Lecture 8: Diodes (2)

Half-Wave Rectifier, Full-Wave Rectifier, Diode Clippers, Diode Clampers, Examples

Half Wave Rectifier

The rectifier is a diode circuit that converts the AC input voltage to a pulsating DC voltage.

It can be either a half-wave or a full-wave rectifier:

$f_{\text {out }}=f_{\text {in }}$

The half-wave rectifier allows unidirectional current through the load only during one-half of the input cycle.

Full-Wave Rectifier

The full-wave rectifier allows unidirectional current through the load during the entire input cycle.

Half-Wave Rectifier Using Diodes

The diode is
0
0
0
\pm
0
0
0
0
7
forward-biased.
Current can flow through the load.

The output voltage
equals: $V_{\text {out }}=V_{i n}-0.7 \mathrm{~V}$
The diode is
reverse-biased.
Current can't flow through the load.
The output voltage

equals: $V_{\text {out }}=0$

Half-Wave Rectifier (Cont'd)

The time-average value of the output voltage can be calculated as follows:

$$
\begin{aligned}
V_{\mathrm{AVG}(\text { out })}= & \frac{1}{2 \pi} \int_{0}^{2 \pi} V_{\text {out }}(\theta) d \theta \quad \text { Condition on peak inverse voltage? } \\
& =\frac{1}{2 \pi}\left[\int_{0}^{\pi} V_{p(\text { out })} \sin (\theta) d \theta+\int_{\pi}^{2 \pi} 0 d \theta\right] \\
& =\frac{V_{p(\text { out })}}{2 \pi}[-\cos (\theta)]_{0}^{\pi}=-\left.\frac{V_{p(\text { out })}}{2 \pi}(-1-1) \Rightarrow \therefore V_{\operatorname{AVG}(\text { out })}\right|_{\text {half- }}=\frac{\left.V_{p(o u v e}\right)}{\pi}
\end{aligned}
$$

Half-Wave Rectifier (Cont'd)

Usually a transformer is used to couple the AC input voltage from the source to the rectifier
This transformer allows either stepping-up or -down of the input voltage
The turns ratio (n) controls the voltage supplied to the rectifier, such that: $V_{s e c}=n V_{p r i}$, where $n \equiv$ turns ration $=N_{\text {sec }} / N_{p r i}$

Dr. Mohamed Bakr, ENGINEER 3NO3, 2015

Full-Wave Bridge Rectifier

D_{1} and D_{2} are forward-biased, while D_{3} and D_{4} are reversebiased.

Current flows in the load from node A toward ground.
Output voltage equals: $V_{\text {out }}=V_{\text {sec }}-1.4 \mathrm{~V}$

Full-Wave Bridge (Cont'd)

D_{1} and D_{2} are reverse-biased, while D_{3} and D_{4} are forwardbiased.

Current flows in the same direction from node A toward ground.
Output voltage equals: $V_{\text {out }}=V_{\text {sec }}-1.4 \mathrm{~V}$

Full-Wave Bridge (Cont'd)

$$
\begin{aligned}
& V_{\mathrm{AVG}(\text { out })}=\frac{\text { area under a complete cycle }}{\text { period of a complete cycle }} \\
& =\frac{\text { area of the half-wave rectifier }}{\pi} \\
& =2 \times\left. V_{\mathrm{AVG}(\text { out })}\right|_{\substack{\text { half- } \\
\text { wave }}} \\
& \left.\therefore V_{\operatorname{AVG}(\text { out })}\right|_{\substack{\text { full- } \\
\text { wave }}}=2 V_{p(\text { out })} / \pi
\end{aligned}
$$

Diode Limiters

The diode limiter (clipper) is a circuit that passes to the output port that part from the input waveform that falls either above or below certain reference level. It is very useful for protection.
D is FB, $V_{D}=0.7$, $V_{\text {out }}=0.7$
$V_{i n} \rightarrow-V_{p(i n)}$:
D is $\mathrm{RB}, I_{D}=0$

$V_{\text {out }}=V_{\text {in }} R_{L} /\left(R_{1}+R_{L}\right) \underset{R_{1} \ll R_{L}}{\cong} V_{\text {in }}$
Positive Limiter

Diode Limiters (Cont'd)

$\underline{V_{i n} \rightarrow V_{p(i n)}}:$
D is RB, $I_{D}=0$
$V_{\text {out }}=V_{\text {in }} R_{L} /\left(R_{1}+R_{L}\right)_{R_{1}}^{\cong} \cong_{R_{L}} V_{\text {in }}$
$\underline{V_{i n} \rightarrow-V_{p(i n)}}$:
D is $\mathrm{FB}, V_{D}=0.7$,
$V_{\text {out }}=-0.7$

Diode Clamper

The diode clamper is a circuit that adds a DC level (positive or negative) to an AC voltage.
The circuit below is a positive clamper which adds a +ve DC level to the input voltage.

First Quarter Cycle

The diode is forward-biased.

$\tau=r{ }_{d} C$ is small.
The capacitor is fastly charging up to $V_{C}=V_{p(i n)}$ -
0.7 V .

Diode Clamper (Cont'd)

$$
\begin{aligned}
& 0 \\
& \frac{0}{0} \\
& 0 \\
& 0 \\
& 4 \\
& 0 \\
& 40 \\
& 0 \\
& 0
\end{aligned}
$$

$V_{p n}=-V_{\text {in }}-V_{C}=-V_{\text {in }}-V_{p(i n)}+0.7<0.7$ Diode is reverse-biased.
The large C is discharging very slowly through R_{L}.
C can be considered as a battery with constant voltage of $V_{C}=V_{p(i n)}$

- 0.7.
$V_{\text {out }}=V_{\text {in }}+V_{C}=V_{\text {in }}+V_{p(i n)}-0.7 \mathrm{~V}$.

