Lecture 2:Circuit Theory (1)

Ohm's law, Kirchhoff's voltage law, examples, Kirchhoff's current law, Mesh Analysis, Voltage Dividers, Current Dividers, Superposition Theorem

Ohm's Law

Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points. The constant of proportionality is the resistance
$I=V / R$ or $V=I R$

wikipedia

What is the origin of this law in electrmagnetics?

Kirchhoff's Current Law

For any junction: $\sum I_{\text {in }}=\sum I_{\text {out }}$

wikipedia

- For junction B: $I_{A B}=I_{B D}+I_{B C}$
- For junction D: $I_{B D}+I_{B C}=I_{A B}$ (dependent)
- Number of independent KCL equations = number of junctions -1 Analogy with water flow in pipes?

Kirchhoff's Voltage Law

For any closed loop: $\sum \vec{V}_{\text {rise }}=0$, or $\sum \bar{V}_{\text {rise }}=0$
For the left-hand loop: $6-2 I_{A B}-3 I_{B D}=0$

For the right-hand loop: $4+3 I_{B D}-4 I_{B C}=0$
For the outter loop: $4+6-2 I_{A B}-4 I_{B C}=0$ (dependent)
A new loop equation is independent on the previous if it contains new current(s) and/or battery(s).
origin of this law in electrmagnetics?

Mesh-Current Analysis

 every loop is assigned one current flowing in the clockwise directions

Writing Kirchhoff's voltage laws:

$$
\begin{gathered}
6-2 I_{1}-3 I_{1}+3 I_{2}=0 \\
4+3 I_{1}-3 I_{2}-4 I_{2}=0
\end{gathered} \Rightarrow\left[\begin{array}{cc}
-5 & 3 \\
3 & -7
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
-6 \\
-4
\end{array}\right]
$$

Voltage Divider

The voltage divider is a series combination of two resistors.

The total voltage V is divided between these resistors according to the direct ratio of their resistances:

$I=\frac{V}{R_{1}+R_{2}}$
$V_{1}=I R_{1}=\frac{V R_{1}}{R_{1}+R_{2}}, V_{2}=I R_{2}=\frac{V R_{2}}{R_{1}+R_{2}}, \frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}$

Current Divider

The current divider is a parallel combination of two resistors.
The total current I is divided between these resistors according to the inverse ratio of their resistances:

$V=I \frac{R_{1} R_{2}}{R_{1}+R_{2}}$
$I_{1}=\frac{V}{R_{1}}=\frac{I R_{2}}{R_{1}+R_{2}}, \quad I_{2}=\frac{V}{R_{2}}=\frac{I R_{1}}{R_{1}+R_{2}}, \frac{I_{1}}{I_{2}}=\frac{R_{2}}{R_{1}}$

Superposition Theorem

A circuit which contains more than one voltage source can be considered as the superposition of a number of circuits, each has only one voltage source only, while the rest of the voltage sources are replaced by short circuits.

Superposition (Cont'd)

Original Circuit

This circuit has been solved using Kirchhoff's laws:

First Sub-Circuit

$I_{1}^{\prime}=\frac{6}{2+(3 \| 4)}=1.615 \mathrm{~A}$
$\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right]=\left[\begin{array}{l}2.077 \\ 0.615 \\ 1.462\end{array}\right] \mathrm{A}$
$I_{2}^{\prime}=I_{1}^{\prime} \frac{4}{3+4}=0.923 \mathrm{~A}$
$I_{3}^{\prime}=I_{1}^{\prime}-I_{2}^{\prime}=0.692 \mathrm{~A}$
$I_{1}^{\prime \prime}=I_{3}^{\prime \prime}-I_{2}^{\prime \prime}=0.461 \mathrm{~A}$
$I_{1}=I_{1}^{\prime}+I_{1}^{\prime \prime}=1.615+0.461=2.076 \mathrm{~A}$
$I_{2}=I_{2}^{\prime}-I_{2}^{\prime \prime}=0.923-0.308=0.615 \mathrm{~A}$
$I_{3}=I_{3}^{\prime}+I_{3}^{\prime \prime}=0.692+0.769=1.461 \mathrm{~A}$

