LAB WORKBOOK TEM TRANSMISSION LINE – PART #2 (REFLECTION AND TRANSMISSION)

- Submit for marking at the end of the 3-hour session!
- Write your name and student ID on each page (see top of page)!

PRETEST

(Write answers immediately below respective questions.)

- 1. What is the formula for the intrinsic impedance Z_w of a TEM wave in a medium characterized by permittivity ε and permeability μ ?
- 2. Express the characteristic impedance of a TEM line in terms of its capacitance per unit length C_1 and its inductance per unit length L_1 .
- 3. Express the phase velocity of a TEM line in terms of its capacitance per unit length and its inductance per unit length.
- 4. A transmission line of characteristics impedances Z_{c1} is connected to a second line of impedance Z_{c2} . If the reflection coefficient at the joint of the two lines is Γ , find the ratio Z_{c2}/Z_{c1} in terms of Γ .
- 5. What is the relation between the *SWR* and the reflection coefficient Γ ?
- 6. What is the relation between Γ and T?
- 7. What is the formula to the calculation of the reflection coefficient Γ in terms of the intrinsic impedances of two media for a TEM wave normally incident at the interface between the two media? How do we calculate Γ for a wave in a transmission line, which impedance changes from Z_{c_1} to Z_{c_2} ?

- 8. Write the characteristic impedance of a parallel-plate line in terms of the width of the plates w, the distance between the plates h, and the constitutive parameters of the medium sandwiched between the plates.
- 9. If a TEM transmission line is quarter-wave long at the operating frequency, and it connects a generator of real impedance Z_g to a load of real impedance Z_L , what is the characteristic impedance of the line Z_c for which maximum power transfer will be realized.
- 10. What are the reasons for signal power loss along a transmission line? Explain their nature.
- 11. Which of the transmission lines you know is best protected from EM interference?

ADDITIONAL NOTES AND COMMENTS:

PRACTICE AND EXPERIMENTS

Experiment #1: Reflection of a Gaussian Pulse by a Short Circuit

Step 1: Set Up Electric-Wall Termination of Transmission Line

Q1: The physical equivalent of an "electric-wall" termination is:

(a) open circuit	(b) short circuit
(c) matched load	(d) 50-Ω load

Q2: What is the reflection coefficient at an "electric-wall" termination?

(a) +1	(b) 0
(c) -1	(d) 0.5

Q3: Which of the following statements about the total voltage magnitude V_{Tm} and the total current magnitude I_{Tm} is correct at the "electric-wall" termination?

(a) V_{Tm} is zero, I_{Tm} is maximum	(b) V_{Tm} is maximum, I_{Tm} is maximum
(c) V_{Tm} is zero, I_{Tm} is zero	(d) V_{Tm} is maximum, I_{Tm} is zero

Step 2: Observing the Incident and Reflected Pulses

Q4: What is the polarity of the reflected voltage pulse compared to that of the incident one?

(a) same

Q5: What is the magnitude of the reflected voltage pulse compared to that of the incident one?

(a) same

Q6: What is the polarity of the reflected current pulse compared to that of the incident one?

(a) same

Q7: What is the magnitude of the reflected current pulse compared to that of the incident one?

(a) same

(b) different

(b) opposite

(b) different

(b) opposite

Step 3: Measuring the Distance from Probe 1 to the Short Circuit

TABLE 1: DISTANCE FROM PROBE 1 TO	O THE ELECTRIC WALL
-----------------------------------	---------------------

THEE I. DISTRICT ROLL TO THE ELECTRIC WHEE		
Time step of incident pulse peak		
Time step of reflected pulse peak		
Time delay in time steps		
Time step Δt in pico-seconds		
Time delay in pico-seconds		
Velocity, m/s		
Distance Probe 1 – Electric Wall, m		
Distance Probe 1 – Electric Wall, m		
(measured from layout)		

Q8: How did you calculate the distance from Probe 1 to the Electric Wall from the time delay between the incident and the reflected pulses?

Experiment #2: Reflection of a Gaussian Pulse by an Open Circuit

Step 1: Set Up Magnetic-Wall Termination of Transmission Line

Q9: The physical equivalent of a "magnetic-wall" termination is:

(a) open circuit	(b) short circuit
(c) matched load	(d) 50- Ω load

Q10: What is the reflection coefficient at a "magnetic-wall" termination?

(a) +1	(b) 0
(c) -1	(d) 0.5

Q11: Which of the following statements about the total voltage magnitude V_{Tm} and the total current magnitude I_{Tm} is correct at the "magnetic-wall" termination?

(a) V_{Tm} is zero, I_{Tm} is maximum	(b) V_{Tm} is maximum, I_{Tm} is maximum
(c) V_{Tm} is zero, I_{Tm} is zero	(d) V_{Tm} is maximum, I_{Tm} is zero

Step 2: Observing the Incident and Reflected Pulses

Q12: What is the polarity of the reflected voltage pulse compared to that of the incident one?

(a) same

(b) opposite

Q13: What is the magnitude of the reflected voltage pulse compared to that of the incident one? (a) same (b) opposite Q14: What is the polarity of the reflected current pulse compared to that of the incident one? (a) same (b) opposite Q15: What is the magnitude of the reflected current pulse compared to that of the incident one? (a) same (b) opposite

Experiment #3: Partial Reflection of a Gaussian Pulse by a Resistive Load

Step 1: Set-up Termination

Q16: A termination wall of $\Gamma = 0.5$ represents a load at the right end Z_L , which is not matched to the characteristic impedance of the transmission line Z_{c1} . Alternatively, it may also represent another transmission line whose characteristic impedance is $Z_{c2} = Z_L$ and which is matched at the end. What is the ratio Z_L / Z_{c1} corresponding to $\Gamma = 0.5$?

Step 2: Measurement of the Reflection Coefficient

TABLE 2: REFLECTION OF A GAUSSIAN		ION OF A GAUSSIAN	Pulse from $\Gamma = 0.5$ Wall
		Peak V	Ratio: Reflected/Incident

	Peak, V	Ratio: Reflected/Incident
Incident		
Reflected		

Experiment #4: Total Reflection of a Sine Wave

Step 2: Standing Wave Observation and SWR Measurement

TABLE 3:	SWR MEASUREMENT,	$\Gamma = -1$
----------	------------------	---------------

	Envelope	SWR
$V_{ m max}$, V		
V_{\min} , V		

Q17: What is the theoretical value of the SWR in the case of total reflection?

Q18: What is the magnitude of the voltage wave at the electric-wall end of the line?

(a) zero	(b) maximum
(c) half-maximum	(d) quarter-maximum

Q19: What is the magnitude of the current wave at the electric-wall end of the line?

(a) zero	(b) maximum
(c) half-maximum	(d) quarter-maximum

Step 3: Standing Wave in a Transmission Line Terminated by a Magnetic Wall

Q20: What is the magnitude of the voltage wave at the magnetic-wall end of the line?

(a) zero	(b) maximum
(c) half-maximum	(d) quarter-maximum

Q21: What is the magnitude of the current wave at the magnetic-wall end of the line?

(a) zero	(b) maximum
(c) half-maximum	(d) quarter-maximum

Q22: What is the distance in terms of wavelengths between two neighbouring nulls of the standing wave?

(a) one wavelength	(b) two wavelengths
(c) half a wavelength	(d) quarter wavelength

Q23: What is the distance in terms of wavelengths between two neighbouring maxima of the standing wave?

(a) one wavelength	(b) two wavelengths
(c) half a wavelength	(d) quarter wavelength

Experiment #5: Partial Reflection of a Sine Wave by a Resistive Load

Step 1: Mixed Wave Observation and SWR Measurement

TABLE 4: *SWR* measurement, $\Gamma = 0.5$

	Envelope	SWR
$V_{\rm max}$, V		
V_{\min} , V		

Q24: What is the theoretical value of the *SWR* when $\Gamma = 0.5$?

Experiment #6: Scattering of a Gaussian Pulse at a Dielectric Discontinuity

<u>Step 1: Project Set-up:</u> ($\varepsilon_{r1} < \varepsilon_{r2}$)

Computat	ion Domain	Transmission Line		
ΔL	1 mm		# of cells N_L	Phys. dimension= $N_L \cdot \Delta L$, mm
Δt	2.35865 ps	Width		
\mathcal{E}_{r1}	1	Length		
\mathcal{E}_{r2}	4	Interface at		
$\sigma_1 = \sigma_2$	0 S/m	Probe 1 - Interface		
# probes	2	Probe 2 - Interface		

 TABLE 5: STRUCTURE DESCRIPTION OF DIELECTRIC DISCONTINUITY

Q25: What is the ratio Z_{c2}/Z_{c1} of the characteristic impedances of the two sections of transmission lines joined at the interface?

(a) 2	(b) 1
(c) 0.25	(d) 0.5

Q26: What is the ratio v_{p2} / v_{p1} of the phase velocities of the two sections of transmission lines joined at the interface?

(a) 2	(b) 1
(c) 0.25	(d) 0.5

<u>Step 2: Observation of the Reflection and Transmission Coefficients</u> ($\varepsilon_{r1} < \varepsilon_{r2}$)

Q27: Which pulse exits the structure first?	
---	--

(a) reflected exits first to the left	(b) transmitted exits first to the right
(c) incident exits first to the left	(d) incident exits first to the right

Q28: The dielectric interface is practically equidistant from the two ends of the transmission-line structure. Based on your answer of Q27, in which region the pulse velocity is <u>smaller</u>?

(a) region #1 (left region)	(b) region #2 (right region)
(c) velocities in both regions are about the same	(d) there is no relation between Q27 and Q28

<u>Step 3:</u> Measurement of the Reflection and Transmission Coefficients ($\varepsilon_{r1} < \varepsilon_{r2}$)

	Peak, V	Γ measured	Γ theory	T measured	T theory
Incident					
Reflected					
Transmitted					

TABLE 6: REFLECTION AND TRANSMISSION COEFFICIENTS ($\varepsilon_{r1} < \varepsilon_{r2}$)

Q29: How did you calculate Γ measured from the measured pulse peaks?

Q30: How did you calculate T measured from the measured pulse peaks?

Q31: How did you calculate the theoretical reflection coefficient Γ ?

Q32: How did you calculate the theoretical transmission coefficient *T*?

<u>Step 4: Measurement of the Reflection and Transmission Coefficients</u> ($\varepsilon_{r1} > \varepsilon_{r2}$)

			(11 12)	
	Peak, V	Γ measured	Γ theory	T measured	T theory
Incident					
Reflected					
Transmitted					

TABLE 7: REFLECTION AND TRANSMISSION COEFFICIENTS ($\varepsilon_{r1} > \varepsilon_{r2}$)

Q33: How do you explain the fact that the transmitted pulse peak in segment 2 is greater than that of the incident peak in segment 1? Does this mean that the transmitted power in segment 2 is greater than the incident power in segment 1?

Experiment #7: Scattering of a Sine Wave at a Step Discontinuity

Step 1: Project Description

Computat	ion Domain	Transmission Line		
ΔL	1 mm		# of cells N_L	Physical size= $N_L \cdot \Delta L$, mm
Δt	2.35865 ps	Width Line 1, w_1		
\mathcal{E}_r	1	Length Line 1, L_1		
σ	0 S/m	Width Line 2, w_2		
		Length Line 2, L_2		
# probes	2	Probe 1 z-position		
Excite	Sine, 6 GHz	Probe 2 <i>z</i> -position		

 TABLE 8: STRUCTURE DESCRIPTION OF STEP DISCONTINUITY

Q34: Based on the measured widths of the two segments of transmission lines, w_1 and w_2 , calculate the ratio of the characteristics impedances Z_{c2} / Z_{c1} of the two lines. Note that the heights of the two line segments are identical.

(a) $Z_{c2} / Z_{c1} = 1$	(b) $Z_{c2} / Z_{c1} = 2$
(c) $Z_{c2} / Z_{c1} = 0.25$	(d) $Z_{c2} / Z_{c1} = 0.5$

Step 2: Observation of the Sine Wave in Both Line Segments

Q35: From the field animation, what can you conclude about the type of wave propagating in line segment 1 (the left one)?

(a) traveling	(b) standing
(c) mixed	(d) cannot tell

Q36: From the field animation, what can you conclude about the type of wave propagating in line segment 2 (the right one)?

(a) traveling	(b) standing
(c) mixed	(d) cannot tell

Q37: From the type of wave propagating in line segment 2, what can you conclude about the matching conditions at its end?

(a) not matched (b) matched

Step 3: Measurement of Standing Wave Ratio in Both Segments

TABLE 9: SWR MEASUREMENT IN BOTH TRANSMISSION-LINE SEGMENTS

	Envelope Segment 1	Envelope Segment 2
$V_{ m max}$, V		
V_{\min} , V		
SWR Measured		
Reflection Coefficient Γ Theory		
SWR Theory		

Q38: How did you calculate the theoretical reflection coefficient Γ ?

Q39: How did you calculate the theoretical *SWR*?

Experiment #8: Quarter-wavelength Impedance Transformer

Step 1: Project Description

TABLE 10: STRUCTURE DESCRIPTION OF QUARTER-WAVELENGTH IMPEDANCE TRANSFORMER

Common	Parameters	
ΔL	1 mm	Permittivity Line 1, ε_{r1}
Δt	2.35865 ps	Length Line 1, L_1 , mm
Width	3 mm	Permittivity Line 2, ε_{r2}
σ	0 S/m	Length Line 2, L_2
# probes	3	Permittivity Line 3, ε_{r3}
Excite	Sine, 2.65165 GHz	Length Line 3, L_3

Q40: Calculate the ratio $Z_{c2} / \sqrt{Z_{c1}Z_{c3}}$ for the three transmission-line segments bearing in mind that the only thing that is different in these line segments is the permittivity of the medium.

Q41: What is the wavelength at which the middle section of the transmission line acts best as an impedance transformer?

Q42: What frequency does this wavelength correspond to?

Step 2: Observation of the Sine Wave Propagation

Q43: What type of wave propagates in line segment 1?

(a) traveling	(b) standing
(c) mixed	(d) cannot tell

Q44: What is your conclusion about the equivalent load impedance of line segment 1?

(a) it is different from Z_{c1} (b) it is the same as Z_{c1}

Q45: Where is the wavelength the shortest?

(a) segment 1

(c) segment 3

(b) segment 2(d) it is the same everywhere

Q46: Why is the voltage smaller in segment 3 compared to that in segment 1?

Step 3: Observation of the 10-GHz Sine Wave Propagation

Q47: What type of wave propagates in line segment 1 when f = 10 GHz?

(a) traveling	(b) standing
(c) mixed	(d) cannot tell

Q48: What is your conclusion about the equivalent load impedance of line segment 1 when f = 10 GHz?

(a) it is different from Z_{c1} (b) it is the same as Z_{c1}

Q49: Explain the difference (if any) between the 10-GHz wave and the 2.65-GHz wave.

Received by:____

TA name and signature)

on:_____

(Date)