors, or any other applications in your field

5% bonus for any group who will also build their circuit and measure it

Studying EM: Rules of Survival

Listen to lecture before classroom and read corresponding book material.

10 in-class quizzes (one per week) and the best 5 will be picked. Solve quiz at the end of each YouTube lecture!

Do not miss classrooms or tutorials

Attend all project-related meetings

DO NOT TRY TO REMEMBER ALL FORMULAS – Remember only definitions and fundamental physical laws. Try to grasp the physics behind a formula or a solution. You will be allowed cheat sheets in midterms and final exam

Cogito, ergo sum

Tests and mid-term exam are closed-book exams. HOWEVER:

Midterm I: allowed 2 pages (1 sheet, Letter size) of your own writing

Midterm II: allowed 4 pages (2 sheets, Letter size) of your own writing

Final Examination: allowed 4 pages (2 sheets, Letter size) of your own writing

Cheating results in 0 grade and academic dishonesty charges

Course Philosophy

remove course abstractness and connect it to real life

INTRODUCTION

Previous Experiment in Elec. Eng. 2FH3

Total Number of students 215

Those scoring in the A range 70

Those scoring in the A and B ranges 110

Bimodal distribution with big concentration around the C range

Strong correlation between watching videos on time and scoring in the A and B ranges

Office hours?

Any questions?

INTRODUCTION