Lecture 21: Combinational Logic Functions

Simplification of Logic Functions, Sum of
Products, Kranaugh Maps, Examples

Simplification of Logic Functions

using Boolean algebra rules, logic functions can be simplified the result can be implemented as a sum of products (cascade of AND and OR gates)
Example:
$F=A B C+A \bar{B} C+A B \bar{C}$
$F=A B C+A B C+A \bar{B} C+A B \bar{C}$
$F=(A B C+A \bar{B} C)+(A B C+A B \bar{C})$
$F=A C(B+\bar{B})+A B(C+\bar{C})$
$F=A C+A B$

Implementation of SOPs

a product implies using AND gates
summation implies using OR gate any SOP can thus be implemented using inverters,
AND gates, and OR gates

$$
F=\bar{X} Y \bar{Z}+X \bar{Y} Z
$$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Implementation of SoPs(Cont'd)

the more compact the expression is, the fewer gates are needed to implement its expression complex logic expression can not be simplified by inspection only!

Kranaugh Maps

a Kranaugh map is a way to simplify logic functions of up to six variables
the map is derived from the truth table by combining variables in groups of 1,2 , or 4
only one logical variable is allowed to change when moving horizontally or vertically in the map
the map is inspected to get the most compact logical expression

Kranaugh Maps (Continued)

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

we then combine the expressions that would give a logical output of " 1 " along the rows and along the columns but not diagonally

$$
\mathrm{F}=\mathrm{XZ}+\mathrm{YZ}+\mathrm{XY}
$$

Kranaugh Maps (Continued)

$\mathrm{F}=\mathrm{XZ}+\mathrm{YZ}+\mathrm{XY}$
the implementation is?

Rules for Grouping in Kranaugh Maps

Rules for Grouping (Cont'd)

Rules for Grouping (Cont'd)

Rules Summary

no zeros allowed
no diagonals (only horizontal and vertical grouping)
only power of 2 number of cells in each group
groups as large as possible
every " 1 " in the map must be within a group
overlapping OK
wrapping around OK
smallest number of groups possible

