Lecture 8: Diodes (2)

Half-Wave Rectifier, Full-Wave Rectifier, Diode Clippers, Diode Clampers, Examples

Half Wave Rectifier

The <u>rectifier</u> is a diode circuit that converts the AC input voltage to a pulsating DC voltage.

It can be either a *half-wave* or a *full-wave* rectifier:

The *half-wave* rectifier allows unidirectional current through the load only during *one-half* of the input cycle.

Full-Wave Rectifier

The full-wave rectifier allows unidirectional current through the load during the *entire* input cycle.

Half-Wave Rectifier Using Diodes

Vin

+ve Half-Cycle

The diode is forward-biased. Current can flow

through the load.

The output voltage equals: $V_{out} = V_{in} - 0.7 \text{ V}$

The diode is reverse-biased. Current can't flow through the load. The output voltage equals: $V_{out} = 0$

Half-Wave Rectifier (Cont'd)

The time-average value of the output voltage can be calculated as follows:

Half-Wave Rectifier (Cont'd)

Usually a transformer is used to couple the AC input voltage from the source to the rectifier

This transformer allows either stepping-up or -down of the input voltage

The turns ratio (*n*) controls the voltage supplied to the rectifier, such that: $V_{sec} = n V_{pri}$, where $n \equiv turns ration = N_{sec} / N_{pri}$

Full-Wave Bridge Rectifier

 D_1 and D_2 are forward-biased, while D_3 and D_4 are reverse-biased.

Current flows in the load from node A toward ground.

Output voltage equals: $V_{out} = V_{sec} - 1.4 \text{ V}$

Full-Wave Bridge (Cont'd)

 D_1 and D_2 are reverse-biased, while D_3 and D_4 are forward-biased.

Current flows in the same direction from node A toward ground. Output voltage equals: $V_{out} = V_{sec} - 1.4 \text{ V}$

Full-Wave Bridge (Cont'd)

Diode Limiters

The diode *limiter (clipper)* is a circuit that passes to the output port that part from the input waveform that falls either above or below certain reference level. It is very useful for *protection*.

Diode Limiters (Cont'd)

Diode Clamper

The diode <u>*clamper*</u> is a circuit that <u>adds a DC level</u> (positive or negative) to an AC voltage.

The circuit below is a *positive* clamper which adds a +ve DC level to the input voltage.

First Quarter Cycle

The diode is forward-biased.

 $\tau = r'_d C$ is small. The capacitor is <u>fastly</u> charging up to $V_C = V_{p(in)}$ -

0.7V.

Diode Clamper (Cont'd)

 $V_{pn} = -V_{in} - V_C = -V_{in} - V_{p(in)} + 0.7 < 0.7$ Diode is reverse-biased. The <u>large</u> C is discharging <u>very slowly</u> through R_L . C can be considered as a battery with constant voltage of $V_C = V_{p(in)} - 0.7$.

$$V_{out} = V_{in} + V_C = V_{in} + V_{p(in)} - 0.7 V.$$