
Lecture 1: Vector Algebra 

scalars and vectors, unit vectors, subtraction and 

addition, position and distance vectors, vectors 

multiplications, Chapter 1, pages 3-15 
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Why Vectors? 

Electromagnetic fields with different directions and magnitudes exist 
inside our bodies and everywhere in space 
 

To determine the total field at any point, we apply vector operations 
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Bakr et al., 2012 
http://readious.blogspot.ca/2012/12/how-to-
protect-yourself-from-harmful.html 



Vectors and Scalars 

Scalars are quantities that are fully defined by their magnitude only.  No 

need to mention a direction for these quantities for example, mass, time, 

distance, and population 
 

Vectors are quantities that have both magnitude and direction such as 

velocity, force, and field intensity 
 

In electromagnetics-related journals, conference proceedings,  and 

books, vectors are indicated by bold face (A, b, or A) or with arrows (    ) 

while scalars are indicated by regular fact (a, or a) 
 

A field is a function that specifies a quantity everywhere in a predefined 

region 
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Magnitudes and Unit Vectors (Cartesian 

Coordinates) 

The vector magnitude of a vector A is the strength of the vector and is 

denoted by A 
 

A unit vector in the direction of A is a vector pointing in the same 

direction with a unity strength and is given by aA=A/A 
 

In Cartesian coordinates, a vector is given by 3 components  A=Ax ax+ 

Ay ay+ Az az 

 

Its magnitude is given by  
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Magnitudes (Cont’d) 
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Notice that a vector does not define a line in space.  It just defines a 

direction.  A point of reference is needed to determine a line 



Vector Addition 

The sum of vectors C=A+B  implies adding the corresponding components 
C=(Ax+Bx)ax+(Ay+By)ay+(Az+Bz)az 
 

Pictorially, this implies completing the parallelogram 
 

Vector summation is commutative, associative, and distributive with respect to 
scalars 
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Vector Subtraction 

The vector D=AB=A+(-B) is obtained by subtracting the 

corresponding components  D=(AxBx)ax+(AyBy)ay+(AzBz)az 
 

This implies that A=D+B 
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Position and Distance Vectors 

 

Position vector of a point is the directed line from the origin to that 

point with its components as the coordinates of the point 

rP=xax+yay+zaz 
 

In figure x=3, y=4, z=5 
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Distance Vector 

The distance vector pointing from point P to point Q is the vector 

rpQ=rQrP=(xQxP)ax+ (yQyP)ay+ (zQzP)az 
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The dot (scalar) product  

This product between two vectors results in a scalar 
 

If  is the smallest angle between the two vector, the scalar product  is 

defined by   
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cos A B = A B

Bcos 

ar  

Inner product with a unit vector gives the component in the 

direction of the unit vector! 



Properties of inner product 

AB=AxBx+AyBy+AzBz 
 

Commutative AB=BA, Distributive A(B+C)= AB+ AC 

 

AA=AxAx+AyAy+AzAz= 

 

The dot product of two orthogonal vectors (in 2D and 3D) is zero 
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Cross Product 

The cross product of two vectors gives another vector normal to their 

plane 
4 

 

 

The cross product is defined by AB=ABsin an, where  is the 

smallest angle between the two vectors and an is a unit vector normal to 

their plane in the direction of progress of a right hand screw rotating 

from vector A into vector B 
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Properties of Cross Product 

The magnitude of the cross product is the area of the parallelogram 

created by both vectors 
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Properties (Cont’d) 

Cross product in Cartesian coordinates is given by the following 

determinant 

 

 

 
 

Cross product is anticommutative AB= B  A 
 

Cross product is not associative A(B C)(AB)C 
 

Cross product is distributive A(B +C)= AB+ A C 
 

AA=0 
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Properties (Cont’d) 

For a right-handed Cartesian system, we have 
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