I-V Characteristics of BJT

Common-Emitter Output Characteristics

To illustrate the $I_{C}-V_{C E}$ characteristics, we use an enlarged β_{R}

Common Base Output Characteristics

Common-Emitter Transfer Characteristic i_{C} - V_{BE}
. BE voltage changes as $-1.8 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ - this is its temperature coefficient (recall from diodes).

Common-Emitter Transfer Characteristic \mathbf{i}_{C} - v_{BE} (p. 180)
$I_{C}=I_{S}\left\{\exp \left(\frac{v_{B E}}{V_{T}}\right)-1\right\} . \begin{aligned} & \text { BE voltage changes as }-1.8 \mathrm{mV} /{ }^{\circ} \mathrm{C} \text { - this is its temperature coef- } \\ & \text { ficient (recall from diodes). }\end{aligned}$

Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region : junction is reverse biased.
In cut-off region, are both reverse biased.
The transistor must withstand these reverse bias voltages.

Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region, $B C$ junction is reverse biased.
In cut-off region, are both reverse biased.
The transistor must withstand these reverse bias voltages.

Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region, $B C$ junction is reverse biased.
In cut-off region, $B E$ and $B C$ are both reverse biased.
The transistor must withstand these reverse bias voltages.

Minority Carrier Transport in Base Region

Transport current i_{T} results from diffusion of minority carriers (holes in npn) across base region.

Base current i_{B} is composed of holes injected back into E and C and $I_{\text {REC }}$ needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

> and
rium electron density in the base region.
The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get
$\boldsymbol{W}_{\boldsymbol{B}}$ is the B width; \boldsymbol{A} is the cross-sectional area of B region.

The saturation current is

Transport current i_{T} results from diffusion of minority carriers (electrons in npn) across base region.

Base current i_{B} is composed of holes injected back into E and C and $I_{\text {REC }}$ needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are $\boldsymbol{n}(0)=\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}} \exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)$ and $\boldsymbol{n}\left(\boldsymbol{W}_{\boldsymbol{B}}\right)=\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}} \exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B} \boldsymbol{C}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)$ where $\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}}$ is the equilib-
rium electron density in the base region.
The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get
$\boldsymbol{W}_{\boldsymbol{B}}$ is the B width; \boldsymbol{A} is the cross-sectional area of B region.

The saturation current is

Transport current i_{T} results from diffusion of minority carriers (holes in npn) across base region.

Base current i_{B} is composed of holes injected back into E and C and $I_{\text {REC }}$ needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are $\boldsymbol{n}(0)=\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}} \exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)$ and $\boldsymbol{n}\left(\boldsymbol{W}_{\boldsymbol{B}}\right)=\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}} \exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B} \boldsymbol{C}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)$ where $\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}}$ is the equilib-
rium electron density in the base region.
The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get
$\boldsymbol{i}_{\boldsymbol{T}}=\left|q A D_{\boldsymbol{n}} \frac{\boldsymbol{d} \boldsymbol{n}}{\boldsymbol{d x}}\right|=\left|-q A D_{\boldsymbol{n}} \frac{\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}}}{\boldsymbol{W}_{\boldsymbol{B}}}\left\{\exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)-\exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B} C}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)\right\}\right|$.
$\boldsymbol{W}_{\boldsymbol{B}}$ is the B width; \boldsymbol{A} is the cross-sectional area of B region.

The saturation current is

Transport current i_{T} results from diffusion of minority carriers (holes in npn) across base region.

Base current i_{B} is composed of holes injected back into E and C and $I_{\text {REC }}$ needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are $\boldsymbol{n}(0)=\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}} \exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B} \boldsymbol{E}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)$ and $\boldsymbol{n}\left(\boldsymbol{W}_{\boldsymbol{B}}\right)=\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}} \exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B} \boldsymbol{C}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)$ where $\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}}$ is the equilib-
rium electron density in the base region.
The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get
$\boldsymbol{i}_{\boldsymbol{T}}=\left|q A D_{\boldsymbol{n}} \frac{d \boldsymbol{n}}{\boldsymbol{d x}}\right|=\left|-q A D_{\boldsymbol{n}} \frac{\boldsymbol{n}_{\boldsymbol{b} \boldsymbol{o}}}{\boldsymbol{W}_{\boldsymbol{B}}}\left\{\exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)-\exp \left(\frac{\boldsymbol{v}_{\boldsymbol{B}}}{\boldsymbol{V}_{\boldsymbol{T}}}\right)\right\}\right|$.
$\boldsymbol{W}_{\boldsymbol{B}}$ is the B width; \boldsymbol{A} is the cross-sectional area of B region.
The saturation current is $I_{S}=q A D_{n} \frac{n_{b o}}{W_{B}}=q A D_{n} \frac{n_{i}^{2}}{N_{A B} W_{B}}$.

Base Transit Time

Forward transit time is time associated with storing charge Q in Base region and it is
$\tau_{F}=\frac{Q}{i_{T}}$ with $Q=q A\left[n(0)-n_{b o}\right] \frac{W_{B}}{2}$.
Using $Q=q A n_{b o}\left\{\exp \left(\frac{v_{B E}}{V_{T}}\right)-1\right\} \frac{W_{B}}{2}$ we get

Using $Q=q A n_{b o}\left\{\exp \left(\frac{v_{B E}}{V_{T}}\right)-\mathbf{1}\right\} \frac{W_{B}}{2}$ we get

$$
i_{T}=\frac{q A D_{n}}{W_{B}} n_{b o}\left\{\exp \left(\frac{v_{B E}}{V_{T}}\right)-1\right\} \text { and } \tau_{F}=\frac{W_{B}^{2}}{2 D_{n}}=\frac{W_{B}^{2}}{2 V_{T} \mu_{n}} \text {. }
$$

This defines an upper limit on frequency $f \leq \frac{1}{2 \pi \tau_{F}}$.

PSPICE EXAMPLE

*Libraries:

* Local Libraries :

.LIB ". \example10.lib"
* From [PSPICE NETLIST] section of C:\Program Files \OrcadLite\PSpice\PSpice.ini file:
.lib "nom.lib"
*Analysis directives:
.DC LIN V_V1 050.05
+ LIN I_I1 10u 100u 10u
.PROBE V(*) I(*) W(*) D(*) NOISE(*)
.INC ". \example10-SCHEMATIC1.net"
**** INCLUDING example10-SCHEMATIC1.net ****
* source EXAMPLE10

PSPICE EXAMPLE (Cont'd)

Q_Q1 N00060 N00159 0 Qbreakn
V_V1 \quad N00060 0 OVdc
I_I1 \quad O N00159 DC OAdc
**** RESUMING example10-SCHEMATIC1-Example1OProfile.sim.cir ****
END

| **** |
| :--- | BJT MODEL PARAMETERS


```
    Qbreakn
    NPN
    IS 1.000000E-15
    BF }10
    NF 1
    VAF }8
    BR 3
    NR 1
VAR 30
    CN 2.42
    D . }8
    JOB CONCLUDED
    TOTAL JOB TIME . }2
```


PSPICE EXAMPLE (Cont'd)

