Lecture 27: Bipolar Amplifiers (1)

DC gain vs. AC gain, Common Emitter Amplifier, Examples

DC vs. AC Current Gain

AC Equivalent of a BJT

since the total (DC + AC) voltage difference across the forward-biased BE junction should be around 0.7 V, the AC part (V_{be}) alone should be very small and is represented by an extremely small resistance.

 $r'_{e} \cong \frac{25 \text{ mV}}{I_{E}}$, where I_{E} is the DC emitter current.

Common Emitter Amplifier

Original Circuit

two sources (DC and AC) are present in the original circuit.

it is equivalent to the superposition of two sub-circuits.

only one source is kept in each subcircuit, the other one is replaced by a s.c.

solve the DC circuit for the bias (operating) point. All capacitors are open circuit.

solve the AC circuit for the gain, input resistance, and output resistance. All capacitors are short circuit.

Input Resistance

Dr. Mohamed Bakr, ENGINEER 3N03, 2015

Output Resistance

Dr. Mohamed Bakr, ENGINEER 3N03, 2015

Voltage Gain

Dr. Mohamed Bakr, ENGINEER 3N03, 2015

Effect of Bypass Capacitor

the effect of the emitter bypass capacitor is to increase A_v and to decrease $R_{in(base)}$.

$$X_{C(\max)} \ll R_{\rm E} \implies X_{C(\max)} \ll 0.1R_{\rm E} \implies \frac{1}{2\pi f_{\min}C_2} \ll 0.1R_{\rm E}$$

Dr. Mohamed Bakr, ENGINEER 3N03, 2015

Voltage Gain Stability

the voltage gain A_v depends on r'_e which depends on temperature. This makes A_v unstable with temperature.

one way to overcome this problem without reducing A_{ν} too much is to partially swamp r'_{e} , which means that R_{E} is partially bypassed.

$$A_{v} = \frac{R_{\rm C}}{r'_{e} + R_{\rm E1}}, \ R_{in(base)} = \beta_{ac} \left(r'_{e} + R_{\rm E1} \right)$$

Gain Stability (Cont'd)

 $A_{v} = \frac{R_{\rm C}}{r_e' + R_{\rm E}}$

Maximum Input Resistance Minimum Ideal Gain Maximum Stability

Moderate Input Resistance Moderate Ideal Gain Moderate Stability Dr. Mohamed Bakr, ENGINEER 3N03, 2015

 $+V_{\rm CC}$

 $\sim R_1$

 R_2

 $A_{\nu} = \frac{R_{\rm C}}{r_{\rm c}' + R_{\rm E1}}$

 $R_{in(base)} = \beta_{ac} \left(r'_e + R_{\rm E1} \right)$

 $R_{\rm C}$

 $R_{\rm E1}$

 $R_{\rm E2}$

Minimum Input Resistance Maximum Ideal Gain Minimum Stability

Current and Power Gains

$$A_{i} \equiv \text{ideal current gain} = \frac{I_{c}}{I_{b}} = \beta_{ac}$$

$$A_{i}' \equiv \text{overall current gain} = \frac{I_{out}}{I_{s}},$$

$$\underline{\text{where: }} I_{out} = \frac{V_{c}}{R_{L}}, \quad I_{s} = \frac{V_{s}}{R_{s} + R_{in(tot)}}$$

$$A'_{p} \equiv \text{overall power gain} = \frac{\text{amplifier output power}}{\text{amplifier input power}} = \frac{V_{c} I_{out}}{V_{s} I_{s}} = \left(\frac{V_{c}}{V_{s}}\right) \left(\frac{I_{out}}{I_{s}}\right) = A'_{v} A'_{i}$$

CE Amplifier Summary

$$R_{in(hase)} \equiv \text{input base resistance} = \frac{V_b}{I_b}$$

$$R_{in(hot)} \equiv \text{total input resistance} = \frac{V_{in}}{I_{in}} = \frac{V_b}{I_s}$$

$$R_{out} \equiv \text{output resistance} = \frac{V_{out}}{I_{out}} \Big|_{V_y \to s.c.}$$

$$A_v \equiv \text{ideal voltage gain} = \frac{V_c}{V_b}$$

$$A'_v \equiv \text{overall voltage gain} = \frac{V_{out}}{V_s} = \frac{V_c}{V_s}$$

$$A_t = \text{ideal current gain} = \frac{I_c}{I_b} \cong \beta_{ac}$$

$$A'_i \equiv \text{overall current gain} = \frac{I_{out}}{I_s}$$