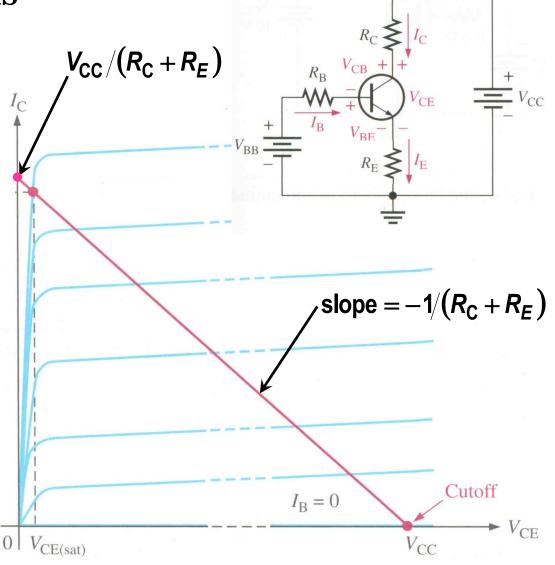
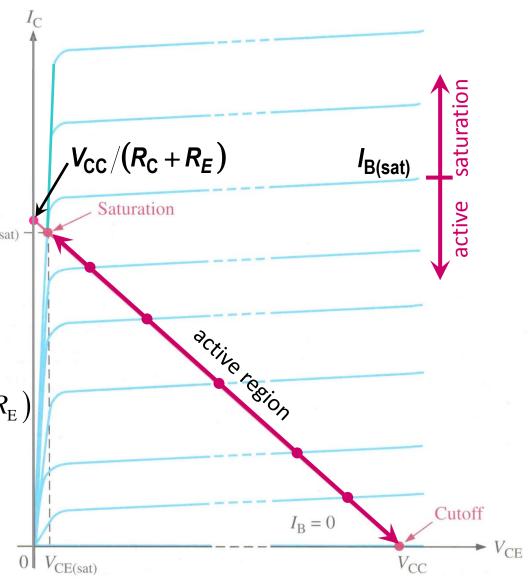
Lecture 25: Bipolar Junction Transistors (2)


Load Line Analysis, Operating Regions, Examples

Load Line Analysis

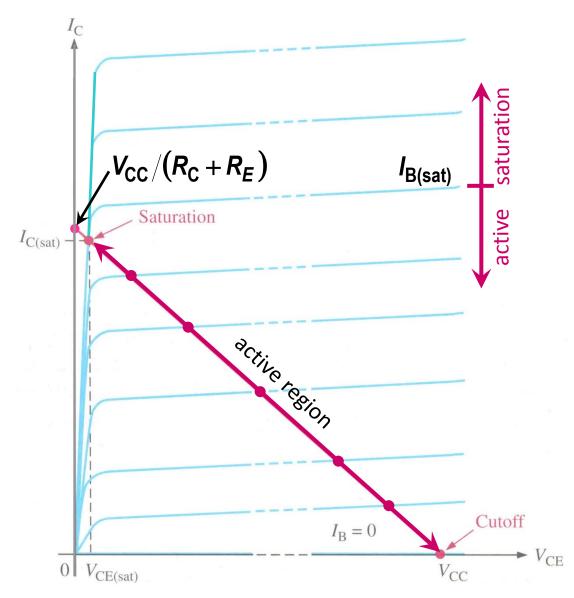
The DC operating point (Q-point) of the BJT is the point of intersection between the two relations.

The cutoff point is the intersection of the DC load line with $I_B = 0$ curve (horizontal axis). At this point:


$$\begin{split} I_{\text{B(cutoff)}} &= 0, \quad I_{\text{C(cutoff)}} = 0, \\ V_{\text{CE(cutoff)}} &= V_{\text{CC}} \end{split}$$

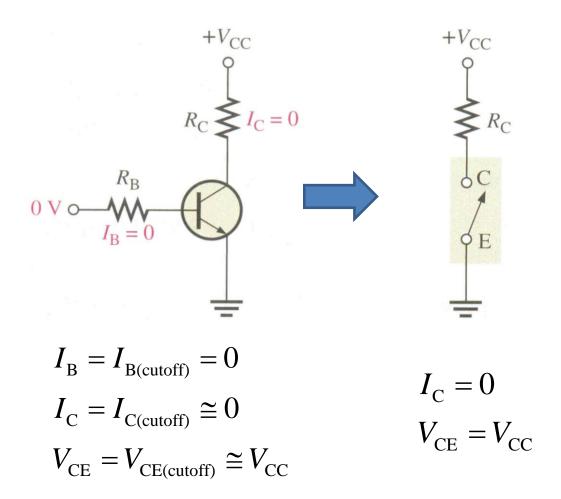
Saturation

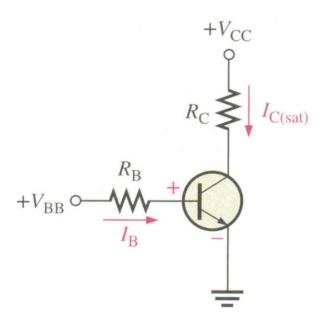
At the saturation point, several collector characteristic curves, with $I_B \ge I_{B(\text{sat})}$, intersect with the DC load line. At this point I_C and V_{CE} are fixed:


$$\begin{split} V_{\text{CE}} &= V_{\text{CE(sat)}} \leq 0.7 \text{ V} \\ I_{\text{C}} &= I_{\text{C(sat)}} = \left(V_{\text{CC}} - V_{\text{CE(sat)}}\right) / \left(R_{\text{C}} + R_{\text{E}}\right) \\ &\cong V_{\text{CC}} / \left(R_{\text{C}} + R_{\text{E}}\right) \\ I_{\text{B}} &\geq I_{\text{B(sat)}} = I_{\text{C(sat)}} / \beta_{\text{DC}} \end{split}$$

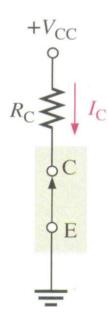
Active Region

The active region of the transistor operation, is the region along the DC load line between cutoff and saturation points:


$$I_{\mathrm{B}} \leq I_{\mathrm{B(sat)}} = I_{\mathrm{C(sat)}} / \beta_{\mathrm{DC}}$$
 $I_{\mathrm{C}} = \beta_{\mathrm{DC}} I_{\mathrm{B}}$
 $V_{\mathrm{CE}} = V_{\mathrm{CC}} - I_{\mathrm{C}} (R_{\mathrm{C}} + R_{\mathrm{E}})$


Regions of Operations

Attribute	Cutoff	Active	Saturation
BE Junction	RB	FB	FB
BC Junction	RB	RB	FB
I _B	0	≤ I _{B(sat)}	≥ I _{B(sat)}
Ic	0	β _{DC} I _B	I _{C(sat)}
V _{CE}	V _{cc}	$V_{\rm CC} - I_{\rm C}(R_{\rm C} + R_{\rm E})$	V _{CE(sat)}
Application	Opened Switch	Current Amplifier	Closed Switch


Transistor as a Switch

Transistor as a Switch (Cont'd)

$$\begin{split} I_{\rm B} &> I_{\rm B(sat)} \\ V_{\rm CE} &= V_{\rm CE(sat)} \cong 0 \\ I_{\rm C} &= I_{\rm C(sat)} \cong V_{\rm CC}/R_{\rm C} \end{split}$$

$$V_{\text{CE}} = 0$$

$$I_{\text{C}} = V_{\text{CC}} / R_{\text{C}}$$