I-V Characteristics of BJT

Common-Emitter Output Characteristics

To illustrate the $I_{C}-V_{CE}$ characteristics, we use an enlarged β_{R}

Common Base Output Characteristics

Common-Emitter Transfer Characteristic i_C - v_{BE}

. BE voltage changes as $-1.8 \text{ mV/}^{\circ}\text{C}$ - this is its temperature coefficient (recall from diodes).

Common-Emitter Transfer Characteristic i_C - v_{BE} (p. 180)

$$I_C = I_S \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\}.$$

BE voltage changes as $-1.8 \text{ mV/}^{\circ}\text{C}$ - this is its temperature coefficient (recall from diodes).

Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region *is reverse biased.*

In cut-off region, are both reverse biased.

The transistor must withstand these reverse bias voltages.

Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region, BC junction is reverse biased.

In cut-off region, are both reverse biased.

The transistor must withstand these reverse bias voltages.

Junction Breakdown - BJT has two diodes back-to-back. Each diode has a breakdown. The diode (BE) with higher doping concentrations has the lower breakdown voltage (5 to 10 V).

In forward active region, BC junction is reverse biased.

In cut-off region, BE and BC are both reverse biased.

The transistor must withstand these reverse bias voltages.

Minority Carrier Transport in Base Region

Transport current i_T results from diffusion of minority carriers (holes in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

and where n_{ho} is the equilib-

rium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

 W_R is the B width; A is the cross-sectional area of B region.

The saturation current is

Transport current i_T results from diffusion of minority carriers (electrons in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

$$n(0) = n_{bo} \exp\left(\frac{v_{BE}}{V_T}\right)$$
 and $n(W_B) = n_{bo} \exp\left(\frac{v_{BC}}{V_T}\right)$ where n_{bo} is the equilib-

rium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

 W_{R} is the B width; A is the cross-sectional area of B region.

The saturation current is

Transport current i_T results from diffusion of minority carriers (holes in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

$$n(0) = n_{bo} \exp\left(\frac{v_{BE}}{V_T}\right)$$
 and $n(W_B) = n_{bo} \exp\left(\frac{v_{BC}}{V_T}\right)$ where n_{bo} is the equilib-

rium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

$$i_T = \left| qAD_n \frac{dn}{dx} \right| = \left| -qAD_n \frac{n_{bo}}{W_B} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - \exp\left(\frac{v_{BC}}{V_T}\right) \right\} \right|.$$

 W_B is the B width; A is the cross-sectional area of B region.

The saturation current is

Transport current i_T results from diffusion of minority carriers (holes in npn) across base region.

Base current i_B is composed of holes injected back into E and C and I_{REC} needed to replenish holes lost to recombination with electrons in B.

The minority carrier concentrations at two ends of base are

$$n(0) = n_{bo} \exp\left(\frac{v_{BE}}{V_T}\right)$$
 and $n(W_B) = n_{bo} \exp\left(\frac{v_{BC}}{V_T}\right)$ where n_{bo} is the equilib-

rium electron density in the base region.

The junction voltages establish a minority carrier concentration gradient at ends of base region. For a narrow base, we get

$$i_T = \left| qAD_n \frac{dn}{dx} \right| = \left| -qAD_n \frac{n_{bo}}{W_B} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - \exp\left(\frac{v_{BC}}{V_T}\right) \right\} \right|.$$

 W_B is the B width; A is the cross-sectional area of B region.

The saturation current is
$$I_S = qAD_n \frac{n_{bo}}{W_B} = qAD_n \frac{n_i^2}{N_{AB}W_B}$$

Base Transit Time

Forward transit time is time associated with storing charge ${\bf Q}$ in Base region and it is

$$\tau_F = \frac{Q}{i_T}$$
 with $Q = qA[n(0) - n_{bo}]\frac{W_B}{2}$.

Using
$$Q = qAn_{bo} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\} \frac{W_B}{2}$$
 we get

Using
$$Q = qAn_{bo} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\} \frac{W_B}{2}$$
 we get
 $i_T = \frac{qAD_n}{W_B} n_{bo} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\}$ and $\tau_F = \frac{W_B^2}{2D_n} = \frac{W_B^2}{2V_T \mu_n}$.

This defines an upper limit on frequency $f \leq \frac{1}{2\pi\tau_F}$.

PSPICE EXAMPLE

*Libraries:

* Local Libraries :

.LIB ".\example10.lib"

* From [PSPICE NETLIST] section of C:\Program Files\OrcadLite\PSpice\PSpice.ini file:

.lib "nom.lib"

*Analysis directives:

.DC LIN V_V1 0 5 0.05

+ LIN I_I1 10u 100u 10u

.PROBE V(*) I(*) W(*) D(*) NOISE(*)

.INC ".\example10-SCHEMATIC1.net"

**** INCLUDING example10-SCHEMATIC1.net ****

* source EXAMPLE10

PSPICE EXAMPLE (Cont'd)

Q_Q1 N00060 N00159 0 Qbreakn

V_V1 N00060 0 0Vdc

I_I1 0 N00159 DC 0Adc

**** RESUMING example10-SCHEMATIC1-Example10Profile.sim.cir ****

.END

**** BJT MODEL PARAMETERS

.21

Qbreakn	
INPI	J
IS	1.00000E-15
BF	100
NF	1
VAF	80
BR	3
NR	1
VAR	30
CN	2.42
D	.87
JOB CONCLUDED	
TO	TAL JOB TIME

PSPICE EXAMPLE (Cont'd)

V_V1