Lecture 27: Bipolar Amplifiers (1)

DC gain vs. AC gain, Common Emitter Amplifier, Examples

DC vs. AC Current Gain

$$
\beta_{\mathrm{DC}}=\left.\frac{I_{\mathrm{C}}}{I_{\mathrm{B}}}\right|_{\text {at the Q-point }}=\frac{I_{\mathrm{CQ}}}{I_{\mathrm{BQ}}}
$$

$=$ slope of the line from
the origin to the Q-point.

$\beta_{a c}=\left.\frac{\Delta I_{\mathrm{C}}}{\Delta I_{\mathrm{B}}}\right|_{\text {around the Q-point }}=\frac{I_{c(p p)}}{I_{b(p p)}}$
$=$ slope of the tangential line to the curve at the Q-point.

AC Equivalent of a BJT

since the total ($\mathrm{DC}+\mathrm{AC}$) voltage difference across the forward-biased BE junction should be around 0.7 V , the AC part ($V_{b e}$) alone should be very small and is represented by an extremely small resistance.

$r_{e}^{\prime} \cong \frac{25 \mathrm{mV}}{I_{\mathrm{E}}}$, where I_{E} is the DC emitter current.

Common Emitter Amplifier

Original Circuit

two sources (DC and AC) are present in the original circuit.
it is equivalent to the superposition of two sub-circuits.
only one source is
 kept in each subcircuit, the other one is replaced by a s.c.

DC/AC Circuit

solve the DC circuit for the bias (operating) point. All capacitors are open circuit.
solve the AC circuit for the gain, input resistance, and output resistance. All capacitors are short circuit.

Input Resistance

Output Resistance

Voltage Gain

$A_{v} \equiv$ ideal voltage gain $=\frac{V_{c}}{V_{b}}$
$A_{v}^{\prime} \equiv$ overall voltage gain $=\frac{V_{c}}{V_{s}}=\left(\frac{V_{c}}{V_{b}}\right)\left(\frac{V_{b}}{V_{s}}\right)=\frac{A_{v}}{\text { Attenuation }}$,

$$
=\frac{I_{c}\left(R_{\mathrm{C}} \| R_{L}\right)}{I_{e} r_{e}^{\prime}} \cong \frac{R_{\mathrm{C}} \| R_{L}}{r_{e}^{\prime}}
$$

$$
\text { where: Attenuation }=\frac{V_{s}}{V_{b}}=\frac{R_{s}+R_{i n(t o t)}}{R_{i n(t o t)}} \geq 1 \Rightarrow A_{v}^{\prime} \leq A_{v}
$$

Effect of Bypass Capacitor

$A_{v}=\left(R_{\mathrm{C}} \| R_{L}\right) / r_{e}^{\prime}, R_{i n(\text { base })}=\beta_{a c} r_{e}^{\prime} \quad A_{v}=\left(R_{\mathrm{C}} \| R_{L}\right) /\left(r_{e}^{\prime}+R_{\mathrm{E}}\right), R_{i n(\text { base })}=\beta_{a c}\left(r_{e}^{\prime}+R_{\mathrm{E}}\right)$
the effect of the emitter bypass capacitor is to increase A_{v} and to decrease $R_{i n(\text { base })}$.

$$
X_{C(\text { max })} \ll R_{\mathrm{E}} \Rightarrow X_{C(\text { max })}<0.1 R_{\mathrm{E}} \Rightarrow \frac{1}{2 \pi f_{\text {min }} C_{2}}<0.1 R_{\mathrm{E}}
$$

Voltage Gain Stability

the voltage gain A_{v} depends on r_{e}^{\prime} which depends on temperature. This makes A_{v} unstable with temperature.
one way to overcome this problem without reducing A_{v} too much is to partially swamp r_{e}^{\prime}, which means that R_{E} is partially bypassed.

$A_{v}=\frac{R_{\mathrm{C}}}{r_{e}^{\prime}+R_{\mathrm{E} 1}}, \quad R_{i n(\text { base })}=\beta_{a c}\left(r_{e}^{\prime}+R_{\mathrm{E} 1}\right)$

Gain Stability (Cont'd)

$R_{i n(\text { base })}=\beta_{a c}\left(r_{e}^{\prime}+R_{\mathrm{E}}\right)$
$A_{v}=\frac{R_{\mathrm{C}}}{r_{e}^{\prime}+R_{\mathrm{E}}}$
Maximum Input Resistance
Minimum Ideal Gain
Maximum Stability

$R_{i n(b a s e)}=\beta_{a c}\left(r_{e}^{\prime}+R_{\mathrm{E} 1}\right)$
$A_{v}=\frac{R_{\mathrm{C}}}{r_{e}^{\prime}+R_{\mathrm{EI}}}$
Moderate Input Resistance Moderate Ideal Gain
Moderate Stability

$R_{i n(b a s e)}=\beta_{a c} r_{e}^{\prime}$
$A_{v}=\frac{R_{\mathrm{C}}}{r_{e}^{\prime}}$
Minimum Input Resistance
Maximum Ideal Gain
Minimum Stability

Current and Power Gains

$A_{i} \equiv$ ideal current gain $=\frac{I_{c}}{I_{b}}=\beta_{a c}$
$A_{i}^{\prime} \equiv$ overall current gain $=\frac{I_{\text {out }}}{I_{s}}$,
where: $I_{\text {out }}=\frac{V_{c}}{R_{L}}, I_{s}=\frac{V_{s}}{R_{s}+R_{\text {int(tot })}}$
$R_{\text {in(tot })}$

$A_{p}^{\prime} \equiv$ overall power gain $=\frac{\text { amplifier output power }}{\text { amplifier input power }}=\frac{V_{c} I_{\text {out }}}{V_{s} I_{s}}=\left(\frac{V_{c}}{V_{s}}\right)\left(\frac{I_{\text {out }}}{I_{s}}\right)=A_{v}^{\prime} A_{i}^{\prime}$

CE Amplifier Summary

$R_{\text {in(base })} \equiv$ input base resistance $=\frac{V_{b}}{I_{b}}$
$R_{i n(t o t)} \equiv$ total input resistance $=\frac{V_{i n}}{I_{i n}}=\frac{V_{b}}{I_{s}}$
$R_{\text {out }} \equiv$ output resistance $=\left.\frac{V_{\text {out }}}{I_{\text {out }}}\right|_{V_{s} \rightarrow \text { s.c. }}$
$A_{v} \equiv$ ideal voltage gain $=\frac{V_{c}}{V_{b}}$
$A_{v}^{\prime} \equiv$ overall voltage gain $=\frac{V_{\text {out }}}{V_{s}}=\frac{V_{c}}{V_{s}}$
Attenuation $\equiv \frac{A_{v}}{A_{v}^{\prime}}=\frac{V_{s}}{V_{b}}=\frac{R_{s}+R_{\text {in(tot })}}{R_{\text {in(tot })}} \geq 1$
$A_{i} \equiv$ ideal current gain $=\frac{I_{c}}{I_{b}} \cong \beta_{a c}$
$A_{i}^{\prime} \equiv$ overall current gain $=\frac{I_{\text {out }}}{I_{s}}$

