Lecture 22: Arithematic Circuits

Additional Logic Gates, Half Adder, Full Adder, Half Subtractor, Full Subtractor

XOR Gate

Α	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

output is "1" if only one of the inputs is "1"

XNOR

Output is "1" only if the two inputs are equal

Half Adder

this half adder does not take into account the existence of a carry in

 $S = A\overline{B} + B\overline{A}, \ C = AB$

Half Adder Implementation

Full Adder

a Kranaugh map is constructed to simplify the implementation of this combinational logic circuit

Kranaugh Maps

_ .

$$S = \overline{ABC}_{in} + \overline{ABC}_{in} + A\overline{BC}_{in} + ABC_{in}$$

$$AB$$

$$C_{out} = AB + BC_{in} + AC_{in}$$

$$C_{in} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Full Adder Implementation

Cout

Half Subtractor

Full Subtractor

we construct a Kranaugh map for each of the two outputs

Kranaugh Maps

Implementation

