ECE3FI4
 Theory and Applications in Electromagnetic

Term II, January - April 2007

MATLAB Example and Exercises (Set 16 solution)

Prepared by: Dr. M. H. Bakr and C. He

Exercise: a toroid whose axis is the z axis carries a current of 5.0 A and has 200 turns. The inner radius is 1.5 cm while the outer radius is 2.5 cm . Write a MATLAB program that compute and plots the magnetic field in the $x-y$ plane in the region $-4.0 \mathrm{~cm} \leq x \leq 4.0 \mathrm{~cm}$ and $-4.0 \mathrm{~cm} \leq y \leq 4.0 \mathrm{~cm}$.

Figure E16.1 See the exercise problem

Analytical solution:

The cross section of the toriod is shown in Figure E16.2. Similar to the example problem, we can assign each point on the winding an angle value. For instance, if a point has a θ (θ is the angle shown in Figure E16.2) of $\pi / 3$, and it is on the third turn, then the angle value we assign to this point is $\phi^{\prime}=\pi / 3+2 \pi \times(3-1)=13 \pi / 3$. general, $\phi^{\prime}=\theta+2(k-1) \pi$, where $k \in Z, 1 \leq k \leq$ number of turns and $0 \leq \theta<2 \pi$. Knowing the value of ϕ^{\prime}, we can find the cylindrical coordinates of a point on the k-th turn :
$R=R_{1}+R_{2} \cos \theta=R_{1}+R_{2} \cos \phi$
$\phi=\frac{2(k-1) \pi}{\text { Number of turns }}$
$z=R_{2} \sin \theta=R_{2} \sin \phi$
Then we want to divide the winding to many segment along the direction of the current I in order to allow MATLAB program to calculate the magnetic field. Assume we want to divide the winding to n segments, then we have to pick up $n+1$ points on the winding. And for the i-th point, the angle is given by
$\phi_{i}^{\prime}=\phi_{\min }^{\prime}+\frac{\phi_{\max }^{\prime}-\phi_{\min }^{\prime}}{n}(i-1)$, where $\phi_{\text {min }}^{\prime}=0$ and $\phi_{\max }^{\prime}=2 \pi \times$ (Number of turns)
by plugging this equation into (1) (2) and (3), we can find R_{i}, ϕ_{i}, and z_{i}. Also, we can find the rectangular coordinate x_{i}, y_{i}, and z_{i} by using the formula
$x_{i}=R_{i} \cos \phi_{i}$
$y_{i}=R \sin \phi_{i}$
$z_{i}=z_{i}$
Note the i-th segment is a vector given by
$\Delta \mathbf{L}_{i}=\left(x_{i+1}-x_{i}\right) \mathbf{a}_{x}+\left(y_{i+1}-y_{i}\right) \mathbf{a}_{y}+\left(z_{i+1}-z_{i}\right) \mathbf{a}_{y}$
and the vector \mathbf{R}_{i} (pointing from the center of the i-th segment to the observation point) is given by
$\mathbf{R}_{i}=P-C_{i}=(x, y, z)-\left(\frac{x_{i+1}-x_{i}}{2}, \frac{y_{i+1}-y_{i}}{2}, \frac{z_{i+1}-z_{i}}{2}\right)$

Figure E16.2 Cross section view of the toroid in the example problem. R and z are cylindrical coordinates of point M. It can be shown that $R=R_{1}+R_{2} \cos \theta, z=R_{2} \sin \theta$. And if M
is on the k-th turn, $\phi=\frac{2(k-1) \pi}{\text { Number of turns }}$.

