I-V Characteristics of BJT

Common-Emitter Output Characteristics
To illustrate the I_C-V_{CE} characteristics, we use an enlarged β_R.

- **Reverse-Active Region**: $V_{CE} \leq V_{BE}$
 - $I_C = -(\beta_R + 1)I_B$

- **Saturation Region**: $V_{CE} \leq V_{BE} \leq 0$
 - $I_C = \beta_F I_B$

- **Forward Active Region**: $V_{CE} \geq V_{BE}$
 - $I_C = \beta_F I_B$

- **Cutoff Region**: $V_{CE} \leq V_{BE}$
 - $I_C = 0$

- **Collector Current (mA)**
 - $I_B = 100 \mu A$
 - $I_B = 80 \mu A$
 - $I_B = 60 \mu A$
 - $I_B = 40 \mu A$
 - $I_B = 20 \mu A$
 - $I_B = 0 \mu A$

Parameter Values
- $\beta_F = 25$
- $\beta_R = 5$
Common Base Output Characteristics

\[i_E \quad B \quad C \quad i_C \quad v_{CB} \]

\[i_E \quad B \quad C \quad i_C \quad v_{BC} \]
Forward-Active Region

- $\beta_F = 25; \beta_R = 5$
- $I_E = 0.6 \text{ mA}$
- $I_E = 0.4 \text{ mA}$
- $I_E = 0.2 \text{ mA}$
- $I_E = 0 \text{ mA}$
Common-Emitter Transfer Characteristic $i_C - v_{BE}$

BE voltage changes as $-1.8 \text{ mV/} ^\circ \text{C}$ - this is its temperature coefficient (recall from diodes).
Common-Emitter Transfer Characteristic $i_C - v_{BE}$ (p. 180)

$$I_C = I_S \left\{ \exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right\}$$

BE voltage changes as -1.8 mV/°C - this is its temperature coefficient (recall from diodes).
Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region, junction is reverse biased.

In cut-off region, are both reverse biased.

The transistor must withstand these reverse bias voltages.
Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region, BC junction is reverse biased.

In cut-off region, BE and BC are both reverse biased.

The transistor must withstand these reverse bias voltages.
Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region, BC junction is reverse biased.

In cut-off region, BE and BC are both reverse biased.

The transistor must withstand these reverse bias voltages.
Minority Carrier Transport in Base Region

\[n(0) = n_{bo} \exp\left(\frac{V_{BE}}{V_T}\right) \]

\[i_T = qAD \frac{dn}{dx} \]

Electron conc. in base (neglects recombination)

\[(p_{no}, n_{po}) \]

\[\text{Inj. Holes} \]

\[\text{Inj. Elec.} \]

\[\text{Coll. Elec.} \]

\[\text{Emitter} \]

\[\text{Base} \]

\[\text{Collector} \]

\[\text{Space Charge regions} \]
Transport current i_T results from diffusion of minority carriers (holes in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

$$n_{bo} \quad \text{and} \quad n_{bo}$$

where n_{bo} is the equilibrium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

$$W_B \quad \text{is the B width; } A \quad \text{is the cross-sectional area of B region.}$$

The saturation current is
Transport current i_T results from diffusion of minority carriers (electrons in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

$$n(0) = n_{bo} \exp \left(\frac{v_{BE}}{V_T} \right)$$

and

$$n(W_B) = n_{bo} \exp \left(\frac{v_{BC}}{V_T} \right)$$

where n_{bo} is the equilibrium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

W_B is the B width; A is the cross-sectional area of B region.

The saturation current is
Transport current i_T results from diffusion of minority carriers (holes in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

$$n(0) = n_{bo} \exp\left(\frac{v_{BE}}{V_T}\right) \quad \text{and} \quad n(W_B) = n_{bo} \exp\left(\frac{v_{BC}}{V_T}\right)$$

where n_{bo} is the equilibrium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

$$i_T = \left| qAD \frac{dn}{dx} \right| = -qAD \frac{n_{bo}}{W_B} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - \exp\left(\frac{v_{BC}}{V_T}\right) \right\}.$$

W_B is the B width; A is the cross-sectional area of B region.

The saturation current is
Transport current i_T results from diffusion of minority carriers (holes in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

$$n(0) = n_{bo} \exp \left(\frac{v_{BE}}{V_T} \right) \quad \text{and} \quad n(W_B) = n_{bo} \exp \left(\frac{v_{BC}}{V_T} \right)$$

where n_{bo} is the equilibrium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

$$i_T = qAD \left. \frac{dn}{dx} \right| = -qAD \frac{n_{bo}}{W_B} \left\{ \exp \left(\frac{v_{BE}}{V_T} \right) - \exp \left(\frac{v_{BC}}{V_T} \right) \right\}.$$

W_B is the B width; A is the cross-sectional area of B region.

The saturation current is

$$I_S = qAD \frac{n_{bo}}{W_B} = qAD \frac{n_i^2}{N_{AB} W_B}.$$
Base Transit Time

Forward transit time is time associated with storing charge Q in Base region and it is

$$\tau_F = \frac{Q}{i_T} \quad \text{with} \quad Q = qA[n(0) - n_{bo}]\frac{W_B}{2}.$$

Using

$$Q = qA n_{bo} \left\{ \exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right\} \frac{W_B}{2}$$

we get
Using
\[
Q = q A n_{bo} \left\{ \exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right\} \frac{W_B}{2}
\]
we get
\[
i_T = \frac{q A D_n}{W_B} n_{bo} \left\{ \exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right\}
\]
and
\[
\tau_F = \frac{W_B^2}{2D_n} = \frac{W_B^2}{2V_T \mu_n}
\]
This defines an upper limit on frequency \(f \leq \frac{1}{2\pi \tau_F} \).

\[\frac{f}{\tau_F} \leq \frac{1}{2\pi} \]

Diagram:
- \(n(x) \) axis with \(n(0) \) and \(n(W_B) = n_{bo} \) points.
- \(Q = \) excess minority charge in Base.
- \(n_{bo} \) and \(W_B \) labels.
- \(x \) axis.

\(Q \) represents the shaded area between the line and the axes.
PSPICE EXAMPLE

*Libraries:
* Local Libraries:
 .LIB ".\example10.lib"
* From [PSPICE NETLIST] section of C:\Program Files\OrcadLite\PSpice\PSpice.ini file:
 .lib "nom.lib"

*Analysis directives:
 .DC LIN V_V1 0 5 0.05
 + LIN I_I1 10u 100u 10u
 .PROBE V(*) I(*) W(*) D(*) NOISE(*)
 .INC ".\example10-SCHEMATIC1.net"
**** INCLUDING example10-SCHEMATIC1.net ****
* source EXAMPLE10
PSPICE EXAMPLE (Cont'd)

Q_Q1 N00060 N00159 0 Qbreakn
V_V1 N00060 0 0Vdc
I_I1 0 N00159 DC 0Adc

***** RESUMING example10-SCHEMATIC1-Example10Profile.sim.cir *****

.END

***** BJT MODEL PARAMETERS

Qbreakn
NPN
IS 1.000000E-15
BF 100
NF 1
VAF 80
BR 3
NR 1
VAR 30
CN 2.42
D .87
JOB CONCLUDED
TOTAL JOB TIME .21
PSPICE EXAMPLE (Cont’d)